Search results for: reheating furnace
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 117

Search results for: reheating furnace

57 The Influence of RHA on the Mechanical Properties of Mortar Heated Up To High Temperature

Authors: Md. Harunur Rashid, S. M. Kamal Uddin, Sobura khatun

Abstract:

The performance of mortar subjected to high temperature and cooled in normal ambient temperature was examined in the laboratory to comply with the situation of burning & cooling of a structure. Four series of cubical (5 X 5 X 5 cm) mortar specimens were made from OPC, and partial replacement (10, 15, 20, 25 & 30%) of OPC by Rice Husk Ash (RHA) produced in the uncontrolled environment. These specimens were heated in electric furnace to 200, 300, 400, 500 and 7000C. The specimens were kept in normal room temperature for cooling. They were then tested for mechanical properties and the results shows that particular 20% RHA mixed mortar shows better fire performance.

Keywords: Fire performance, Rice Husk

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1513
56 Electrotechnology for Silicon Refining: Plasma Generator and Arc Furnace: Installations and Theoretical Base

Authors: Ashot Navasardian, Mariam Vardanian, Vladik Vardanian

Abstract:

The photovoltaic and the semiconductor industries are in growth and it is necessary to supply a large amount of silicon to maintain this growth. Since silicon is still the best material for the manufacturing of solar cells and semiconductor components so the pure silicon like solar grade and semiconductor grade materials are demanded. There are two main routes for silicon production: metallurgical and chemical. In this article, we reviewed the electrotecnological installations and systems for semiconductor manufacturing. The main task is to design the installation which can produce SOG Silicon from river sand by one work unit.

Keywords: Metallurgical grade silicon, solar grade silicon, impurity, refining, plasma.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1166
55 Design and Layout of a X-Band MMIC Power Amplifier in a Phemt Technology

Authors: Renbin Dai, Rana Arslan Ali Khan

Abstract:

The design of Class A and Class AB 2-stage X band Power Amplifier is described in this report. This power amplifier is part of a transceiver used in radar for monitoring iron characteristics in a blast furnace. The circuit was designed using foundry WIN Semiconductors. The specification requires 15dB gain in the linear region, VSWR nearly 1 at input as well as at the output, an output power of 10 dBm and good stable performance in the band 10.9-12.2 GHz. The design was implemented by using inter-stage configuration, the Class A amplifier was chosen for driver stage i.e. the first amplifier focusing on the gain and the output amplifier conducted at Class AB with more emphasis on output power.

Keywords: Power amplifier, Class AB, Class A, MMIC, 2-stage, X band.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2906
54 Determination of Cr Content in Canned Fish Marketed in Iran

Authors: Soheil Sobhanardakani, Seyed Vali Hosseini, Lima Tayebi

Abstract:

The presence of heavy metals in the environment could constitute a hazard to food security and public health. These can be accumulated in aquatic animals such as fish. Samples of four popular brands of canned fish in the Iranian market (yellowfin tuna, common Kilka, Kawakawa and longtail tuna) were analyzed for level of Cr after wet digestion with acids using graphite furnace atomic absorption spectrophotometry. The mean concentrations for Cr in the different brands were: 2.57, 3.24, 3.16 and 1.65 μg/g for brands A, B, C and D respectively. Significant differences were observed in the Cr levels between all of the different brands of canned fish evaluated in this study. The Cr concentrations for the varieties of canned fishes were generally within the FAO/WHO, U.S. FDA and U.S. EPA recommended limits for fish.

Keywords: Heavy metals, essential metals, canned fish, food security.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2533
53 Utilization of Rice Husk Ash with Clay to Produce Lightweight Coarse Aggregates for Concrete

Authors: Shegufta Zahan, Muhammad A. Zahin, Muhammad M. Hossain, Raquib Ahsan

Abstract:

