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Abstract—In this paper, we present a new method for solving
quadratic programming problems, not strictly convex. Constraints
of the problem are linear equalities and inequalities, with bounded
variables. The suggested method combines the active-set strategies
and support methods. The algorithm of the method and numerical
experiments are presented, while comparing our approach with the
active set method on randomly generated problems.
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I. INTRODUCTION

Theory of quadratic programming (QP) handles a special
class of problems of nonlinear mathematical programming.
In practice, a lot of problems are represented naturally by
quadratic models, as in the case of the finance, management
of the production, statistics and the optimal control, etc. These
models are also used in nonlinear optimization as subproblems
in the sequential quadratic programming methods [9].

In the literature, one distinguishes three approaches for
solving quadratic optimization problems, such as active-set
strategies [7], [6], [9], developed in the beginning of the 70s
years. The second approach is constituted from interior points
methods, known for their good theoretical complexity that is
polynomial and its efficiency for solving large-scale problems
[8]. The third is formed by support methods [1], [2], [5]
and they are intermediate between the two first approaches.
The majority of these methods are primal or primal-dual, but
few are of the dual type. In [12], the dual simplexe method
has been extended for solving strictly convex problems. The
dual active-set method for the strictly convex case has been
presented in [11] and Boland [10] generalized it for the general
convex case, i.e., the matrix associated to the quadratic form
being positive semidefinite. The method presented here is
constituted of two phases: the first consists in finding an initial
active set by solving a linear program, while the second is
iterative and permits to change the active set while improving
the objective function until the optimum.

In this work, we generalize the dual support method [1], [5]
for the general convex case and with linear general inequalities
constraints. The new algorithm combines the active set strategy
[6], [7] and support methods [2]. The algorithm of this dual
method is iterative and is constituted of two phases: the first
consists in constructing an initial coordinator support of the
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problem. The second phase permits to get the optimal solution
for a bounded problem. In the numerical experiments we
compare our method with active set method, implemented in
Matlab 7 as Quadprog function, on randomly generated test
problems.

II. STATEMENT OF THE PROBLEM AND DEFINITIONS

We consider the following quadratic model:⎧⎪⎪⎨
⎪⎪⎩

minF (x) = 1
2x

′Dx+ c′x
A(I1, J)x = b(I1),
A(I2, J)x ≤ b(I2),
d− ≤ x ≤ d+,

(1)

where indices of constraints and decision variables are re-
spectively noted by: I = I1 ∪ I2, I1 = {1, 2, · · · ,m1},
I2 = {m1 + 1,m1 + 2, · · · ,m} and J = {1, 2, · · · , n}. So,
c = (cj , j ∈ J), d− = (d−j , j ∈ J), d+ = (d+

j , j ∈ J)
et x = (xj , j ∈ J) are n-vectors; b = (bi, i ∈ I) is an
m-vector; A = A(I, J) is an (m × n) matrix, such that
m1 ≤ rang(A) < n. The square matrix D = D(J, J) is
supposed symmetric and positive semidefinite. The symbol (′)
is the transposition operation, and A′

i, i ∈ I , represent the ith

line of A.
Definition 1:
• Any vector x satisfying all the constraints of the problem

(1) is called a feasible solution.
• A feasible solution x∗ is called optimal if

F (x∗) =
1
2
x∗′Dx∗ + c′x∗ = min

x
F (x),

where x is taking among all feasible solutions for the
problem.

• A general constraint i ∈ I is said to be active in a point
x if it satisfies the identity A′

ix = bi. The active set in x
is noted I0 = I1 ∪ {i ∈ I2 : A′

ix = bi}.
• The pair SB = {Ia, JB}, where I1 ⊂ Ia ⊂ I0 and
JB ⊂ J such that |Ia| = |JB | is called a constraint
support of the problem (1) if the matrix AB = A(Ia, JB)
is nonsingular. For the initial constraint support, we can
choose SB = {I1, JB}, with |JB | = m1.

• The couple {x, SB} formed by the feasible solution x and
the support SB is called the support feasible solution. It
is said to be nondegenerate if

d−j < xj < d+
j , ∀j ∈ JB ,

A′
ix < bi, ∀i ∈ Ina = I\Ia.
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2

Set JN = J\JB . Let’s define the potential vector u and the
reduced costs vector E:
u′ = u′(I) = (u′a, u

′
na), such that una = u(Ina) = 0, u′a =

u′(Ia) = g′BA
−1
B , E′ = E′(J) = g′ − u′A = (E′

B , E
′
N ), such

that E′
N = E′(JN ) = g′N (x) − u′AN , E

′
B = 0, where g =

g(J) = g(x) = Dx+ c represents the gradient of the function
F in a point x, with g′ = (g′B , g

′
N ) and AN = A(Ia, JN ).

