Search results for: quadratic loss function.
3153 Estimation of Bayesian Sample Size for Binomial Proportions Using Areas P-tolerance with Lowest Posterior Loss
Authors: H. Bevrani, N. Najafi
Abstract:
This paper uses p-tolerance with the lowest posterior loss, quadratic loss function, average length criteria, average coverage criteria, and worst outcome criterion for computing of sample size to estimate proportion in Binomial probability function with Beta prior distribution. The proposed methodology is examined, and its effectiveness is shown.Keywords: Bayesian inference, Beta-binomial Distribution, LPLcriteria, quadratic loss function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17493152 Quadratic Irrationals, Quadratic Ideals and Indefinite Quadratic Forms II
Authors: Ahmet Tekcan, Arzu Özkoç
Abstract:
Let D = 1 be a positive non-square integer and let δ = √D or 1+√D 2 be a real quadratic irrational with trace t =δ + δ and norm n = δδ. Let γ = P+δ Q be a quadratic irrational for positive integers P and Q. Given a quadratic irrational γ, there exist a quadratic ideal Iγ = [Q, δ + P] and an indefinite quadratic form Fγ(x, y) = Q(x−γy)(x−γy) of discriminant Δ = t 2−4n. In the first section, we give some preliminaries form binary quadratic forms, quadratic irrationals and quadratic ideals. In the second section, we obtain some results on γ, Iγ and Fγ for some specific values of Q and P.
Keywords: Quadratic irrationals, quadratic ideals, indefinite quadratic forms, extended modular group.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12493151 Performance Evaluation of Complex Valued Neural Networks Using Various Error Functions
Authors: Anita S. Gangal, P. K. Kalra, D. S. Chauhan
Abstract:
The backpropagation algorithm in general employs quadratic error function. In fact, most of the problems that involve minimization employ the Quadratic error function. With alternative error functions the performance of the optimization scheme can be improved. The new error functions help in suppressing the ill-effects of the outliers and have shown good performance to noise. In this paper we have tried to evaluate and compare the relative performance of complex valued neural network using different error functions. During first simulation for complex XOR gate it is observed that some error functions like Absolute error, Cauchy error function can replace Quadratic error function. In the second simulation it is observed that for some error functions the performance of the complex valued neural network depends on the architecture of the network whereas with few other error functions convergence speed of the network is independent of architecture of the neural network.Keywords: Complex backpropagation algorithm, complex errorfunctions, complex valued neural network, split activation function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24243150 A Deterministic Dynamic Programming Approach for Optimization Problem with Quadratic Objective Function and Linear Constraints
Authors: S. Kavitha, Nirmala P. Ratchagar
Abstract:
This paper presents the novel deterministic dynamic programming approach for solving optimization problem with quadratic objective function with linear equality and inequality constraints. The proposed method employs backward recursion in which computations proceeds from last stage to first stage in a multi-stage decision problem. A generalized recursive equation which gives the exact solution of an optimization problem is derived in this paper. The method is purely analytical and avoids the usage of initial solution. The feasibility of the proposed method is demonstrated with a practical example. The numerical results show that the proposed method provides global optimum solution with negligible computation time.
