Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31900
The Number of Rational Points on Elliptic Curves y2 = x3 + a3 on Finite Fields

Authors: Musa Demirci, Nazlı Yıldız İkikardeş, Gökhan Soydan, İsmail Naci Cangül


In this work, we consider the rational points on elliptic curves over finite fields Fp. We give results concerning the number of points Np,a on the elliptic curve y2 ≡ x3 +a3(mod p) according to whether a and x are quadratic residues or non-residues. We use two lemmas to prove the main results first of which gives the list of primes for which -1 is a quadratic residue, and the second is a result from [1]. We get the results in the case where p is a prime congruent to 5 modulo 6, while when p is a prime congruent to 1 modulo 6, there seems to be no regularity for Np,a.

Keywords: Elliptic curves over finite fields, rational points, quadratic residue.

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2190


[1] Andrews, G. E., Number Theory, Dover Publications, (1971), ISBN 0- 486-68252-8.
[2] Washington, L. C., Elliptic Curves, Number Theory and Cryptography, Chapman&Hall/CRC, 2003.
[3] Parshin, A. N., The Bogomolov-Miyaoka-Yau inequality for the arithmetical surfaces and its applications, Seminaire de Theorie des Nombres, Paris, 1986-87, 299-312, Progr. Math., 75, Birkhauser Boston, MA, 1998.
[4] Kamienny, S., Some remarks on torsion in elliptic curves, Comm. Alg. 23 (1995), no. 6, 2167-2169.
[5] Ono, K., Euler-s concordant forms, Acta Arith. 78 (1996), no. 2, 101- 123.
[6] Merel, L., Arithmetic of elliptic curves and Diophantine eqnarrays, Les XXemes Journees Arithmetiques (Limoges, 1997), J. Theor. Nombres Bordeaux 11 (1999), no. 1, 173-200.
[7] Serre, J.-P., Propri'et'es galoisiennes des points d-ordre fini des courbes elliptiques, Invent. Math. 15 (1972), 259-331.
[8] Demirci, M. & Soydan, G. & Cang┬¿ul, I. N., Rational points on the elliptic curves y2 = x3 + a3 (mod p) in Fp where p≡ 1(mod6) is prime, Rocky J.of Maths, ( to be printed ).
[9] Schmitt, S. Zimmer, H. G., Elliptic Curves A Computational Approach, Walter De Gruyter, (2003), ISBN 3-11-016808-1
[10] Schoof, R., Counting points on elliptic curves over finite fields, Journal de Th'eorie des Nombres de Bordeaux, 7 (1995), 219-254.
[11] Soydan, G. & Demirci, M. & Ikikardes┬©, N. Y. & Cang┬¿ul, I. N., Rational points on the elliptic curves y2 = x3+a3 (mod p) in Fp where p≡ 5 (mod6) is prime, (submitted).
[12] Silverman, J. H., The Arithmetic of Elliptic Curves, Springer-Verlag, (1986), ISBN 0-387-96203-4.
[13] Silverman, J. H.,Tate, J., Rational Points on Elliptic Curves, Springer- Verlag, (1992), ISBN 0-387-97825-9.