The optimality criterion for the problem (1) is given by the
following theorem.

Theorem 1: [3]. Let {x, SB} be a feasible support solution
for the problem (1). Then the following relations:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ej ≥ 0, for xj = d−j ,
Ej ≤ 0, for xj = d+

j ,

Ej = 0, for d−j < xj < d+
j , j ∈ JN ,

ui ≥ 0, for A′
ix = bi, i ∈ I2 ∩ Ia

ui = 0, for A′
ix < bi, i ∈ Ina,

are sufficient for the optimality of the point x. The same
relations are also necessary if {x, SB} is not degenerate.
For the case of bounded quadratic problems, the optimal
solution can be an extreme point, a point on the face or in
the interior of the convex polyhedron. Thus, it is important in
the nonlinear optimization to define a new concept allowing
to have some informations on the curvature of the objective
function.

Definition 2:
• The indices set JS ⊂ JN = J\JB is called an objective

function support of the problem (1) if the submatrix
MS = M(JS , JS) of M is nonsingular, where

M = M(JN , JN ) = Z ′DZ and Z =
(−A−1

B AN

IN

)
.

Here IN is the identity matrix of (n − m0)-dimension
and m0 = |Ia|. Set JP = JB ∪ JS and JNN = J\JP .

• The indices set SP = {SB , JS} = {Ia, JP }, formed with
the constraints support SB and the functional support JS

is called a support of the problem (1).

III. DUAL PROBLEM AND OPTIMALITY CRITERION

The dual problem associated to the primal (1) is the follow-
ing concave quadratic program:⎧⎨

⎩
maxϕ(λ) = − 1

2κ
′Dκ+ b′y + v′d− − w′d+

Dκ+ c−A′y − v + w = 0,
y(I2) ≥ 0, v ≥ 0, w ≥ 0,

(2)

where λ = (κ, y, v, w).
Definition 3:
• The quadruplet λ = (κ, y, v, w) ∈ R

n×m×n×n verifying
all constraints of the problem (2) is called a dual feasible
solution. The n-vector κ verifying A(Ia, J)κ = b(Ia) is
called a pseudosolution vector. Also, the n-vector δ =
Dκ+ c−A′y is called a reduced costs vector, associated
to the dual feasible solution λ.

• A dual feasible solution λ∗ = (κ∗, y∗, v∗, w∗) is said to
be optimal if

ϕ(λ∗) = −1
2
κ∗′Dκ∗+b′y∗+v∗′d−−w∗′d+ = max

λ
ϕ(λ),

where λ = (κ, y, v, w) is taking among all dual feasible
solutions of the problem (2). The corresponding n-vector
δ∗ = Dκ∗ + c − A′y∗ is then an optimal reduced costs
one.

• Considering a support SP = (Ia, JP ) for the problem
(1) and let λ = (κ, y, v, w) a dual feasible solution
accompanying SP , constructed as follows:
d−j ≤ κj ≤ d+

j , j ∈ JNN = J\JP ,

κS = −M−1
S Z ′(JS , JP )[D(JP , JB)A−1

B b + c(JP )] −
M−1

S M(JS , JNN )κNN , κB = A−1
B (ba −ANκN );

ya = [A′
B ]−1(D(JB , J)κ+ cB), yna = 0;

δ = Dκ+c−A′y, with δP = δ(JP ) = 0 by construction
of ya and κS ; vj = δj , wj = 0, if δj ≥ 0; vj = 0, wj =
−δj , if δj < 0.
The support SP is said to be coordinator if the following
relations are verified:⎧⎨
⎩

κj = d−j if δj ≥ 0,
κj = d+

j if δj ≤ 0, j ∈ JNN = J\JP .

A′
iκ = bi if yi ≥ 0, i ∈ I2 ∩ Ia.