Keywords: Backward recursion, Dynamic programming, Multi-stage decision problem, Quadratic objective function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35873149 Transmission Loss Allocation via Loss Function Decomposition and Current Projection Concept
Authors: M.R. Ebrahimi, Z. Ghofrani, M. Ehsan
Abstract:
One of the major problems in liberalized power markets is loss allocation. In this paper, a different method for allocating transmission losses to pool market participants is proposed. The proposed method is fundamentally based on decomposition of loss function and current projection concept. The method has been implemented and tested on several networks and one sample summarized in the paper. The results show that the method is comprehensive and fair to allocating the energy losses of a power market to its participants.Keywords: Transmission loss, loss allocation, current projectionconcept, loss function decomposition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17443148 Lagrange and Multilevel Wavelet-Galerkin with Polynomial Time Basis for Heat Equation
Authors: Watcharakorn Thongchuay, Puntip Toghaw, Montri Maleewong
Abstract:
The Wavelet-Galerkin finite element method for solving the one-dimensional heat equation is presented in this work. Two types of basis functions which are the Lagrange and multi-level wavelet bases are employed to derive the full form of matrix system. We consider both linear and quadratic bases in the Galerkin method. Time derivative is approximated by polynomial time basis that provides easily extend the order of approximation in time space. Our numerical results show that the rate of convergences for the linear Lagrange and the linear wavelet bases are the same and in order 2 while the rate of convergences for the quadratic Lagrange and the quadratic wavelet bases are approximately in order 4. It also reveals that the wavelet basis provides an easy treatment to improve numerical resolutions that can be done by increasing just its desired levels in the multilevel construction process.Keywords: Galerkin finite element method, Heat equation , Lagrange basis function, Wavelet basis function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17293147 Preliminary Study on Fixture Layout Optimization Using Element Strain Energy
Authors: Zeshan Ahmad, Matteo Zoppi, Rezia Molfino
Abstract:
The objective of positioning the fixture elements in the fixture is to make the workpiece stiff, so that geometric errors in the manufacturing process can be reduced. Most of the work for optimal fixture layout used the minimization of the sum of the nodal deflection normal to the surface as objective function. All deflections in other direction have been neglected. We propose a new method for fixture layout optimization in this paper, which uses the element strain energy. The deformations in all the directions have been considered in this way. The objective function in this method is to minimize the sum of square of element strain energy. Strain energy and stiffness are inversely proportional to each other. The optimization problem is solved by the sequential quadratic programming method. Three different kinds of case studies are presented, and results are compared with the method using nodal deflections as objective function to verify the propose method.Keywords: Fixture layout, optimization, strain energy, quadratic programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15523146 Positive Definite Quadratic Forms, Elliptic Curves and Cubic Congruences
Authors: Ahmet Tekcan
Abstract:
Let F(x, y) = ax2 + bxy + cy2 be a positive definite binary quadratic form with discriminant Δ whose base points lie on the line x = -1/m for an integer m ≥ 2, let p be a prime number and let Fp be a finite field. Let EF : y2 = ax3 + bx2 + cx be an elliptic curve over Fp and let CF : ax3 + bx2 + cx ≡ 0(mod p) be the cubic congruence corresponding to F. In this work we consider some properties of positive definite quadratic forms, elliptic curves and cubic congruences.Keywords: Binary quadratic form, elliptic curves, cubic congruence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15263145 Robust Quadratic Stabilization of Uncertain Impulsive Switched Systems
Authors: Xiu Liu, Shouming Zhong, Xiuyong Ding
Abstract:
This paper focuses on the quadratic stabilization problem for a class of uncertain impulsive switched systems. The uncertainty is assumed to be norm-bounded and enters both the state and the input matrices. Based on the Lyapunov methods, some results on robust stabilization and quadratic stabilization for the impulsive switched system are obtained. A stabilizing state feedback control law realizing the robust stabilization of the closed-loop system is constructed.
