Search results for: sheet metal manufacturing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1544

Search results for: sheet metal manufacturing

1424 Experimental Study of the Metal Foam Flow Conditioner for Orifice Plate Flowmeters

Authors: B. Manshoor, N. Ihsak, Amir Khalid

Abstract:

The sensitivity of orifice plate metering to disturbed flow (either asymmetric or swirling) is a subject of great concern to flow meter users and manufacturers. The distortions caused by pipe fittings and pipe installations upstream of the orifice plate are major sources of this type of non-standard flows. These distortions can alter the accuracy of metering to an unacceptable degree. In this work, a multi-scale object known as metal foam has been used to generate a predetermined turbulent flow upstream of the orifice plate. The experimental results showed that the combination of an orifice plate and metal foam flow conditioner is broadly insensitive to upstream disturbances. This metal foam demonstrated a good performance in terms of removing swirl and producing a repeatable flow profile within a short distance downstream of the device. The results of using a combination of a metal foam flow conditioner and orifice plate for non-standard flow conditions including swirling flow and asymmetric flow show this package can preserve the accuracy of metering up to the level required in the standards.

Keywords: Metal foam flow conditioner, flow measurement, orifice plate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2013
1423 Application of Recycled Tungsten Carbide Powder for Fabrication of Iron Based Powder Metallurgy Alloy

Authors: Yukinori Taniguchi, Kazuyoshi Kurita, Kohei Mizuta, Keigo Nishitani, Ryuichi Fukuda

Abstract:

Tungsten carbide is widely used as a tool material in metal manufacturing process. Since tungsten is typical rare metal, establishment of recycle process of tungsten carbide tools and restore into cemented carbide material bring great impact to metal manufacturing industry. Recently, recycle process of tungsten carbide has been developed and established gradually. However, the demands for quality of cemented carbide tool are quite severe because hardness, toughness, anti-wear ability, heat resistance, fatigue strength and so on should be guaranteed for precision machining and tool life. Currently, it is hard to restore the recycled tungsten carbide powder entirely as raw material for new processed cemented carbide tool. In this study, to suggest positive use of recycled tungsten carbide powder, we have tried to fabricate a carbon based sintered steel which shows reinforced mechanical properties with recycled tungsten carbide powder. We have made set of newly designed sintered steels. Compression test of sintered specimen in density ratio of 0.85 (which means 15% porosity inside) has been conducted. As results, at least 1.7 times higher in nominal strength in the amount of 7.0 wt.% was shown in recycled WC powder. The strength reached to over 600 MPa for the Fe-WC-Co-Cu sintered alloy. Wear test has been conducted by using ball-on-disk type friction tester using 5 mm diameter ball with normal force of 2 N in the dry conditions. Wear amount after 1,000 m running distance shows that about 1.5 times longer life was shown in designed sintered alloy. Since results of tensile test showed that same tendency in previous testing, it is concluded that designed sintered alloy can be used for several mechanical parts with special strength and anti-wear ability in relatively low cost due to recycled tungsten carbide powder.

Keywords: Tungsten carbide, recycle process, compression test, powder metallurgy, anti-wear ability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1424
1422 Conjugate Heat transfer over an Unsteady Stretching Sheet Mixed Convection with Magnetic Effect

Authors: Kai-Long Hsiao

Abstract:

A conjugate heat transfer for steady two-dimensional mixed convection with magnetic hydrodynamic (MHD) flow of an incompressible quiescent fluid over an unsteady thermal forming stretching sheet has been studied. A parameter, M, which is used to represent the dominance of the magnetic effect has been presented in governing equations. The similar transformation and an implicit finite-difference method have been used to analyze the present problem. The numerical solutions of the flow velocity distributions, temperature profiles, the wall unknown values of f''(0) and '(θ (0) for calculating the heat transfer of the similar boundary-layer flow are carried out as functions of the unsteadiness parameter (S), the Prandtl number (Pr), the space-dependent parameter (A) and temperature-dependent parameter (B) for heat source/sink and the magnetic parameter (M). The effects of these parameters have also discussed. At the results, it will produce greater heat transfer effect with a larger Pr and M, S, A, B will reduce heat transfer effects. At last, conjugate heat transfer for the free convection with a larger G has a good heat transfer effect better than a smaller G=0.