(3)

In this case, the couple {λ, SP } is called a coordinated
dual feasible solution, and {δ, SP } is also called a coordi-
nated reduced costs vector. It is said to be nondegenerate
if

δj 	= 0, ∀j ∈ JNN , yi > 0, i ∈ I2 ∩ Ia.
Since δ(JP ) = 0 and y(Ina) = 0, by construction, then the
optimality criterion of the dual problem (2) is expressed as
follows:

Theorem 2: The relations
d−j ≤ κj ≤ d+

j , ∀j ∈ JP = JB ∪ JS ,

A′
iκ ≤ bi, ∀i ∈ Ina = I\Ia, (4)

are sufficient for the optimality of the coordinated reduced
costs vector {δ, SP }. They are also necessary in the case when
{δ, SP } is not degenerate. The corresponding pseudosolution κ
of the optimal reduced costs vector is then an optimal solution
to the primal problem (1).

IV. CONSTRUCTION OF THE INITIAL COORDINATOR
SUPPORT

The phase 1 of the proposed method allows to construct an
initial coordinator support that is necessary for the formulation
of the optimality criterion, and to start the phase 2 of the
dual support method. So, this procedure yields an initial co-
ordinated reduced costs vector {δ, SP }. As an initial support,
we can choose SP = (SB , JS = ∅), where SB = (I1, JB)
such that |JB | = |I1| = m1, is the constraints support of the
problem. The steps of the phase 1 are as follows:
Step 1. Construction of the reduced costs vector δ associated
to the initial support SP :

• Construct the initial pseudosolution vector κ =
(κB , κN )′: {

d−j ≤ κj ≤ d+
j , j ∈ JN ,

κB = A−1
B (ba −ANκN ).

• Calculate the vector δ = (δB , δN )′:
δB = 0, δN = D(JN , J)κ+ cN −A′

Ny, with
y = [A′

B ]−1(D(JB , J)κ+ cB).
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Step 2. Apply the coordination tests:
• If κj = d−j for δj ≥ 0 and κj = d+

j for δj < 0, ∀j ∈
JNN , then {δ, SP } is a supporting coordinated reduced
costs vector and consequently the procedure is stopped.

• Otherwise, construct a new pseudosolution vector κ̄ and
its corresponding reduced costs vector δ̄:

κ̄ = κ+σl, δ̄ = δ+σt, with t = Dl−A′q, ȳ = y+σq,

where the n-vectors l and t, representing respectively
the improvement directions of the pseudosolution and its
reduced costs vector, are determined as follows:⎧⎪⎪⎨

⎪⎪⎩
lj = d−j − κj , if δj ≥ 0,
lj = d+

j − κj , if δj < 0, j ∈ JNN ,

lS = −M−1
S M(JS , JNN )lNN ,

lB = −A−1
B AN lN ,⎧⎨

⎩
tB = 0, tS = 0,
tNN = D(JNN , J)l −A′

NNq,
q = [A−1

B ]′D(JB , J)l.

Calculate the optimal stepsize σ = min{1, σj0}, where
σj0 is determined such that δNN and δ̄NN don’t change
their signs:

σj0 = min
j∈JNN

σj , with σj =

⎧⎨
⎩

−δj/tj , if δjtj < 0,
0, if δj = 0 and tj < 0,
+∞, otherwise, j ∈ JNN .

• If σ = 1 then SP = {SB , JS} is an initial coordinated
support with κ̄ = κ + l its associated pseudosolution
vector.

• Otherwise, do the following appropriate index change:

J̄S = JS ∪ j0, J̄B = JB , J̄P = J̄B ∪ J̄S .

Go to step (2).
Remark 1: The proposed procedure is finite, since it al-

lows to construct in the worst case a coordinator support in
(n−m1) iterations, when the method is started with JS = ∅.

V. ALGORITHM OF THE DUAL SUPPORT METHOD

This new dual method combines the support method [1]
and the active set strategy [6], [7], [9]. Let {δ, SP } be an
initial coordinated reduced costs vector, obtained by the phase
1 of the method and κ its corresponding pseudosolution.
The principle of the method consists to transform the pair
{δ, SP } −→ {δ̄, S̄P } in two steps; the first is the construction
of the new reduced costs vector δ̄ such that ϕ(λ̄) ≥ ϕ(λ),
where λ and λ̄ represent respectively the dual feasible
solutions associated to the reduced costs vectors δ and δ̄. The
second stage consists to transform SP −→ S̄P in such a way
that S̄P must be a coordinator support.

The algorithm of the method presents the following stages:
Step 1. Verification of the optimality conditions of the couple
{δ, SP }:

• If optimality relations (4) are verified, then κ is an optimal
feasible solution of the primal problem (1). Stop the
algorithm.