Rice Husk Ash (RHA) is one of the agricultural waste byproducts available widely in the world and contains a large amount of silica. In Bangladesh, stones cannot be used as coarse aggregate in infrastructure works as they are not available and need to be imported from abroad. As a result, bricks are mostly used as coarse aggregates in concrete as they are cheaper and easily produced here. Clay is the raw material for producing brick. Due to rapid urban growth and the industrial revolution, demand for brick is increasing, which led to a decrease in the topsoil. This study aims to produce lightweight block aggregates with sufficient strength utilizing RHA at low cost and use them as an ingredient of concrete. RHA, because of its pozzolanic behavior, can be utilized to produce better quality block aggregates at lower cost, replacing clay content in the bricks. The whole study can be divided into three parts. In the first part, characterization tests on RHA and clay were performed to determine their properties. Six different types of RHA from different mills were characterized by XRD and SEM analysis. Their fineness was determined by conducting a fineness test. The result of XRD confirmed the amorphous state of RHA. The characterization test for clay identifies the sample as “silty clay” with a specific gravity of 2.59 and 14% optimum moisture content. In the second part, blocks were produced with six different types of RHA with different combinations by volume with clay. Then mixtures were manually compacted in molds before subjecting them to oven drying at 120 °C for 7 days. After that, dried blocks were placed in a furnace at 1200 °C to produce ultimate blocks. Loss on ignition test, apparent density test, crushing strength test, efflorescence test, and absorption test were conducted on the blocks to compare their performance with the bricks. For 40% of RHA, the crushing strength result was found 60 MPa, where crushing strength for brick was observed 48.1 MPa. In the third part, the crushed blocks were used as coarse aggregate in concrete cylinders and compared them with brick concrete cylinders. Specimens were cured for 7 days and 28 days. The highest compressive strength of block cylinders for 7 days curing was calculated as 26.1 MPa, whereas, for 28 days curing, it was found 34 MPa. On the other hand, for brick cylinders, the value of compressing strength of 7 days and 28 days curing was observed as 20 MPa and 30 MPa, respectively. These research findings can help with the increasing demand for topsoil of the earth, and also turn a waste product into a valuable one.

Keywords: Characterization, furnace, pozzolanic behavior, rice husk ash.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 399
52 Production of Spherical Ag/ZnO Nanocomposite Particles for Photocatalytic Applications

Authors: K. B. Dermenci, B. Ebin, S.Gürmen

Abstract:

Noble metal participation in nanostructured semiconductor catalysts has drawn much interest because of their improved properties. Recently, it has been discussed by many researchers that Ag participation in TiO2, CuO, ZnO semiconductors showed improved photocatalytic and optical properties. In this research, Ag/ZnO nanocomposite particles were prepared by Ultrasonic Spray Pyrolysis(USP) Method. 0.1M silver and zinc nitrate aqueous solutions were used as precursor solutions. The Ag:Zn atomic ratio of the solution was selected 1:1. Experiments were taken place under constant air flow of 400 mL/min at 800°C furnace temperature. Particles were characterized by X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM) and Energy Dispersive Spectroscopy (EDS). The crystallite sizes of Ag and ZnO in composite particles are 24.6 nm, 19.7 nm respectively. Although, spherical nanocomposite particles are in a range of 300- 800 nm, these particles are formed by the aggregation of primary particles which are in a range of 20-60 nm.

Keywords: Ag/ZnO nanocatalysts, Nanotechnology, USP

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2832
51 Compressive Strength Development of Normal Concrete and Self-Consolidating Concrete Incorporated with GGBS

Authors: M. Nili, S. Tavasoli, A. R. Yazdandoost

Abstract:

In this paper, an experimental investigation on the effect of Isfahan Ground Granulate Blast Furnace Slag (GGBS) on the compressive strength development of self-consolidating concrete (SCC) and normal concrete (NC) was performed. For this purpose, Portland cement type I was replaced with GGBS in various Portions. For NC and SCC Mixes, 10*10*10 cubic cm specimens were tested in 7, 28 and 91 days. It must be stated that in this research water to cement ratio was 0.44, cement used in cubic meter was 418 Kg/m³ and Superplasticizer (SP) Type III used in SCC based on Poly-Carboxylic acid. The results of experiments have shown that increasing GGBS Percentages in both types of concrete reduce Compressive strength in early ages.