Keywords: Finite-difference method, Conjugate heat transfer, Unsteady Stretching Sheet, MHD, Mixed convection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1537
1421 Studies on Ti/Al Sheet Joint Using Laser Beam Welding – A Review

Authors: K. Kalaiselvan, A. Elango, N. M. Nagarajan, N. Mathiyazagan

Abstract:

Laser beam welding has wide acceptability due to least welding distortion, low labour costs and convenient operation. However, laser welding for dissimilar titanium and aluminium alloys is a new area which is having wider applications in aerospace, aircraft, automotive, electronics and other industries. The present study is concerned with welding parameters namely laser power, welding speed, focusing distance and type of shielding gas and thereby evaluate welding performance of titanium and aluminium alloy thin sheets. This paper reviews the basic concepts associated with different parameters of Ti/Al sheet joint using Laser beam welding.

Keywords: Laser Beam Welding (LBW), Dissimilar joining Titanium and Aluminum sheets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2207
1420 Application of Powder Metallurgy Technologies for Gas Turbine Engine Wheel Production

Authors: Liubov Magerramova, Eugene Kratt, Pavel Presniakov

Abstract:

A detailed analysis has been performed for several schemes of Gas Turbine Wheels production based on additive and powder technologies including metal, ceramic, and stereolithography 3-D printing. During the process of development and debugging of gas turbine engine components, different versions of these components must be manufactured and tested. Cooled blades of the turbine are among of these components. They are usually produced by traditional casting methods. This method requires long and costly design and manufacture of casting molds. Moreover, traditional manufacturing methods limit the design possibilities of complex critical parts of engine, so capabilities of Powder Metallurgy Techniques (PMT) were analyzed to manufacture the turbine wheel with air-cooled blades. PMT dramatically reduce time needed for such production and allow creating new complex design solutions aimed at improving the technical characteristics of the engine: improving fuel efficiency and environmental performance, increasing reliability, and reducing weight. To accelerate and simplify the blades manufacturing process, several options based on additive technologies were used. The options were implemented in the form of various casting equipment for the manufacturing of blades. Methods of powder metallurgy were applied for connecting the blades with the disc. The optimal production scheme and a set of technologies for the manufacturing of blades and turbine wheel and other parts of the engine can be selected on the basis of the options considered.

Keywords: Additive technologies, gas turbine engine, powder technology, turbine wheel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1867
1419 Development of 25A-Size Three-Layer Metal Gasket by Using FEM Simulation

Authors: Shigeyuki Haruyama, I Made Gatot Karohika, Akinori Sato, Didik Nurhadiyanto, Ken Kaminishi

Abstract:

Contact width and contact stress are important design parameters for optimizing corrugated metal gasket performance based on elastic and plastic contact stress. In this study, we used a three-layer metal gasket with Al, Cu, Ni as the outer layer, respectively. A finite element method was employed to develop simulation solution. The gasket model was simulated by using two simulation stages which are forming and tightening simulation. The simulation result shows that aluminum with tangent modulus, Ehal = Eal/150 has the highest slope for contact width. The slope of contact width for plastic mode gasket was higher than the elastic mode gasket.

Keywords: Contact width, contact stress, layer, metal gasket, corrugated, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1568
1418 Numerical and Experimental Study of Heat Transfer Enhancement with Metal Foams and Ultrasounds

Authors: L. Slimani, A. Bousri, A. Hamadouche, H. Ben Hamed

Abstract:

The aim of this experimental and numerical study is to analyze the effects of acoustic streaming generated by 40 kHz ultrasonic waves on heat transfer in forced convection, with and without 40 PPI aluminum metal foam. Preliminary dynamic and thermal studies were done with COMSOL Multiphase, to see heat transfer enhancement degree by inserting a 40PPI metal foam (10 × 2 × 3 cm) on a heat sink, after having determined experimentally its permeability and Forchheimer's coefficient. The results obtained numerically are in accordance with those obtained experimentally, with an enhancement factor of 205% for a velocity of 0.4 m/s compared to an empty channel. The influence of 40 kHz ultrasound on heat transfer was also tested with and without metallic foam. Results show a remarkable increase in Nusselt number in an empty channel with an enhancement factor of 37,5%, while no influence of ultrasound on heat transfer in metal foam presence.