• Otherwise for all non optimal support indices Jno
P ⊂ JP ,

and those of the violated general constraints at the courant
point κ, noted by Ino

na ⊂ Ina = I\Ia, calculate the
following numbers:

αj =
{
κj − d−j , if κj < d−j ,
κj − d+

j , if κj > d+
j , j ∈ Jno

P ,

ri = A′
iκ− bi > 0, i ∈ Ino

na .

Choose an index j1 ∈ Jno
P and another i1 ∈ Ino

na

verifying:

|αj1 | = max{|αj |, j ∈ Jno
P }, ri1 = max{ri, i ∈ Ino

na}.
Step 2. Construction of the new pseudosolution and its asso-
ciated reduced costs vector as follows:

κ̄ = κ+ σl, ȳ = y + σq, δ̄ = δ + σt, σ ≥ 0.

• Determine the improvement directions l = (lB , lS , lNN )′

of the pseudosolution and those of its reduced costs
vector t = (t(JP ), t(JNN ))′ in the following way:

• If |αj1 | ≥ ri1 then put:⎧⎨
⎩

lNN = 0,
lS = tj1M

−1
S Z ′(JS , j1),

lB = −A−1
B A(Ia, JS)l(JS),⎧⎨

⎩
tj1 = −signαj1 , t(JP \j1) = 0, q(Ina) = 0,
tNN = D(JNN , JP )lP −A′(JNN , Ia)qa,
qa = q(Ia) = [A−1

B ]′[D(JB , JP )lP − tB ].

• Else (|αj1 | < ri1), set:⎧⎨
⎩

lNN = 0,
lS = −M−1

S Z(JS , J)′A′(J, i1),
lB = −A−1

B A(Ia, JS)l(JS),⎧⎨
⎩

t(JP ) = 0, qi1 = 1, q(Ina\i1) = 0,
tNN = D(JNN , JP )lP −A′(JNN , Ia ∪ i1)q(Ia ∪ i1),
q(Ia) = [A−1

B ]′[D(JB , JP )lP −A′(JB , i1)].

• Calculate the optimal stepsize σ =
min{σj0 , σj1 , τi0 , τi1}, where

σj0 = min
j∈JNN

σj , with σj =

⎧⎨
⎩

−δj/tj , if δjtj < 0,
0, if δj = 0 and tj < 0,
∞, otherwise , j ∈ JNN ,

and σj1 =

⎧⎨
⎩

(d−j1 − κj1)/lj1 , if lj1 > 0,
(d+

j1
− κj1)/lj1 , if lj1 < 0,

∞, if lj1 = 0.

The step σj0 represent the maximal value for which δNN

and δ̄NN keep the same sign, and σj1 is the value for
which the index j1 becomes optimal, i.e., the component
κ̄j1 = d−j1 ∨ d+

j1
. The number τi0 is the value of stepsize

for which active components of multipliers vectors ya =
y(Ia) and ȳa = ȳ(Ia) don’t change a sign:

τi0 = min
i∈I2∩Ia

τi, with τi =

⎧⎨
⎩

−yi/qi, if yiqi < 0,
0, if yi = 0, qi < 0,
∞, otherwise, i ∈ I2 ∩ Ia.

Finally, τi1 is the optimal value for which the component
yi1 becomes critical:

τi1 =
{ −ri1/A′

i1 l, if A′
i1
l < 0,

∞, otherwise .
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• If σ = ∞, then the dual problem (2) is not bounded
below and consequently its primal (1) is infeasible.
Stop the resolution process.

• Otherwise σ is finite, and calculate δ̄ = δ+ σt, κ̄ =
κ+ σl, ȳ = y + σq.

Step 3. Construction of a new coordinator support S̄P =
{S̄B , J̄S}, where = S̄B = (Īa, J̄B):
This change is operated according to the following cases:
Step 3.1. If σ = σj1 , j1 ∈ JP = JB ∪ JS , the component κj1

reaches the left or the right bound:
• If j1 ∈ JS , then put

S̄B = SB , J̄S = JS\j1.
• Otherwise, change the constraints support while choosing

an index j∗ ∈ JS such that zj1j∗ = Z(j1, j∗) 	= 0 and
put

Īa = Ia, J̄B = (JB\j1) ∪ j∗, J̄S = JS\j∗.
Go to step (1).
Step 3.2. If σ = σj0 , then component κj1 is not critical and
consequently the index j1 cannot be transferred to J̄NN .

