WASET
	@article{(Open Science Index):https://publications.waset.org/pdf/8704,
	  title     = {Influence of Combined Drill Coulters on Seedbed Compaction under Conservation Tillage Technologies},
	  author    = {E. Šarauskis and  L. Masilionyte and  Z. Kriaučiūniene and  K. Romaneckas},
	  country	= {},
	  institution	= {},
	  abstract     = {All over the world, including the Middle and East
European countries, sustainable tillage and sowing technologies are
applied increasingly broadly with a view to optimising soil resources,
mitigating soil degradation processes, saving energy resources,
preserving biological diversity, etc. As a result, altered conditions of
tillage and sowing technological processes are faced inevitably. The
purpose of this study is to determine the seedbed topsoil hardness
when using a combined sowing coulter in different sustainable tillage
technologies. The research involved a combined coulter consisting
of two dissected blade discs and a shoe coulter. In order to determine
soil hardness at the seedbed area, a multipenetrometer was used. It
was found by experimental studies that in loosened soil, a combined
sowing coulter equally suppresses the furrow bottom, walls and soil
near the furrow; therefore, here, soil hardness was similar at all
researched depths and no significant differences were established. In
loosened and compacted (double-rolled) soil, the impact of a
combined coulter on the hardness of seedbed soil surface was more
considerable at a depth of 2 mm. Soil hardness at the furrow bottom
and walls to a distance of up to 26 mm was 1.1 MPa. At a depth of 10
mm, the greatest hardness was established at the furrow bottom. In
loosened and heavily compacted (rolled for 6 times) soil, at a depth
of 2 and 10 mm a combined coulter most of all compacted the furrow
bottom, which has a hardness of 1.8 MPa. At a depth of 20 mm, soil
hardness within the whole investigated area varied insignificantly and
fluctuated by around 2.0 MPa. The hardness of furrow walls and soil
near the furrow was by approximately 1.0 MPa lower than that at the
furrow bottom},
	    journal   = {International Journal of Agricultural and Biosystems Engineering},
	  volume    = {7},
	  number    = {6},
	  year      = {2013},
	  pages     = {437 - 440},
	  ee        = {https://publications.waset.org/pdf/8704},
	  url   	= {https://publications.waset.org/vol/78},
	  bibsource = {https://publications.waset.org/},
	  issn  	= {eISSN: 1307-6892},
	  publisher = {World Academy of Science, Engineering and Technology},
	  index 	= {Open Science Index 78, 2013},
	}