Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31900
The Number of Rational Points on Elliptic Curves y2 = x3 + a3 on Finite Fields

Authors: Musa Demirci, Nazlı Yıldız İkikardeş, Gökhan Soydan, İsmail Naci Cangül

Abstract:

In this work, we consider the rational points on elliptic curves over finite fields Fp. We give results concerning the number of points Np,a on the elliptic curve y2 ≡ x3 +a3(mod p) according to whether a and x are quadratic residues or non-residues. We use two lemmas to prove the main results first of which gives the list of primes for which -1 is a quadratic residue, and the second is a result from [1]. We get the results in the case where p is a prime congruent to 5 modulo 6, while when p is a prime congruent to 1 modulo 6, there seems to be no regularity for Np,a.

Keywords: Elliptic curves over finite fields, rational points, quadratic residue.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1332804

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2190

References:


[1] Andrews, G. E., Number Theory, Dover Publications, (1971), ISBN 0- 486-68252-8.
[2] Washington, L. C., Elliptic Curves, Number Theory and Cryptography, Chapman&Hall/CRC, 2003.
[3] Parshin, A. N., The Bogomolov-Miyaoka-Yau inequality for the arithmetical surfaces and its applications, Seminaire de Theorie des Nombres, Paris, 1986-87, 299-312, Progr. Math., 75, Birkhauser Boston, MA, 1998.
[4] Kamienny, S., Some remarks on torsion in elliptic curves, Comm. Alg. 23 (1995), no. 6, 2167-2169.
[5] Ono, K., Euler-s concordant forms, Acta Arith. 78 (1996), no. 2, 101- 123.
[6] Merel, L., Arithmetic of elliptic curves and Diophantine eqnarrays, Les XXemes Journees Arithmetiques (Limoges, 1997), J. Theor. Nombres Bordeaux 11 (1999), no. 1, 173-200.
[7] Serre, J.-P., Propri'et'es galoisiennes des points d-ordre fini des courbes elliptiques, Invent. Math. 15 (1972), 259-331.
[8] Demirci, M. & Soydan, G. & Cang┬¿ul, I. N., Rational points on the elliptic curves y2 = x3 + a3 (mod p) in Fp where p≡ 1(mod6) is prime, Rocky J.of Maths, ( to be printed ).
[9] Schmitt, S. Zimmer, H. G., Elliptic Curves A Computational Approach, Walter De Gruyter, (2003), ISBN 3-11-016808-1
[10] Schoof, R., Counting points on elliptic curves over finite fields, Journal de Th'eorie des Nombres de Bordeaux, 7 (1995), 219-254.
[11] Soydan, G. & Demirci, M. & Ikikardes┬©, N. Y. & Cang┬¿ul, I. N., Rational points on the elliptic curves y2 = x3+a3 (mod p) in Fp where p≡ 5 (mod6) is prime, (submitted).
[12] Silverman, J. H., The Arithmetic of Elliptic Curves, Springer-Verlag, (1986), ISBN 0-387-96203-4.
[13] Silverman, J. H.,Tate, J., Rational Points on Elliptic Curves, Springer- Verlag, (1992), ISBN 0-387-97825-9.