Keywords: Enhancing heat transfer, metal foam, ultrasound, acoustic streaming, laminar flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 426
1417 The Current Implementation Status of Manufacturing Control Systems for a Key Manufacturing Industry

Authors: Rajab Abdullah Hokoma

Abstract:

Manufacturing, production and service industries within Libya have struggled with many problems during the past two decades due to many difficulties. These problems have created a negative impact on the productivity and utilization of many industries around the country. This paper studies the implementation levels of the manufacturing control systems known as Manufacturing Resource Planning (MRPII) being adapted within some Libyan industries. A survey methodology has been applied for this research, based on the survey analysis, the results pointed out that the system within these industries has a modest strategy towards most of the areas that are considered as being very crucial in implementing these systems successfully. The findings also show a variation within these implementation levels with a respect to the key-elements that related to MRPII, giving the highest levels in the emphasise on financial data accuracy. The paper has also identified limitations within the investigated manufacturing and managerial areas and has pointed to where senior managers should take immediate actions in order to achieve effective implementation of MRPII within their business area.

Keywords: Control, Industry, Manufacturing, Survey, System

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1697
1416 An Analysis of the Relationship between Manufacturing Growth and Economic Growth in South Africa: A Cointegration Approach

Authors: Johannes T. Tsoku, Teboho J. Mosikari, Diteboho Xaba, Thatoyaone Modise

Abstract:

This paper examines the relationship between manufacturing growth and economic growth in South Africa using quarterly data ranging from 2001 to 2014. The paper employed the Johansen cointegration to test the Kaldor’s hypothesis. The Johansen cointegration results revealed that there is a long run relationship between GDP, manufacturing, service and employment. The Granger causality results revealed that there is a unidirectional causality running from manufacturing growth to GDP growth. The overall findings of the study confirm that Kaldor’s first law of growth is applicable in South African economy. Therefore, investment strategies and policies should be alignment towards promoting growth in the manufacturing sector in order to boost the economic growth of South Africa.

Keywords: Cointegration, economic growth, Kaldor’s law, manufacturing growth.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1798
1415 Air-Filled Circular Cross Sectional Cavity for Microwave Non-Destructive Testing

Authors: Mohd Tarmizi Ali, Mohd Khairul Mohd Salleh, Md. Mahfudz Md. Zan

Abstract:

Dielectric sheet perturbation to the dominant TE111 mode resonant frequency of a circular cavity is studied and presented in this paper. The dielectric sheet, placed at the middle of the airfilled cavity, introduces discontinuities and disturbs the configuration of electromagnetic fields in the cavity. For fixed dimensions of cavity and fixed thickness of the loading dielectric, the dominant resonant frequency varies quite linearly with the permittivity of the dielectric. This quasi-linear relationship is plotted using Maple software and verified using 3D electromagnetic simulations. Two probes are used in the simulation for wave excitation into and from the cavity. The best length of probe is found to be 3 mm, giving the closest resonant frequency to the one calculated using Maple. A total of fourteen different dielectrics of permittivity ranging from 1 to 12.9 are tested one by one in the simulation. The works show very close agreement between the results from Maple and the simulation. A constant difference of 0.04 GHz is found between the resonant frequencies collected during simulation and the ones from Maple. The success of this project may lead to the possibility of using the middle loaded cavity at TE111 mode as a microwave non-destructive testing of solid materials.