Keywords: Compressive strength, GGBS, normal concrete, self-consolidating concrete.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 962
50 Vibration Damping of High-Chromium Ferromagnetic Steel

Authors: Satish BM, Girish BM , Mahesh K

Abstract:

The aim of the present work is to study the effect of annealing on the vibration damping capacity of high-chromium (16%) ferromagnetic steel. The alloys were prepared from raw materials of 99.9% purity melted in a high frequency induction furnace under high vacuum. The samples were heat-treated in vacuum at various temperatures (800 to 1200ºC) for 1 hour followed by slow cooling (120ºC/h). The inverted torsional pendulum method was used to evaluate the vibration damping capacity. The results indicated that the vibration damping capacity of the alloys is influenced by annealing and there exists a critical annealing temperature after 1000ºC. The damping capacity increases quickly below the critical temperature since the magnetic domains move more easily.

Keywords: Vibration, Damping, Ferromagnetic, Steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2112
49 Micro Environmental Concrete

Authors: M.Lanez, M.N.Oudjit, A.Bali

Abstract:

Reactive powder concretes (RPC) are characterized by particle diameter not exceeding 600 μm and having very high compressive and tensile strengths. This paper describes a new generation of micro concrete, which has an initial, as well as a final, high physicomechanical performance. To achieve this, we replaced the Portland cement (15% by weight) by materials rich in Silica (Slag and Dune Sand). The results obtained from tests carried out on RPC show that compressive and tensile strengths increase when adding the additions, thus improving the compactness of mixtures via filler and pozzolanic effect. With a reduction of the aggregate phase in the RPC and the abundance of dune sand (south Algeria) and slag (industrial byproduct of blast furnace), the use of the RPC will allow Algeria to fulfil economical as well as ecological requirements.

Keywords: High mechanical strength, Reactive Powder Concrete, rheology, superplasticizer, workability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1482
48 Alloying Effect on Hot Workability of M42 High Speed Steel

Authors: Jung-Ho Moon, Tae Kwon Ha

Abstract:

In the present study, the effect of Si, Al, Ti, Zr, and Nb addition on the microstructure and hot workability of cast M42 tool steels, basically consisting of 1.0C, 0.2Mn, 3.8Cr, 1.5W, 8.5Co, 9.2Mo, and 1.0V in weight percent has been investigated. Tool steels containing Si of 0.25 and 0.5wt.%, Al of 0.06 and 0.12wt.%, Ti of 0.3wt.%, Zr of 0.3wt.%, and Nb of 0.3wt.% were cast into ingots of 140mm ´ 140mm ´ 330mm by vacuum induction melting. After solution treatment at 1150oC for 1.5hr followed by furnace cooling, hot rolling at 1180oC was conducted on the ingots. Addition of titanium, zirconium and niobium was found to retard the decomposition of the eutectic carbides and result in the deterioration of hot workability of the tool steels, while addition of aluminum and silicon showed relatively well decomposed carbide structure and resulted in sound hot rolled plates.

Keywords: High speed steels, alloying elements, eutectic carbides, microstructure, hot workability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2584
47 Plasma Chemical Gasification of Solid Fuel with Mineral Mass Processing

Authors: V. E. Messerle, O. A. Lavrichshev, A. B. Ustimenko

Abstract:

The article presents a plasma chemical technology for processing solid fuels, using examples of bituminous and brown coals. Thermodynamic and experimental investigation of the technology was made. The technology allows producing synthesis gas from the coal organic mass and valuable components (technical silicon, ferrosilicon, aluminum, and carbon silicon, as well as microelements of rare metals, such as uranium, molybdenum, vanadium, etc.) from the mineral mass. The thusly produced highcalorific synthesis gas can be used for synthesis of methanol, as a high-calorific reducing gas instead of blast-furnace coke as well as power gas for thermal power plants.