Keywords: Impulsive systems, switched systems, quadratic stabilization, robust stabilization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15363144 Enhanced Particle Swarm Optimization Approach for Solving the Non-Convex Optimal Power Flow
Authors: M. R. AlRashidi, M. F. AlHajri, M. E. El-Hawary
Abstract:
An enhanced particle swarm optimization algorithm (PSO) is presented in this work to solve the non-convex OPF problem that has both discrete and continuous optimization variables. The objective functions considered are the conventional quadratic function and the augmented quadratic function. The latter model presents non-differentiable and non-convex regions that challenge most gradient-based optimization algorithms. The optimization variables to be optimized are the generator real power outputs and voltage magnitudes, discrete transformer tap settings, and discrete reactive power injections due to capacitor banks. The set of equality constraints taken into account are the power flow equations while the inequality ones are the limits of the real and reactive power of the generators, voltage magnitude at each bus, transformer tap settings, and capacitor banks reactive power injections. The proposed algorithm combines PSO with Newton-Raphson algorithm to minimize the fuel cost function. The IEEE 30-bus system with six generating units is used to test the proposed algorithm. Several cases were investigated to test and validate the consistency of detecting optimal or near optimal solution for each objective. Results are compared to solutions obtained using sequential quadratic programming and Genetic Algorithms.Keywords: Particle Swarm Optimization, Optimal Power Flow, Economic Dispatch.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23673143 Performance Analysis of MATLAB Solvers in the Case of a Quadratic Programming Generation Scheduling Optimization Problem
Authors: Dávid Csercsik, Péter Kádár
Abstract:
In the case of the proposed method, the problem is parallelized by considering multiple possible mode of operation profiles, which determine the range in which the generators operate in each period. For each of these profiles, the optimization is carried out independently, and the best resulting dispatch is chosen. For each such profile, the resulting problem is a quadratic programming (QP) problem with a potentially negative definite Q quadratic term, and constraints depending on the actual operation profile. In this paper we analyze the performance of available MATLAB optimization methods and solvers for the corresponding QP.Keywords: Economic dispatch, optimization, quadratic programming, MATLAB.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9483142 Solving the Quadratic Assignment Problems by a Genetic Algorithm with a New Replacement Strategy
Authors: Yongzhong Wu, Ping Ji
Abstract:
This paper proposes a genetic algorithm based on a new replacement strategy to solve the quadratic assignment problems, which are NP-hard. The new replacement strategy aims to improve the performance of the genetic algorithm through well balancing the convergence of the searching process and the diversity of the population. In order to test the performance of the algorithm, the instances in QAPLIB, a quadratic assignment problem library, are tried and the results are compared with those reported in the literature. The performance of the genetic algorithm is promising. The significance is that this genetic algorithm is generic. It does not rely on problem-specific genetic operators, and may be easily applied to various types of combinatorial problems.Keywords: Quadratic assignment problem, Genetic algorithm, Replacement strategy, QAPLIB.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27453141 Neighbors of Indefinite Binary Quadratic Forms
Authors: Ahmet Tekcan
Abstract:
In this paper, we derive some algebraic identities on right and left neighbors R(F) and L(F) of an indefinite binary quadratic form F = F(x, y) = ax2 + bxy + cy2 of discriminant Δ = b2 -4ac. We prove that the proper cycle of F can be given by using its consecutive left neighbors. Also we construct a connection between right and left neighbors of F.Keywords: Quadratic form, indefinite form, cycle, proper cycle, right neighbor, left neighbor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13983140 Orthogonal Functions Approach to LQG Control
Authors: B. M. Mohan, Sanjeeb Kumar Kar
Abstract:
In this paper a unified approach via block-pulse functions (BPFs) or shifted Legendre polynomials (SLPs) is presented to solve the linear-quadratic-Gaussian (LQG) control problem. Also a recursive algorithm is proposed to solve the above problem via BPFs. By using the elegant operational properties of orthogonal functions (BPFs or SLPs) these computationally attractive algorithms are developed. To demonstrate the validity of the proposed approaches a numerical example is included.