• If η0 = M(j0, j0) − M(j0, JS)M−1
S M(JS , j0) 	= 0,

then the index j0 will be transferred to J̄S such that
the functional support matrix MS = M(J̄S , J̄S) remains
nonsingular:

S̄B = SB , J̄S = JS ∪ j0.
Go to step (2).

• If η0 = 0, then the index j0 cannot be added to the
functional support:
- If j1 ∈ JS then do the appropriate following support
change.

S̄B = SB , J̄S = (JS\j1) ∪ j0.
- Otherwise, change the constraints support while entering
the index j0 and take out the index j1:

Īa = Ia J̄B = (JB\j1) ∪ j0, J̄S = JS .

- Correct the pseudosolution vector κ̃ = κ̄ + l̃, where
the improvement direction l̃ is calculated in such a way
that the component κ̃j1 , j1 ∈ J̄NN = J\(J̄B ∪ J̄S)
becomes coordinated with the support S̄P . Consequently,
it is determined as follows:

l̃j1 = d−j1 − κ̄j1 , if tj1 = 1; l̃j1 = d+
j1
− κ̄j1 , if tj1 = −1;

l̃j = 0, j 	= j1, j ∈ J̄NN ; l̃S = −M−1
S M(J̄S , J̄NN )l̃NN ;

l̃B = Z(J̄B , J̄N )l̃N ,

where M and Z are the updating matrices defined by the
relation (2). Go to step (1).

Step 3.3. If σ = τi1 , i1 ∈ Ina, then the i1-th general constraint
becomes active. Find an index j∗ ∈ JS verifying hj∗ 	= 0,
where h′(JS) = A(i1, JS)−A(i1, JB)A−1

B A(Ia, JS) and put:

Īa = Ia ∪ i1, J̄B = JB ∪ j∗, J̄S = JS\j∗.
Go to step (1).

Step 3.4. If σ = τi0 , i0 ∈ I2 ∩ Ia, then the i0-th constraint
becomes nonactive and consequently, it will be deleted in the
active set by this change:

a) If |αj1 | ≤ ri1 , then the j1-th simple constraint will
be deleted in J̄P and added to J̄NN . Set Īa = Ia\i0
and J̄S = JS .

• If j1 ∈ JB then J̄B = JB\j1.
• If j1 /∈ JB then search an index j∗ ∈ JB such that

A−1
i0j∗ 	= 0 and put J̄B = JB\j∗.

Go to step (2).
b) Otherwise the i1-th general constraint becomes active

and the i0-th nonactive:

Īa = (Ia ∪ i1)\i0, J̄B = JB , J̄S = JS .

Go to step (1).
Remark 2: For the case where I2 = ∅, the algorithm

presented before is the same suggested in [5].

VI. NUMERICAL EXPERIMENTS

In this section, we present numerical results of comparison
between dual support method (DSM) and active set method
(ASM), implemented in Matlab 7.0 R14, under Windows
Vista, at a CPU 3Ghz and 512 MO of RAM. The comparison
is based on quadratic programming problems randomly gener-
ated. The characteristic of these problems is that the optimal
solution x∗, and the value of the objective function f∗ at the
optimum are known previously.

Input parameters of the procedure that generate randomly
test quadratic problems are n,m, n0,m0, where respectively
they represent the number of variables, the number of general
constraints, the number of active variables at the optimum
(x∗j = d−j ∨ d+

j , j = 1 · · ·n0) and the number of general
active constraints (A′

ix
∗ = bi, i = 1 · · ·m0). Its stages are

summarized as follows:
1) Generate randomly (or fixed) the optimal solution x∗.
2) Calculate the reduced costs vector δ∗ by the following

rules:

δ∗j 	= 0,∀j = 1 · · ·n0; δ∗j = 0,∀j = n0 + 1 · · ·n.
3) Generate the multiplier vector y∗:

y∗i 	= 0, i = 1,m1; y∗i > 0, i = m1 + 1,m0;
y∗i = 0, i = m0 + 1 : m.

4) Construct the n-vectors d− and d+, such that d−j < d+
j ,

for all j = 1, · · · , n:

d−j = x∗j , d+
j > x∗j , δ∗j > 0,

d−j < x∗j , d+
j = x∗j , δ∗j < 0,

d−j < x∗j , d+
j > x∗j , δ∗j = 0, j ∈ J.

5) Generate the constraints matrix A and the symmetric
semidefinite matrix D in the form D = G′G where G
is an r × n matrix, with rank(G) ≤ r.