Keywords: Gasification, mineral mass, organic mass, plasma, processing, solid fuel, synthesis gas, valuable components.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1919
46 Influence of Titanium Addition on Wear Properties of AM60 Magnesium Alloy

Authors: H. Zengin, M. E. Turan, Y. Turen, H. Ahlatci, Y. Sun

Abstract:

This study aimed for improving wear resistance of AM60 magnesium alloy by Ti addition (0, 0.2, 0.5, 1wt%Ti). An electric resistance furnace was used to produce alloys. Pure Mg together with Al, Al-Ti and Al-Mn were melted at 750 0C in a stainless steel crucible under controlled Ar gas atmosphere and then poured into a metal mould preheated at 250 0C. Microstructure characterizations were performed by light optical (LOM) and scanning electron microscope (SEM) after the wear test. Wear rates and friction coefficients were measured with a pin-on-disk type UTS-10 Tribometer test device under a load of 20N. The results showed that Ti addition altered the morphology and the amount of b-Mg17Al12 phase in the microstructure of AM60 alloy. b-Mg17Al12 phases on the grain boundaries were refined with increasing amount of Ti. An improvement in wear resistance of AM60 alloy was observed due to the alteration in the microstructure by Ti addition.

Keywords: Magnesium alloy, titanium, SEM, wear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1767
45 Induction Heating Process Design Using Comsol® Multiphysics Software Version 4.2a

Authors: K. Djellabi, M. E. H. Latreche

Abstract:

Induction heating computer simulation is a powerful tool for process design and optimization, induction coil design, equipment selection, as well as education and business presentations. The authors share their vast experience in the practical use of computer simulation for different induction heating and heat treating processes. In this paper treated with mathematical modeling and numerical simulation of induction heating furnaces with axisymmetric geometries for the numerical solution, we propose finite element methods combined with boundary (FEM) for the electromagnetic model using COMSOL® Multiphysics Software. Some numerical results for an industrial furnace are shown with high frequency.

Keywords: Numerical methods, Induction furnaces, Induction Heating, Finite element method, Comsol Multiphysics software.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7969
44 Temperature-Dependence of Hardness and Wear Resistance of Stellite Alloys

Authors: S. Kapoor, R. Liu, X. J. Wu, M. X. Yao

Abstract:

A group of Stellite alloys are studied in consideration of temperature effects on their hardness and wear resistance. The hardness test is conducted on a micro-hardness tester with a hot stage equipped that allows heating the specimen up to 650°C. The wear resistance of each alloy is evaluated using a pin-on-disc tribometer with a heating furnace built-in that provides the temperature capacity up to 450°C. The experimental results demonstrate that the hardness and wear resistance of Stellite alloys behave differently at room temperature and at high temperatures. The wear resistance of Stellite alloys at room temperature mainly depends on their carbon content and also influenced by the tungsten content in the alloys. However, at high temperatures the wear mechanisms of Stellite alloys become more complex, involving multiple factors. The relationships between chemical composition, microstructure, hardness and wear resistance of these alloys are studied, with focus on temperature effect on these relations.

Keywords: Stellite alloy, temperature, hardness, wear resistance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6394
43 Physical and Thermo-Physical Properties of High Strength Concrete Containing Raw Rice Husk after High Temperature Effect

Authors: B. Akturk, N. Yuzer, N. Kabay

Abstract:

High temperature is one of the most detrimental effects that cause important changes in concrete’s mechanical, physical, and thermo-physical properties. As a result of these changes, especially high strength concrete (HSC), may exhibit damages such as cracks and spallings. To overcome this problem, incorporating polymer fibers such as polypropylene (PP) in concrete is a very well-known method. In this study, using RRH, as a sustainable material, instead of PP fiber in HSC to prevent spallings and improve physical and thermo-physical properties were investigated. Therefore, seven HSC mixtures with 0.25 water to binder ratio were prepared incorporating silica fume and blast furnace slag. PP and RRH were used at 0.2-0.5% and 0.5-3% by weight of cement, respectively. All specimens were subjected to high temperatures (20 (control), 300, 600 and 900˚C) with a heating rate of 2.5˚C/min and after cooling, residual physical and thermo-physical properties were determined.

Keywords: High temperature, high strength concrete, polypropylene fiber, raw rice husk, thermo-physical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2119
42 Microwave Dehydration Behavior of Admontite Mineral at 360W

Authors: E. Moroydor Derun, F. T. Senberber, A. S. Kipcak, N. Tugrul, S. Piskin

Abstract:

Dehydration behavior gives a hint about thermal properties of materials. It is important for the usage areas and transportation of minerals. Magnesium borates can be used as additive materials in areas such as in the production of superconducting materials, in the composition of detergents, due to the content of boron in the friction-reducing additives in oils and insulating coating compositions due to their good mechanic and thermal properties. In this study, thermal dehydration behavior of admontite (MgO(B2O3)3.7(H2O)), which is a kind of magnesium borate mineral, is experimented by microwave energy at 360W. Structure of admontite is suitable for the investigation of dehydration behavior by microwave because of its seven moles of crystal water. It is seen that admontite lost its 28.7% of weight at the end of the 120 minutes heating in microwave furnace. 