Keywords: Middle-loaded cavity, dielectric sheet perturbation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2297
1414 Structural and Electronic Characterization of Supported Ni and Au Catalysts used in Environment Protection Determined by XRD,XAS and XPS methods

Authors: N. Aldea, V. Rednic, F. Matei, Tiandou Hu, M. Neumann

Abstract:

The nickel and gold nanoclusters as supported catalysts were analyzed by XAS, XRD and XPS in order to determine their local, global and electronic structure. The present study has pointed out a strong deformation of the local structure of the metal, due to its interaction with oxide supports. The average particle size, the mean squares of the microstrain, the particle size distribution and microstrain functions of the supported Ni and Au catalysts were determined by XRD method using Generalized Fermi Function for the X-ray line profiles approximation. Based on EXAFS analysis we consider that the local structure of the investigated systems is strongly distorted concerning the atomic number pairs. Metal-support interaction is confirmed by the shape changes of the probability densities of electron transitions: Ni K edge (1s → continuum and 2p), Au LIII-edge (2p3/2 → continuum, 6s, 6d5/2 and 6d3/2). XPS investigations confirm the metal-support interaction at their interface.

Keywords: local and global structure, metal-support interaction, supported metal catalysts, synchrotron radiation, X-ray absorptionspectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1735
1413 Scope and Application of Collaborative Tools and Digital Manufacturing in Dentistry

Authors: S. Mohan Kumar, Rajashekar Patil, Tanuja Ajit Desphande

Abstract:

It is necessary to incorporate technological advances achieved in the field of engineering into dentistry in order to enhance the process of diagnosis, treatment planning and enable the doctors to render better treatment to their patients. To achieve this ultimate goal long distance collaborations are often necessary. This paper discusses the various collaborative tools and their applications to solve a few burning problems confronted by the dentists. Customization is often the solution to most of the problems. But rapid designing, development and cost effective manufacturing is a difficult task to achieve. This problem can be solved using the technique of digital manufacturing. Cases from 6 major branches of dentistry have been discussed and possible solutions with the help of state of art technology using rapid digital manufacturing have been proposed in the present paper. The paper also entails the usage of existing tools in collaborative and digital manufacturing area.

Keywords: Customisation, collaborative tools, dentistry, digital manufacturing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1811
1412 Annealing of the Contact between Graphene and Metal: Electrical and Raman Study

Authors: A. Sakavičius, A. Lukša, V. Nargelienė, V. Bukauskas, G. Astromskas, A. Šetkus

Abstract:

We investigate the influence of annealing on the properties of a contact between graphene and metal (Au and Ni), using circular transmission line model (CTLM) contact geometry. Kelvin probe force microscopy (KPFM) and Raman spectroscopy are applied for characterization of the surface and interface properties. Annealing causes a decrease of the metal-graphene contact resistance for both Ni and Au.

Keywords: Graphene, Kelvin force probe microscopy, Raman spectroscopy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1315
1411 Use of Recycled PVB as a Protection against Carbonation

Authors: Michael Tupý, Vít Petránek

Abstract:

The paper is focused on testing of the poly(vinyl butyral) (PVB) layer which had the function of a CO2 insulating protection against concrete and mortar carbonation. The barrier efficiency of PVB was verified by the measurement of diffusion characteristics. Two different types of PVB were tested; original extruded PVB sheet and PVB sheet made from PVB dispersion which was obtained from recycled windshields. The work deals with the testing CO2 diffusion when polymer sheets were exposed to a CO2 atmosphere (10% v/v CO2) with 0% RH. The excellent barrier capability against CO2 permeability of original and also recycled types of PVB layers was observed. This application of PVB waste can bring advantageous use in civil engineering and significant environmental contribution.