Keywords: Linear quadratic Gaussian control, linear quadratic estimator, linear quadratic regulator, time-invariant systems, orthogonal functions, block-pulse functions, shifted legendre polynomials.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18593139 Loss Function Optimization for CNN-Based Fingerprint Anti-Spoofing
Authors: Yehjune Heo
Abstract:
As biometric systems become widely deployed, the security of identification systems can be easily attacked by various spoof materials. This paper contributes to finding a reliable and practical anti-spoofing method using Convolutional Neural Networks (CNNs) based on the types of loss functions and optimizers. The types of CNNs used in this paper include AlexNet, VGGNet, and ResNet. By using various loss functions including Cross-Entropy, Center Loss, Cosine Proximity, and Hinge Loss, and various loss optimizers which include Adam, SGD, RMSProp, Adadelta, Adagrad, and Nadam, we obtained significant performance changes. We realize that choosing the correct loss function for each model is crucial since different loss functions lead to different errors on the same evaluation. By using a subset of the Livdet 2017 database, we validate our approach to compare the generalization power. It is important to note that we use a subset of LiveDet and the database is the same across all training and testing for each model. This way, we can compare the performance, in terms of generalization, for the unseen data across all different models. The best CNN (AlexNet) with the appropriate loss function and optimizers result in more than 3% of performance gain over the other CNN models with the default loss function and optimizer. In addition to the highest generalization performance, this paper also contains the models with high accuracy associated with parameters and mean average error rates to find the model that consumes the least memory and computation time for training and testing. Although AlexNet has less complexity over other CNN models, it is proven to be very efficient. For practical anti-spoofing systems, the deployed version should use a small amount of memory and should run very fast with high anti-spoofing performance. For our deployed version on smartphones, additional processing steps, such as quantization and pruning algorithms, have been applied in our final model.
Keywords: Anti-spoofing, CNN, fingerprint recognition, loss function, optimizer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4203138 A Dual Method for Solving General Convex Quadratic Programs
Authors: Belkacem Brahmi, Mohand Ouamer Bibi
Abstract:
In this paper, we present a new method for solving quadratic programming problems, not strictly convex. Constraints of the problem are linear equalities and inequalities, with bounded variables. The suggested method combines the active-set strategies and support methods. The algorithm of the method and numerical experiments are presented, while comparing our approach with the active set method on randomly generated problems.
Keywords: Convex quadratic programming, dual support methods, active set methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18933137 Quadratic Pulse Inversion Ultrasonic Imaging(QPI): A Two-Step Procedure for Optimization of Contrast Sensitivity and Specificity
Authors: Mamoun F. Al-Mistarihi
Abstract:
We have previously introduced an ultrasonic imaging approach that combines harmonic-sensitive pulse sequences with a post-beamforming quadratic kernel derived from a second-order Volterra filter (SOVF). This approach is designed to produce images with high sensitivity to nonlinear oscillations from microbubble ultrasound contrast agents (UCA) while maintaining high levels of noise rejection. In this paper, a two-step algorithm for computing the coefficients of the quadratic kernel leading to reduction of tissue component introduced by motion, maximizing the noise rejection and increases the specificity while optimizing the sensitivity to the UCA is presented. In the first step, quadratic kernels from individual singular modes of the PI data matrix are compared in terms of their ability of maximize the contrast to tissue ratio (CTR). In the second step, quadratic kernels resulting in the highest CTR values are convolved. The imaging results indicate that a signal processing approach to this clinical challenge is feasible.Keywords: Volterra Filter, Pulse Inversion, Ultrasonic Imaging, Contrast Agent.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15883136 Fast Intra Prediction Algorithm for H.264/AVC Based on Quadratic and Gradient Model
Authors: A. Elyousfi, A. Tamtaoui, E. Bouyakhf
Abstract:
The H.264/AVC standard uses an intra prediction, 9 directional modes for 4x4 luma blocks and 8x8 luma blocks, 4 directional modes for 16x16 macroblock and 8x8 chroma blocks, respectively. It means that, for a macroblock, it has to perform 736 different RDO calculation before a best RDO modes is determined. With this Multiple intra-mode prediction, intra coding of H.264/AVC offers a considerably higher improvement in coding efficiency compared to other compression standards, but computational complexity is increased significantly. This paper presents a fast intra prediction algorithm for H.264/AVC intra prediction based a characteristic of homogeneity information. In this study, the gradient prediction method used to predict the homogeneous area and the quadratic prediction function used to predict the nonhomogeneous area. Based on the correlation between the homogeneity and block size, the smaller block is predicted by gradient prediction and quadratic prediction, so the bigger block is predicted by gradient prediction. Experimental results are presented to show that the proposed method reduce the complexity by up to 76.07% maintaining the similar PSNR quality with about 1.94%bit rate increase in average.Keywords: Intra prediction, H.264/AVC, video coding, encodercomplexity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18933135 Ranking - Convex Risk Minimization
Authors: Wojciech Rejchel
Abstract:
The problem of ranking (rank regression) has become popular in the machine learning community. This theory relates to problems, in which one has to predict (guess) the order between objects on the basis of vectors describing their observed features. In many ranking algorithms a convex loss function is used instead of the 0-1 loss. It makes these procedures computationally efficient. Hence, convex risk minimizers and their statistical properties are investigated in this paper. Fast rates of convergence are obtained under conditions, that look similarly to the ones from the classification theory. Methods used in this paper come from the theory of U-processes as well as empirical processes.