Keywords: Admontite, dehydration, magnesium borate, microwave.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2084
41 The Application of an Ensemble of Boosted Elman Networks to Time Series Prediction: A Benchmark Study

Authors: Chee Peng Lim, Wei Yee Goh

Abstract:

In this paper, the application of multiple Elman neural networks to time series data regression problems is studied. An ensemble of Elman networks is formed by boosting to enhance the performance of the individual networks. A modified version of the AdaBoost algorithm is employed to integrate the predictions from multiple networks. Two benchmark time series data sets, i.e., the Sunspot and Box-Jenkins gas furnace problems, are used to assess the effectiveness of the proposed system. The simulation results reveal that an ensemble of boosted Elman networks can achieve a higher degree of generalization as well as performance than that of the individual networks. The results are compared with those from other learning systems, and implications of the performance are discussed.

Keywords: AdaBoost, Elman network, neural network ensemble, time series regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1639
40 Utilization of EAF Reducing Slag from Stainless Steelmaking Process as a Sorbent for CO2

Authors: M. N. N. Hisyamudin, S. Yokoyama, M. Umemoto

Abstract:

In this study, an experimental investigation was carried out to fix CO2 into the electronic arc furnace (EAF) reducing slag from stainless steelmaking process under wet grinding. The slag was ground by the vibrating ball mill with the CO2 and pure water. The reaction behavior was monitored with constant pressure method, and the change of CO2 volume in the experimental system with grinding time was measured. It was found that the CO2 absorption occurred as soon as the grinding started. The CO2 absorption under wet grinding was significantly larger than that under dry grinding. Generally, the amount of CO2 absorption increased as the amount of water, the amount of slag, the diameter of alumina ball and the initial pressure of CO2 increased. However, the initial absorption rate was scarcely influenced by the experimental conditions except for the initial CO2 pressure. According to this research, the CO2 reacted with the CaO inside the slag to form CaCO3.

Keywords: CO2 absorption, EAF reducing slag, vibration ball mill, wet grinding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1540
39 Absorption of CO2 in EAF Reducing Slag from Stainless Steel Making Process by Wet Grinding

Authors: B.M.N. Nik Hisyamudin, S. Yokoyama, M. Umemoto

Abstract:

In the current study, we have conducted an experimental investigation on the utilization of electronic arc furnace (EAF) reducing slag for the absorption of CO2 via wet grinding method. It was carried out by various grinding conditions. The slag was ground in the vibrating ball mill in the presence of CO2 and pure water under ambient temperature. The reaction behavior was monitored with constant pressure method, and the changes of experimental systems volume as a function of grinding time were measured. It was found that the CO2 absorption occurred as soon as the grinding started. The CO2 absorption was significantly increased in the case of wet grinding compare to the dry grinding. Generally, the amount of CO2 absorption increased as the amount of water, weight of slag and initial pressure increased. However, it was decreased when the amount of water exceeds 200ml and when smaller balls were used. The absorption of CO2 occurred simultaneously with the start of the grinding and it stopped when the grinding was stopped. According to this research, the CO2 reacted with the CaO inside the slag, forming CaCO3.

Keywords: CO2 absorption, EAF reducing slag, vibration ball mill, wet grinding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1731
38 Examining of Tool Wear in Cryogenic Machining of Cobalt-Based Haynes 25 Superalloy

Authors: Murat Sarıkaya, Abdulkadir Güllü

Abstract:

Haynes 25 alloy (also known as L-605 alloy) is cobalt based super alloy which has widely applications such as aerospace industry, turbine and furnace parts, power generators and heat exchangers and petroleum refining components due to its excellent characteristics. However, the workability of this alloy is more difficult compared to normal steels or even stainless. In present work, an experimental investigation was performed under cryogenic cooling to determine cutting tool wear patterns and obtain optimal cutting parameters in turning of cobalt based superalloy Haynes 25. In experiments, uncoated carbide tool was used and cutting speed (V) and feed rate (f) were considered as test parameters. Tool wear (VBmax) were measured for process performance indicators. Analysis of variance (ANOVA) was performed to determine the importance of machining parameters.