Keywords: Windshield, Poly(vinyl butyral), Mortar, Diffusion, Carbonatation, Polymer waste.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3656
1410 Evaluating the Innovation Ability of Manufacturing Resources

Authors: M.F. Zaeh, G. Reinhart, U. Lindemann, F. Karl, W. Biedermann

Abstract:

Due to today-s turbulent environment, manufacturing resources, particularly in assembly, must be reconfigured frequently. These reconfigurations are caused by various, partly cyclic, influencing factors. Hence, it is important to evaluate the innovation ability - the capability of resources to implement innovations quickly and efficiently without large expense - of manufacturing resources. For this purpose, a new methodology is presented in this article. Within the methodology, design structure matrices and graph theory are used. The results of the methodology include different indices to evaluate the innovation ability of the manufacturing resources. Due to the cyclicity of the influencing factors, the methodology can be used to synchronize the realization of adaptations.

Keywords: Changeability, Cycle Management, Design StructureMatrices, Graph Theory, Manufacturing Resource Planning, Production Management

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1451
1409 Production of (V-B) Reinforced Fe Matrix Composites

Authors: Kerim Emre Öksüz, Mehmet Çevik, A. Enbiya Bozdağ, Ali Özer, Mehmet Simsir

Abstract:

Metal matrix composites (MMCs) have gained a considerable interest in the last three decades. Conventional powder metallurgy production route often involves the addition of reinforcing phases into the metal matrix directly, which leads to poor wetting behavior between ceramic phase and metal matrix and the segregation of reinforcements. The commonly used elements for ceramic phase formation in iron based MMCs are Ti, Nb, Mo, W, V and C, B. The aim of the present paper is to investigate the effect of sintering temperature and V-B addition on densification, phase development, microstructure, and hardness of Fe–V-B composites (Fe-(5-10) wt. %B – 25 wt. %V alloys) prepared by powder metallurgy process. Metal powder mixes were pressed uniaxial and sintered at different temperatures (ranging from 1300 to 1400ºC) for 1h. The microstructure of the (V, B) Fe composites was studied with the help of high magnification optical microscope and XRD. Experimental results show that (V, B) Fe composites can be produced by conventional powder metallurgy route.

Keywords: Hardness, Metal matrix composite (MMC), Microstructure, Powder Metallurgy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2712
1408 Integrated Evaluation of Green Design and Green Manufacturing Processes Using a Mathematical Model

Authors: Yuan-Jye Tseng, Shin-Han Lin

Abstract:

In this research, a mathematical model for integrated evaluation of green design and green manufacturing processes is presented. To design a product, there can be alternative options to design the detailed components to fulfill the same product requirement. In the design alternative cases, the components of the product can be designed with different materials and detailed specifications. If several design alternative cases are proposed, the different materials and specifications can affect the manufacturing processes. In this paper, a new concept for integrating green design and green manufacturing processes is presented. A green design can be determined based the manufacturing processes of the designed product by evaluating the green criteria including energy usage and environmental impact, in addition to the traditional criteria of manufacturing cost. With this concept, a mathematical model is developed to find the green design and the associated green manufacturing processes. In the mathematical model, the cost items include material cost, manufacturing cost, and green related cost. The green related cost items include energy cost and environmental cost. The objective is to find the decisions of green design and green manufacturing processes to achieve the minimized total cost. In practical applications, the decision-making can be made to select a good green design case and its green manufacturing processes. In this presentation, an example product is illustrated. It shows that the model is practical and useful for integrated evaluation of green design and green manufacturing processes.

Keywords: Supply chain management, green supply chain, green design, green manufacturing, mathematical model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1816
1407 Metal Streak Analysis with different Acquisition Settings in Postoperative Spine Imaging: A Phantom Study

Authors: N. D. Osman, M. S. Salikin, M. I. Saripan

Abstract:

CT assessment of postoperative spine is challenging in the presence of metal streak artifacts that could deteriorate the quality of CT images. In this paper, we studied the influence of different acquisition parameters on the magnitude of metal streaking. A water-bath phantom was constructed with metal insertion similar with postoperative spine assessment. The phantom was scanned with different acquisition settings and acquired data were reconstructed using various reconstruction settings. Standardized ROIs were defined within streaking region for image analysis. The result shows increased kVp and mAs enhanced SNR values by reducing image noise. Sharper kernel enhanced image quality compared to smooth kernel, but produced more noise in the images with higher CT fluctuation. The noise between both kernels were significantly different (P <0.05) with increment of noise in the bone kernel images (mean difference = 54.78). The technical settings should be selected appropriately to attain the acceptable image quality with the best diagnostic value.

