Evaluating the Innovation Ability of Manufacturing Resources
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32804
Evaluating the Innovation Ability of Manufacturing Resources

Authors: M.F. Zaeh, G. Reinhart, U. Lindemann, F. Karl, W. Biedermann

Abstract:

Due to today-s turbulent environment, manufacturing resources, particularly in assembly, must be reconfigured frequently. These reconfigurations are caused by various, partly cyclic, influencing factors. Hence, it is important to evaluate the innovation ability - the capability of resources to implement innovations quickly and efficiently without large expense - of manufacturing resources. For this purpose, a new methodology is presented in this article. Within the methodology, design structure matrices and graph theory are used. The results of the methodology include different indices to evaluate the innovation ability of the manufacturing resources. Due to the cyclicity of the influencing factors, the methodology can be used to synchronize the realization of adaptations.

Keywords: Changeability, Cycle Management, Design StructureMatrices, Graph Theory, Manufacturing Resource Planning, Production Management

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1062836

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1448

References:


[1] E. Abele, J. Elzenheimer, T. Liebeck, T. Meyer "Globalization and Decentralization of Manufacturing," in "Reconfigurable Manufacturing Systems and Transformable Factories," A. I. Daschenko, Ed. Berlin: Springer, pp. 3-14, 2006.
[2] Y. Koren, U. Heisel, F. Jovane, T. Moriwaki, G. Pritschow, G. Ulsoy, H. van Brussel "Reconfigurable Manufacturing Systems," ClRP Annals Vol. 48, Nr. 2, pp. 527-540, 1999.
[3] M. F. Zaeh, G. Reinhart, J. Pohl, S. Schindler, F. Karl, C. Rimpau "Modelling, Anticipating and Managing Cyclic Behaviour in Industry," 3rd International Conference on Changeable, Agile, Reconfigurable and Virtual Production (CARV), Munich, 2009, Germany.
[4] J. Schumpeter "A theoretical, historical and statistical analysis of the capitalist process," New York: McGraw Hill, 1939.
[5] B. Aschhoff, T. Doherr, H. Löhlein, B. Peters, C. Rammer, T. Schmidt, T. Schubert, F. Schwiebacher "Innovationsverhalten der deutschen Wirtschaft - Indikatorbericht zur Innovationserhebung 2007," Mannheim: ZEW, 2008.
[6] D. Spath, J. Warschat, K. Auernhammer, A. Domeringer, M. Bannert "Integriertes Innovationsmanagement - Erfolgsfaktoren, Methoden, Praxisbeispiele," Stuttgart: Fraunhofer IRB, 2003.
[7] H.-P Wiendahl, H. A. ElMaraghy, M. F Zäh, H.-H. Wiendahl, N. Duffie, M Kolakowski "Changeable Manufacturing: Classification, Design, Operation," in "Annals of the CIRP 56 (2007) 2," J. Corbett et al., Ed. Exter (UK): Polestar Wheatons, 2007.
[8] Deutsches Institut f├╝r Normung, Ed. "DIN 8593: Fertigungsverfahren F├╝gen - Teil 0: Allgemeines, Einordnung, Unterteilung, Begriffe," Berlin: Beuth, 2003.
[9] Deutsches Institut f├╝r Normung, Ed. "DIN 8580: Fertigungsverfahren - Begriffe, Einteilung," Berlin: Beuth, 2003.
[10] Verein Deutscher Ingenieure, Ed. "VDI 2815: Begriffe f├╝r die Produktionsplanung und -steuerung," D├╝sseldorf: VDI-Verlag, 1978.
[11] E. Westkämper "Digital Manufacturing in the global Era," 3rd CIRP sponsered Conference on Digital Enterprise Technology, Setúbal, 2006, Portugal.
[12] P. Nyhuis, M. Kolakowski, C. L. Heger "Evaluation of Factory Transformability," CIRP 3rd International Conference on Reconfigurable Manufacturing Systems, Ann Arbor, 2005, MI /USA.
[13] M. F. Zäh, J. Werner, M. Prasch "Changeable Means of Production," in "First CIRP International Seminar on Assembly Systems (ISAS 2006)," E. Westkämper, Ed. Stuttgart: IRB, pp. 33-38, 2006.
[14] M. F. Zäh, G. Reinhart, F. Karl "Zyklenorientierte Montagebetriebsmittelbewertung," wt Werkstattstechnik online, vol. 100 (2010) H. 9, Düsseldorf: Springer-VDI-Verlag, 2010, submitted for publication.
[15] M. F. Zaeh, G. Reinhart, F. Karl, S. Schindler, J. Pohl, C. Rimpau "Cyclic influences within the production resource planning process," in "Production Engineering - Special Issue: Part I: Changeable, Agile, Reconfigurable and Virtual Production," M. F. Zaeh, G. Reinhart, Ed. Vol. 4, Nr. 4, 2010, pp. 309-317.
[16] G. Reinhart, S. Schindler, J. Pohl, C. Rimpau "Cycle-Oriented Manufacturing Technology Chain Planning," 3rd International Conference on Changeable, Agile, Reconfigurable and Virtual Production (CARV), Munich, 2009, Germany.
[17] T. R Browning "Applying the Design Structure Matrix to System Decomposition and Integration Problems: A Review and New Directions" IEEE Transactions on Engineering Management, vol. 3, pp. 292-306, 2001.
[18] W. Biedermann, B. Strelkow, F. Karl, U. Lindemann, M. F. Zaeh "Reducing Data Acquisition Effort by Hiearchical System Modelling," in "Proceedings of the 12th International DSM Conference," D. C. Wynn, M. Kreimeyer, K. Eben, M. Maurer, U. Lindemann, J. Clarkson, Ed. M├╝nchen: Hanser, pp. 309-318, 2010.
[19] D. B. West "Graph Theory," 2nd ed. London: Prentice-Hall International, 2001.
[20] K. Eben, W. Biedermann, U. Lindemann "Modeling Structural Change over Time - Requirements and First Methods," in "Proceedings of the 10th International DSM Conference," M. Kreimeyer, U. Lindemann, M. Danilovic, Ed. M├╝nchen: Hanser, S.15-23, 2008.
[21] M. F. Kreimeyer "A Structural Measurement System for Engineering Design Processes," M├╝nchen: Dr. Hut, 2010.
[22] H. Kerzner "Project Management for Engineering Design," Hoboken, NJ: Wiley, 2009.
[23] D. R. Hansen, M. M. Mowen, L. Guan "Cost Management: Accounting & Control," 6th ed. Mason (USA, OH): South-Western Cengage Learning, 2009.