Keywords: Cryogenic machining, difficult-to-cut alloy, tool wear, turning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2719
37 Analysis of Coal Tar Compositions Produced from Sub-Bituminous Kalimantan Coal Tar

Authors: D. S. Fardhyanti, A. Damayanti

Abstract:

Coal tar is a liquid by-product of coal pyrolysis processes. This liquid oil mixture contains various kinds of useful compounds such as benzoic aromatic compounds and phenolic compounds. These compounds are widely used as raw material for insecticides, dyes, medicines, perfumes, coloring matters, and many others. The coal tar was collected by pyrolysis process of coal obtained from PT Kaltim Prima Coal and Arutmin-Kalimantan. The experiments typically occurred at the atmospheric pressure in a laboratory furnace at temperatures ranging from 300 to 550oC with a heating rate of 10oC/min and a holding time of 1 hour at the pyrolysis temperature. The Gas Chromatography-Mass Spectroscopy (GC-MS) was used to analyze the coal tar components. The obtained coal tar has the viscosity of 3.12 cp, the density of 2.78 g/cm3, the calorific value of 11,048.44 cal/g, and the molecular weight of 222.67. The analysis result showed that the coal tar contained more than 78 chemical compounds such as benzene, cresol, phenol, xylene, naphtalene, etc. The total phenolic compounds contained in coal tar are 33.25% (PT KPC) and 17.58% (Arutmin-Kalimantan). The total naphtalene compounds contained in coal tar is 14.15% (PT KPC) and 17.13% (Arutmin-Kalimantan).

Keywords: Coal tar, pyrolysis, gas chromatography-mass spectroscopy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3605
36 Improvement in Properties of Ni-Cr-Mo-V Steel through Process Control

Authors: Arnab Majumdar, Sanjoy Sadhukhan

Abstract:

Although gun barrel steels are an important variety from defense view point, available literatures are very limited. In the present work, an IF grade Ni-Cr-Mo-V high strength low alloy steel is produced in Electric Earth Furnace-ESR Route. Ingot was hot forged to desired dimension with a reduction ratio of 70-75% followed by homogenization, hardening and tempering treatment. Sample chemistry, NMIR, macro and micro structural analyses were done. Mechanical properties which include tensile, impact, and fracture toughness were studied. Ultrasonic testing was done to identify internal flaws. The existing high strength low alloy Ni-Cr-Mo-V steel shows improved properties in modified processing route and heat treatment schedule in comparison to properties noted earlier for manufacturing of gun barrels. The improvement in properties seems to withstand higher explosive loads with the same amount of steel in gun barrel application.

Keywords: Gun barrel steels, IF grade, physical properties, thermal and mechanical processing, mechanical properties, ultrasonic testing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2380
35 Artificial Neural Network Prediction for Coke Strength after Reaction and Data Analysis

Authors: Sulata Maharana, B Biswas, Adity Ganguly, Ashok Kumar

Abstract:

In this paper, the requirement for Coke quality prediction, its role in Blast furnaces, and the model output is explained. By applying method of Artificial Neural Networking (ANN) using back propagation (BP) algorithm, prediction model has been developed to predict CSR. Important blast furnace functions such as permeability, heat exchanging, melting, and reducing capacity are mostly connected to coke quality. Coke quality is further dependent upon coal characterization and coke making process parameters. The ANN model developed is a useful tool for process experts to adjust the control parameters in case of coke quality deviations. The model also makes it possible to predict CSR for new coal blends which are yet to be used in Coke Plant. Input data to the model was structured into 3 modules, for tenure of past 2 years and the incremental models thus developed assists in identifying the group causing the deviation of CSR.