6) Calculate the m-vector b:

bi = A′
ix

∗, ∀i = 1 · · ·m0; A′
ix

∗ < bi, ∀i = m0+1 · · ·m.
7) For the n-vector c, set c = −Dx∗ +A′y∗ + δ∗.
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Random values of different vectors and matrices are uniformly
distributed in the range [-1,1]. For computational experiments
we compare our dual support method (DSM) and the primal
active-set method (ASM) implemented in Matlab 7 as function
quadprog. This comparison is done for the standard case
I2 = ∅ and on two kinds of test problems: strictly convex
and convex quadratic programs. Concerning the general case
I2 	= ∅, numeric results are under realization.

Table 1 reports numerical results for strictly convex prob-
lems, where T and Iters represent respectively the average
CPU time in seconds and the average number of iterations
required for solving 10 QPs with the same entries. For DSM,
we adapt two strategies: the first when we start the method
with the empty functional support (JS = ∅) and the second
with the full functional support ( JS = JN ). For DSM, we
note that the first strategy requires more iterations compared to
the second strategy for all test problems that have been solved.
When the number of active constraints at the optimum is small,
DSM with the second strategy is required to DSM with empty
support and also to ASM. But when the number of active
constraints is large we conclude that Active-set method is
relatively efficient to our approach for solving strictly convex
quadratic programs. For general convex quadratic programs,

TABLE I
NUMERICAL RESULTS FOR STRICTLY CONVEX QUADRATIC TEST

PROBLEMS

DSM with DSM with ASM
JS = ∅ JS = JN

n m n0 T(s) Iters T(s) Iters T(s) Iters
100 10 50 0.39 111.6 0.34 51.2 0.41 51
100 50 50 0.43 101.8 0.30 51.8 0.23 50
200 10 100 2.47 222.6 2.68 101.6 3.02 101
200 10 150 3.33 243.2 4.32 157.4 3.66 151
200 50 150 3.72 254.4 3.77 163.8 2.80 150
200 100 150 2.51 206.6 1.98 106.6 1.56 100
300 10 250 14.55 370.8 20.94 264.4 15 251
300 50 100 7.37 314.8 6.90 100.4 7.45 101
300 50 250 14.91 391.8 17.99 277.2 12.15 250
300 100 100 6.99 300.2 5.12 100.2 5.51 101
300 100 200 12.14 366.6 11.48 218 8.40 200
400 10 350 44.107 494.8 65.62 372.4 42.73 351
400 50 100 18.26 417 15.32 100.20 17.30 101
400 50 350 47.27 525.6 60.83 383.6 36.99 350
400 100 100 17.48 400 12.63 100 14.35 101
400 100 300 43.02 515.2 45.05 332 28.97 300
500 10 450 106.24 632.2 155.95 476.6 95.73 451
500 50 200 57.33 553.4 60.25 204.4 55.74 201
500 50 450 114.82 676.6 148.58 492.4 85.66 450
500 100 100 36.15 500 26.07 100 28.74 101
500 100 400 110.16 664.2 117.37 436.4 69.20 400

the results are drawn up in table 2. We constat that when
m ≤ 30 our method is very efficient compared to the ASM.

VII. CONCLUSION

In this paper, we have developed a new method for solving
general convex quadratic problems that combines active set
strategy [7] and support methods [1], [2]. Its advantage is
that it handles constraints such as initially presented, without
any preliminary transformation. This permits to have a gain
in memory space and CPU time. It also allows, following
the example that of Boland [10], to deal with semidefinite

TABLE II
NUMERICAL RESULTS FOR SEMIDEFINITE QUADRATIC TEST PROBLEMS

DSM with JS = ∅ ASM
n m n0 rank(D) T(s) Iters T(s) Iters

100 10 50 80 0.375 107.2 0.656 51
200 10 150 150 4.734 281.4 5.469 151
200 40 150 150 4.687 279.7 3.391 151
300 10 250 250 25.609 429 36.734 251
300 30 250 250 18.338 434.3 19.323 251
400 20 200 350 44.953 529.5 81.797 201
500 10 450 450 135.734 675.1 272.141 451
500 30 300 450 91.063 646 140.766 301
500 50 450 450 126.078 669.4 88.406 450
700 10 600 650 432.843 939.2 755.282 601
700 50 500 650 427.390 911.5 322.922 501

quadratic problems, contrary to other methods which consider
only the strictly convex case [12], [11], [13].
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