Keywords: Convex loss function, empirical risk minimization, empirical process, U-process, boosting, euclidean family.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14143134 Beyond Taguchi’s Concept of the Quality Loss Function
Authors: Atul Dev, Pankaj Jha
Abstract:
Dr. Genichi Taguchi looked at quality in a broader term and gave an excellent definition of quality in terms of loss to society. However the scope of this definition is limited to the losses imparted by a poor quality product to the customer only and are considered during the useful life of the product and further in a certain situation this loss can even be zero. In this paper, it has been proposed that the scope of quality of a product shall be further enhanced by considering the losses imparted by a poor quality product to society at large, due to associated environmental and safety related factors, over the complete life cycle of the product. Moreover, though these losses can be further minimized with the use of techno-safety interventions, the net losses to society however can never be made zero. This paper proposes an entirely new approach towards defining product quality and is based on Taguchi’s definition of quality.
Keywords: Existing concept, goal post philosophy, life cycle, proposed concept, quality loss function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20053133 The Number of Rational Points on Elliptic Curves y2 = x3 + a3 on Finite Fields
Authors: Musa Demirci, Nazlı Yıldız İkikardeş, Gökhan Soydan, İsmail Naci Cangül
Abstract:
In this work, we consider the rational points on elliptic curves over finite fields Fp. We give results concerning the number of points Np,a on the elliptic curve y2 ≡ x3 +a3(mod p) according to whether a and x are quadratic residues or non-residues. We use two lemmas to prove the main results first of which gives the list of primes for which -1 is a quadratic residue, and the second is a result from [1]. We get the results in the case where p is a prime congruent to 5 modulo 6, while when p is a prime congruent to 1 modulo 6, there seems to be no regularity for Np,a.Keywords: Elliptic curves over finite fields, rational points, quadratic residue.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24023132 The Number of Rational Points on Conics Cp,k : x2 − ky2 = 1 over Finite Fields Fp
Authors: Ahmet Tekcan
Abstract:
Let p be a prime number, Fp be a finite field, and let k ∈ F*p. In this paper, we consider the number of rational points onconics Cp,k: x2 − ky2 = 1 over Fp. We proved that the order of Cp,k over Fp is p-1 if k is a quadratic residue mod p and is p + 1 if k is not a quadratic residue mod p. Later we derive some resultsconcerning the sums ΣC[x]p,k(Fp) and ΣC[y]p,k(Fp), the sum of x- and y-coordinates of all points (x, y) on Cp,k, respectively.