Keywords: Artificial Neural Networks, backpropagation, CokeStrength after Reaction, Multilayer Perceptron.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2551
34 Effect of Local Steel Slag as a Coarse Aggregate on Properties of Fly Ash Based-Geopolymer Concrete

Authors: O. M. Omar, A. M. Heniegal, G. D. Abd Elhameed, H. A. Mohamadien

Abstract:

Local steel slag is produced as a by-product during the oxidation of steel pellets in an electric arc furnace. Using local steel slag waste as a hundred substitutes of crashed stone in construction materials would resolve the environmental problems caused by the large-scale depletion of the natural sources of crashed stone. This paper reports the experimental study to investigate the influence of a hundred replacement of crashed stone as a coarse aggregate with local steel slag, on the fresh and hardened geopolymer concrete properties. The investigation includes traditional testing of hardening concrete, for selected mixes of cement and geopolymer concrete. It was found that local steel slag as a coarse aggregate enhanced the slump test of the fresh state of cement and geopolymer concretes. Nevertheless, the unit weight of concretes was affected. Meanwhile, the good performance was observed when fly ash used as geopolymer concrete based.

Keywords: Geopolymer, molarity, steel slag, sodium hydroxide, sodium silicate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2205
33 Mechanical Properties of Organic Polymer and Exfoliated Graphite Reinforced Bacteria Cellulose Paper

Authors: T. Thompson, E. F. Zegeye

Abstract:

Bacterial Cellulose (BC) is a structural organic compound produced in the anaerobic process. This material can be a useful eco-friendly substitute for commercial textiles that are used in industries today. BC is easily and sustainably produced and has the capabilities to be used as a replacement in textiles. However, BC is extremely fragile when it completely dries. This research was conducted to improve the mechanical properties of the BC by reinforcing with an organic polymer and exfoliated graphite (EG). The BC films were grown over a period of weeks in a green tea and kombucha solution at 30 °C, then cleaned and added to an enhancing solution. The enhancing solutions were a mixture of 2.5 wt% polymer and 2.5 wt% latex solution, a 5 wt% polymer solution, a 0.20 wt% graphite solution and were each allowed to sit in a furnace for 48 h at 50 °C. Tensile test samples were prepared and tested until fracture at a strain rate of 8 mm/min. From the research with the addition of a 5 wt% polymer solution, the flexibility of the BC has significantly improved with the maximum strain significantly larger than that of the base sample. The addition of EG has also increased the modulus of elasticity of the BC by about 25%.

Keywords: Bacterial cellulose, exfoliated graphite, kombucha scoby, tensile test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 541
32 Hydrodynamic Characteristics of Dry Beneficiation of Iron Ore and Coal in a Fast Fluidized Bed

Authors: M. Das, R. K. Saha, B. C. Meikap

Abstract:

Iron ore and coal are the two major important raw materials being used in Iron making industries. Usually ore fines containing around 5% Alumina are rejected due to higher proportion of alumina. Therefore, a technology or process which may reduce the alumina content by 2% by beneficiation process will be highly attractive . In addition fine coals with ash content is used nearly 12% is directly injected in blast furnace. Fast fluidization is a technology by using dry beneficiation of coal and iron ore can be done. During the fluidization process the iron ore band coal is fluidized at high velocity in the riser of a fast fluidized bed, the heavier and coarse particles is generally settled at the bottom in a dense zone of the riser while the finer and lighter particle are entrained to the top dilute zone and then via a cyclone is fed back to the bottom of the riser column. Most of the alumina and low ash fine size coals being lighter are expected to move up to the riser and by a natural beneficiation of ores is expected to take place in the riser. Therefore in this study an attempt has been made for dry beneficiation of iron ore and coal in a fluidized bed and its hydrodynamic characterization.

Keywords: beneficiation, fluidization, gas-solid fluidization, riser .