Keywords: Computed tomography, metal streak, noise, CT fluctuation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1964
1406 Underwater Interaction of 1064 nm Laser Radiation with Metal Target

Authors: G. Toker, V. Bulatov, T. Kovalchuk, I. Schechter

Abstract:

Dynamics of laser radiation – metal target interaction in water at 1064 nm by applying Mach-Zehnder interference technique was studied. The mechanism of generating the well developed regime of evaporation of a metal surface and a spherical shock wave in water is proposed. Critical intensities of the NIR for the well developed evaporation of silver and gold targets were determined. Dynamics of shock waves was investigated for earlier (dozens) and later (hundreds) nanoseconds of time. Transparent expanding plasma-vapor-compressed water object was visualized and measured. The thickness of compressed layer of water and pressures behind the front of a shock wave for later time delays were obtained from the optical treatment of interferograms.

Keywords: laser, shock wave, metal target, underwater

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1625
1405 Physio-mechanical Properties of Aluminium Metal Matrix Composites Reinforced with Al2O3 and SiC

Authors: D. Sujan, Z. Oo, M. E. Rahman, M. A. Maleque, C. K. Tan

Abstract:

Particulate reinforced metal matrix composites (MMCs) are potential materials for various applications due to their advantageous of physical and mechanical properties. This paper presents a study on the performance of stir cast Al2O3 SiC reinforced metal matrix composite materials. The results indicate that the composite materials exhibit improved physical and mechanical properties, such as, low coefficient of thermal expansion, high ultimate tensile strength, high impact strength, and hardness. It has been found that with the increase of weight percentage of reinforcement particles in the aluminium metal matrix, the new material exhibits lower wear rate against abrasive wearing. Being extremely lighter than the conventional gray cast iron material, the Al-Al2O3 and Al-SiC composites could be potential green materials for applications in the automobile industry, for instance, in making car disc brake rotors.

Keywords: Metal Matrix Composite, Strength to Weight Ratio, Wear Rate

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5910
1404 Anticipating Action Decisions of Automated Guided Vehicle in an Autonomous Decentralized Flexible Manufacturing System

Authors: Rizauddin Ramli, Jaber Abu Qudeiri, Hidehiko Yamamoto

Abstract:

Nowadays the market for industrial companies is becoming more and more globalized and highly competitive, forcing them to shorten the duration of the manufacturing system development time in order to reduce the time to market. In order to achieve this target, the hierarchical systems used in previous manufacturing systems are not enough because they cannot deal effectively with unexpected situations. To achieve flexibility in manufacturing systems, the concept of an Autonomous Decentralized Flexible Manufacturing System (AD-FMS) is useful. In this paper, we introduce a hypothetical reasoning based algorithm called the Algorithm for Future Anticipative Reasoning (AFAR) which is able to decide on a conceivable next action of an Automated Guided Vehicle (AGV) that works autonomously in the AD-FMS.

Keywords: Flexible Manufacturing System, Automated GuidedVehicle, Hypothetical Reasoning, Autonomous Decentralized.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2055
1403 Scope of Internal Supply Chain Management Benchmarking in Indian Manufacturing Industries

Authors: Kailash, Rajeev Kumar Saha, Sanjeev Goyal

Abstract:

Internal supply chain management benchmarking practice is necessary to overcome manufacturing industrial performance gap. The main purpose of this research work is to combine the benchmarking and internal supply chain practices to improve the performance of Indian manufacturing industries. In this paper, the main aim is to discuss the components of internal supply chain between suppliers and customers after that explain the scope of ISCM benchmarking in manufacturing industries.