Keywords: Elliptic curve, conic, rational points.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17273131 A Quadratic Approach for Generating Pythagorean Triples
Authors: P. K. Rahul Krishna, S. Sandeep Kumar, Jayanthi Sunder Raj
Abstract:
The article explores one of the important relations between numbers-the Pythagorean triples (triplets) which finds its application in distance measurement, construction of roads, towers, buildings and wherever Pythagoras theorem finds its application. The Pythagorean triples are numbers, that satisfy the condition “In a given set of three natural numbers, the sum of squares of two natural numbers is equal to the square of the other natural number”. There are numerous methods and equations to obtain the triplets, which have their own merits and demerits. Here, quadratic approach for generating triples uses the hypotenuse leg difference method. The advantage is that variables are few and finally only three independent variables are present.
Keywords: Arithmetic progression, hypotenuse leg difference method, natural numbers, Pythagorean triplets, quadratic equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8273130 A Modification on Newton's Method for Solving Systems of Nonlinear Equations
Authors: Jafar Biazar, Behzad Ghanbari
Abstract:
In this paper, we are concerned with the further study for system of nonlinear equations. Since systems with inaccurate function values or problems with high computational cost arise frequently in science and engineering, recently such systems have attracted researcher-s interest. In this work we present a new method which is independent of function evolutions and has a quadratic convergence. This method can be viewed as a extension of some recent methods for solving mentioned systems of nonlinear equations. Numerical results of applying this method to some test problems show the efficiently and reliability of method.
Keywords: System of nonlinear equations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15923129 Restarted Generalized Second-Order Krylov Subspace Methods for Solving Quadratic Eigenvalue Problems
Authors: Liping Zhou, Liang Bao, Yiqin Lin, Yimin Wei, Qinghua Wu
Abstract:
This article is devoted to the numerical solution of large-scale quadratic eigenvalue problems. Such problems arise in a wide variety of applications, such as the dynamic analysis of structural mechanical systems, acoustic systems, fluid mechanics, and signal processing. We first introduce a generalized second-order Krylov subspace based on a pair of square matrices and two initial vectors and present a generalized second-order Arnoldi process for constructing an orthonormal basis of the generalized second-order Krylov subspace. Then, by using the projection technique and the refined projection technique, we propose a restarted generalized second-order Arnoldi method and a restarted refined generalized second-order Arnoldi method for computing some eigenpairs of largescale quadratic eigenvalue problems. Some theoretical results are also presented. Some numerical examples are presented to illustrate the effectiveness of the proposed methods.Keywords: Quadratic eigenvalue problem, Generalized secondorder Krylov subspace, Generalized second-order Arnoldi process, Projection technique, Refined technique, Restarting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18653128 Ride Control of Passenger Cars with Semi-active Suspension System Using a Linear Quadratic Regulator and Hybrid Optimization Algorithm
Authors: Ali Fellah Jahromi, Wen Fang Xie, Rama B. Bhat
Abstract:
A semi-active control strategy for suspension systems of passenger cars is presented employing Magnetorheological (MR) dampers. The vehicle is modeled with seven DOFs including the, roll pitch and bounce of car body, and the vertical motion of the four tires. In order to design an optimal controller based on the actuator constraints, a Linear-Quadratic Regulator (LQR) is designed. The design procedure of the LQR consists of selecting two weighting matrices to minimize the energy of the control system. This paper presents a hybrid optimization procedure which is a combination of gradient-based and evolutionary algorithms to choose the weighting matrices with regards to the actuator constraint. The optimization algorithm is defined based on maximum comfort and actuator constraints. It is noted that utilizing the present control algorithm may significantly reduce the vibration response of the passenger car, thus, providing a comfortable ride.Keywords: Full car model, Linear Quadratic Regulator, Sequential Quadratic Programming, Genetic Algorithm
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29403127 Applications of Conic Optimization and Quadratic Programming in the Investigation of Index Arbitrage in the Thai Derivatives and Equity Markets
Authors: Satjaporn Tungsong, Gun Srijuntongsiri
Abstract:
This research seeks to investigate the frequency and profitability of index arbitrage opportunities involving the SET50 futures, SET50 component stocks, and the ThaiDEX SET50 ETF (ticker symbol: TDEX). In particular, the frequency and profit of arbitrage are measured in the following three arbitrage tests: (1) SET50 futures vs. ThaiDEX SET50 ETF, (2) SET50 futures vs. SET50 component stocks, and (3) ThaiDEX SET50 ETF vs. SET50 component stocks are investigated. For tests (2) and (3), the problems involve conic optimization and quadratic programming as subproblems. This research is first to apply conic optimization and quadratic programming techniques in the context of index arbitrage and is first to investigate such index arbitrage in the Thai equity and derivatives markets. Thus, the contribution of this study is twofold. First, its results would help understand the contribution of the derivatives securities to the efficiency of the Thai markets. Second, the methodology employed in this study can be applied to other geographical markets, with minor adjustments.Keywords: Conic optimization, Equity index arbitrage, Executionlags, Quadratic programming, SET50 index futures, ThaiDEX SET50ETF, Transaction costs
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15733126 A Novel Multiresolution based Optimization Scheme for Robust Affine Parameter Estimation
Authors: J.Dinesh Peter
Abstract:
This paper describes a new method for affine parameter estimation between image sequences. Usually, the parameter estimation techniques can be done by least squares in a quadratic way. However, this technique can be sensitive to the presence of outliers. Therefore, parameter estimation techniques for various image processing applications are robust enough to withstand the influence of outliers. Progressively, some robust estimation functions demanding non-quadratic and perhaps non-convex potentials adopted from statistics literature have been used for solving these. Addressing the optimization of the error function in a factual framework for finding a global optimal solution, the minimization can begin with the convex estimator at the coarser level and gradually introduce nonconvexity i.e., from soft to hard redescending non-convex estimators when the iteration reaches finer level of multiresolution pyramid. Comparison has been made to find the performance of the results of proposed method with the results found individually using two different estimators.Keywords: Image Processing, Affine parameter estimation, Outliers, Robust Statistics, Robust M-estimators
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14533125 Perturbation Based Search Method for Solving Unconstrained Binary Quadratic Programming Problem
Authors: Muthu Solayappan, Kien Ming Ng, Kim Leng Poh
Abstract:
This paper presents a perturbation based search method to solve the unconstrained binary quadratic programming problem. The proposed algorithm was tested with some of the standard test problems and the results are reported for 10 instances of 50, 100, 250, & 500 variable problems. A comparison of the performance of the proposed algorithm with other heuristics and optimization software is made. Based on the results, it was found that the proposed algorithm is computationally inexpensive and the solutions obtained match the best known solutions for smaller sized problems. For larger instances, the algorithm is capable of finding a solution within 0.11% of the best known solution. Apart from being used as a stand-alone method, this algorithm could also be incorporated with other heuristics to find better solutions.Keywords: unconstrained binary quadratic programming, perturbation, interior point methods
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15233124 A Parametric Study of an Inverse Electrostatics Problem (IESP) Using Simulated Annealing, Hooke & Jeeves and Sequential Quadratic Programming in Conjunction with Finite Element and Boundary Element Methods
Authors: Ioannis N. Koukoulis, Clio G. Vossou, Christopher G. Provatidis
Abstract:
The aim of the current work is to present a comparison among three popular optimization methods in the inverse elastostatics problem (IESP) of flaw detection within a solid. In more details, the performance of a simulated annealing, a Hooke & Jeeves and a sequential quadratic programming algorithm was studied in the test case of one circular flaw in a plate solved by both the boundary element (BEM) and the finite element method (FEM). The proposed optimization methods use a cost function that utilizes the displacements of the static response. The methods were ranked according to the required number of iterations to converge and to their ability to locate the global optimum. Hence, a clear impression regarding the performance of the aforementioned algorithms in flaw identification problems was obtained. Furthermore, the coupling of BEM or FEM with these optimization methods was investigated in order to track differences in their performance.
Keywords: Elastostatic, inverse problem, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1873