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2144
31 Effects of Additives on Thermal Decompositions of Carbon Black/High Density Polyethylene Compounds

Authors: Orathai Pornsunthorntawee, Wareerom Polrut, Nopphawan Phonthammachai

Abstract:

In the present work, the effects of additives, including contents of the added antioxidants and type of the selected metallic stearates (either calcium stearate (CaSt) or zinc stearate (ZnSt)), on the thermal stabilities of carbon black (CB)/high density polyethylene (HDPE) compounds were studied. The results showed that the AO contents played a key role in the thermal stabilities of the CB/HDPE compounds — the higher the AO content, the higher the thermal stabilities. Although the CaSt-containing compounds were slightly superior to those with ZnSt in terms of the thermal stabilities, the remaining solid residue of CaSt after heated to the temperature of 600 °C (mainly calcium carbonate (CaCO3) as characterized by the X-ray diffraction (XRD) technique) seemed to catalyze the decomposition of CB in the HDPE-based compounds. Hence, the quantification of CB in the CaSt-containing compounds with a muffle furnace gave an inaccurate CB content — much lower than actual value. However, this phenomenon was negligible in the ZnSt-containing system.

Keywords: Antioxidant, Stearate, Carbon black, Polyethylene.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3327
30 The Influence of Disturbances Generated by Arc Furnaces on the Power Quality

Authors: Z. Olczykowski

Abstract:

The paper presents the impact of work on the electric arc furnace. Arc equipment is one of the largest receivers powered by the power system. Electric arc disturbances arising during melting process occurring in these furnaces are the cause of an abrupt change of the passive power of furnaces. Currents drawn by these devices undergo an abrupt change, which in turn cause voltage fluctuations and light flicker. The quantitative evaluation of the voltage fluctuations is now the basic criterion of assessment of an influence of unquiet receiver on the supplying net. The paper presents the method of determination of range of voltage fluctuations and light flicker at parallel operation of arc devices. The results of measurements of voltage fluctuations and light flicker indicators recorded in power supply networks of steelworks were presented, with different number of parallel arc devices. Measurements of energy quality parameters were aimed at verifying the proposed method in practice. It was also analyzed changes in other parameters of electricity: the content of higher harmonics, asymmetry, voltage dips.

Keywords: Power quality, arc furnaces, propagation of voltage fluctuations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 665
29 SELF-Cured Alkali Activated Slag Concrete Mixes- An Experimental Study

Authors: Mithun B. M., Mattur C. Narasimhan

Abstract:

Alkali Activated Slag Concrete (AASC) mixes are manufactured by activating ground granulated blast furnace slag (GGBFS) using sodium hydroxide and sodium silicate solutions. The aim of the present experimental research was to investigate the effect of increasing the dosages of sodium oxide (Na2O, in the range of 4 to 8%) and the activator modulus (Ms) (i.e. the SiO2/Na2O ratio, in the range of 0.5 to 1.5) of the alkaline solutions, on the workability and strength characteristics of self-cured (air-cured) alkali activated Indian slag concrete mixes. Further the split tensile and flexure strengths for optimal mixes were studied for each dosage of Na2O.It is observed that increase in Na2O concentration increases the compressive, split-tensile and flexural strengths, both at the early and later-ages, while increase in Ms, decreases the workability of the mixes. An optimal Ms of 1.25 is found at various Na2O dosages. No significant differences in the strength performances were observed between AASCs manufactured with alkali solutions prepared using either of potable and de-ionized water.

Keywords: Alkali activated slag, self-curing, strength characteristics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2917
28 Evaluation of As-Cast U-Mo Alloys Processed in Graphite Crucible Coated with Boron Nitride

Authors: Kleiner Marques Marra, Tércio Pedrosa

Abstract:

This paper reports the production of uranium-molybdenum alloys, which have been considered promising fuel for test and research nuclear reactors. U-Mo alloys were produced in three molybdenum contents: 5 wt.%, 7 wt.%, and 10 wt.%, using an electric vacuum induction furnace. A boron nitride-coated graphite crucible was employed in the production of the alloys and, after melting, the material was immediately poured into a boron nitride-coated graphite mold. The incorporation of carbon was observed, but it happened in a lower intensity than in the case of the non-coated crucible/mold. It is observed that the carbon incorporation increased and alloys density decreased with Mo addition. It was also noticed that the increase in the carbon or molybdenum content did not seem to change the as-cast structure in terms of granulation. The three alloys presented body-centered cubic crystal structure (g phase), after solidification, besides a seeming negative microsegregation of molybdenum, from the center to the periphery of the grains. There were signs of macrosegregation, from the base to the top of the ingots.

Keywords: Incorporation of carbon, macrosegregation and microsegregation, solidification, uranium-molybdenum alloys.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 557