Keywords: Competitive environment, internal supply chain management components, benchmarking practice, manufacturing industries, market potential.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1075
1402 Novel Trends in Manufacturing Systems with View on Implementation Possibilities of Intelligent Automation

Authors: Roman Ružarovský, Radovan Holubek, Peter Košťál

Abstract:

The current trend of increasing quality and demands of the final product is affected by time analysis of the entire manufacturing process. The primary requirement of manufacturing is to produce as many products as soon as possible, at the lowest possible cost, but of course with the highest quality. Such requirements may be satisfied only if all the elements entering and affecting the production cycle are in a fully functional condition. These elements consist of sensory equipment and intelligent control elements that are essential for building intelligent manufacturing systems. The intelligent manufacturing paradigm includes a new approach to production system structure design. Intelligent behaviors are based on the monitoring of important parameters of system and its environment. The flexible reaction to changes. The realization and utilization of this design paradigm as an "intelligent manufacturing system" enables the flexible system reaction to production requirement as soon as environmental changes too. Results of these flexible reactions are a smaller layout space, be decreasing of production and investment costs and be increasing of productivity. Intelligent manufacturing system itself should be a system that can flexibly respond to changes in entering and exiting the process in interaction with the surroundings.

Keywords: Sensory equipment, intelligent manufacturing systems, manufacturing process, control system, smart automation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1967
1401 An Advanced Technology for Renovation of Extruding Shafts

Authors: Dimitar Karastoyanov, Vladimir Monov

Abstract:

The paper is concerned with the technological process of renovation of shafts used in industrial manufacturing for extruding of sheet material. In the classical renovation technologies, a chrome based coating is applied to the working surface of the shaft in galvanic baths. The process, however, is known to be exclusively harmful due to the waste cyanide products. In this work, we present an advanced nanotechnology based on nonelectric chemical laying of a nickel coating with included nanoparticles. The technology is environmentally harmless and the new coating features an increased hardness and wear resistance. Results from experimental tests of the nanostructured nickel coating are presented and discussed.

Keywords: Materials processing, nanoparticles, nickel coating, shafts renovation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1826
1400 Case on Manufacturing Cell Formation Using Production Flow Analysis

Authors: Vladimír Modrák

Abstract:

This paper offers a case study, in which methodological aspects of cell design for transformation the production process are applied. The cell redesign in this work is tightly focused to reach optimization of material flows under real manufacturing conditions. Accordingly, more individual techniques were aggregated into compact methodical procedure with aim to built one-piece flow production. Case study was concentrated on relatively typical situation of transformation from batch production to cellular manufacturing.

Keywords: Product/Quantity analysis, layout, design, manufacturing process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3304
1399 A Comparative Study of Metal Extraction from Spent Catalyst Using Acidithiobacillus ferrooxidans

Authors: Haragobinda Srichandan, Sradhanjali Singh, Dong Jin Kim, Seoung-Won Lee

Abstract:

The recovery of metal values and safe disposal of spent catalyst is gaining interest due to both its hazardous nature and increased regulation associated with disposal methods. Prior to the recovery of the valuable metals, removal of entrained deposits limit the diffusion of lixiviate resulting in low recovery of metals must be taken into consideration. Therefore, petroleum refinery spent catalyst was subjected to acetone washing and roasting at 500oC. The treated samples were investigated for metals bioleaching using Acidithiobacillus ferrooxidans in batch reactors and the leaching efficiencies were compared. It was found out that acetone washed spent catalysts results in better metal recovery compare to roasted spent. About 83% Ni, 20% Al, 50% Mo and 73% V were leached using the acetone washed spent catalyst. In both the cases, Ni, V and Mo was high compared to Al.

Keywords: Acetone wash, At. ferrooxidans, Bioleaching, Calcined, Metal recovery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2534
1398 A Matrix Evaluation Model for Sustainability Assessment of Manufacturing Technologies

Authors: Q. Z. Yang, B. H. Chua, B. Song

Abstract:

Technology assessment is a vital part of decision process in manufacturing, particularly for decisions on selection of new sustainable manufacturing processes. To assess these processes, a matrix approach is introduced and sustainability assessment models are developed. Case studies show that the matrix-based approach provides a flexible and practical way for sustainability evaluation of new manufacturing technologies such as those used in surface coating. The technology assessment of coating processes reveals that compared with powder coating, the sol-gel coating can deliver better technical, economical and environmental sustainability with respect to the selected sustainability evaluation criteria for a decorative coating application of car wheels.

Keywords: Evaluation matrix, sustainable manufacturing, surface coating, technology assessment

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2594
1397 A Strategic Evaluation Approach for Defining the Maturity of Manufacturing Technologies

Authors: G. Reinhart, S. Schindler

Abstract:

Due to dynamic evolution, the ability of a manufacturing technology to produce a special product is changing. Therefore, it is essential to monitor the established techniques and processes to detect whether a company-s production will fit future circumstances. Concerning the manufacturing technology planning process, companies must decide when to change to a new technology for maintaining and increasing competitive advantages. In this context, the maturity assessment of the focused technologies is crucial. This article presents an approach for defining the maturity of a manufacturing technology from a strategic point of view. The concept is based on the approach of technology readiness level (TRL) according to NASA (National Aeronautics and Space Administration), but also includes dynamic changes. Therefore, the model takes into account the concept of the technology life cycle. Furthermore, it enables a company to estimate the ideal date for implementation of a new manufacturing technology.

Keywords: Maturity Assessment, Manufacturing Technology Planning, Technology Life Cycle, Technology Readiness Level.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2442
1396 Assessment of Material Type, Diameter, Orientation and Closeness of Fibers in Vulcanized Reinforced Rubbers

Authors: Ali Osman Güney, Bahattin Kanber

Abstract:

In this work, the effect of material type, diameter, orientation and closeness of fibers on the general performance of reinforced vulcanized rubbers are investigated using finite element method with experimental verification. Various fiber materials such as hemp, nylon, polyester are used for different fiber diameters, orientations and closeness. 3D finite element models are developed by considering bonded contact elements between fiber and rubber sheet interfaces. The fibers are assumed as linear elastic, while vulcanized rubber is considered as hyper-elastic. After an experimental verification of finite element results, the developed models are analyzed under prescribed displacement that causes tension. The normal stresses in fibers and shear stresses between fibers and rubber sheet are investigated in all models. Large deformation of reinforced rubber sheet also represented with various fiber conditions under incremental loading. A general assessment is achieved about best fiber properties of reinforced rubber sheets for tension-load conditions.

Keywords: Fiber properties, finite element method, tension-load condition, reinforced vulcanized rubbers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 880
1395 Removal of Ni(II), Zn(II) and Pb(II) ions from Single Metal Aqueous Solution using Activated Carbon Prepared from Rice Husk

Authors: Mohd F. Taha, Chong F. Kiat, Maizatul S. Shaharun, Anita Ramli

Abstract:

The abundance and availability of rice husk, an agricultural waste, make them as a good source for precursor of activated carbon. In this work, rice husk-based activated carbons were prepared via base treated chemical activation process prior the carbonization process. The effect of carbonization temperatures (400, 600 and 800oC) on their pore structure was evaluated through morphology analysis using scanning electron microscope (SEM). Sample carbonized at 800oC showed better evolution and development of pores as compared to those carbonized at 400 and 600oC. The potential of rice husk-based activated carbon as an alternative adsorbent was investigated for the removal of Ni(II), Zn(II) and Pb(II) from single metal aqueous solution. The adsorption studies using rice husk-based activated carbon as an adsorbent were carried out as a function of contact time at room temperature and the metal ions were analyzed using atomic absorption spectrophotometer (AAS). The ability to remove metal ion from single metal aqueous solution was found to be improved with the increasing of carbonization temperature. Among the three metal ions tested, Pb(II) ion gave the highest adsorption on rice husk-based activated carbon. The results obtained indicate the potential to utilize rice husk as a promising precursor for the preparation of activated carbon for removal of heavy metals.

Keywords: Activated carbon, metal ion adsorption, rice husk, wastewater treatment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2678