Search results for: quadratic programming.
741 Performance Analysis of MATLAB Solvers in the Case of a Quadratic Programming Generation Scheduling Optimization Problem
Authors: Dávid Csercsik, Péter Kádár
Abstract:
In the case of the proposed method, the problem is parallelized by considering multiple possible mode of operation profiles, which determine the range in which the generators operate in each period. For each of these profiles, the optimization is carried out independently, and the best resulting dispatch is chosen. For each such profile, the resulting problem is a quadratic programming (QP) problem with a potentially negative definite Q quadratic term, and constraints depending on the actual operation profile. In this paper we analyze the performance of available MATLAB optimization methods and solvers for the corresponding QP.Keywords: Economic dispatch, optimization, quadratic programming, MATLAB.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 950740 Order Penetration Point Location using Fuzzy Quadratic Programming
Authors: Hamed Rafiei, Masoud Rabbani
Abstract:
This paper addresses one of the most important issues have been considered in hybrid MTS/MTO production environments. To cope with the problem, a mathematical programming model is applied from a tactical point of view. The model is converted to a fuzzy goal programming model, because a degree of uncertainty is involved in hybrid MTS/MTO context. Finally, application of the proposed model in an industrial center is reported and the results prove the validity of the model.Keywords: Fuzzy sets theory, Hybrid MTS/MTO, Order penetration point, Quadratic programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1601739 A Dual Method for Solving General Convex Quadratic Programs
Authors: Belkacem Brahmi, Mohand Ouamer Bibi
Abstract:
In this paper, we present a new method for solving quadratic programming problems, not strictly convex. Constraints of the problem are linear equalities and inequalities, with bounded variables. The suggested method combines the active-set strategies and support methods. The algorithm of the method and numerical experiments are presented, while comparing our approach with the active set method on randomly generated problems.
Keywords: Convex quadratic programming, dual support methods, active set methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1895738 Quadratic Irrationals, Quadratic Ideals and Indefinite Quadratic Forms II
Authors: Ahmet Tekcan, Arzu Özkoç
Abstract:
Let D = 1 be a positive non-square integer and let δ = √D or 1+√D 2 be a real quadratic irrational with trace t =δ + δ and norm n = δδ. Let γ = P+δ Q be a quadratic irrational for positive integers P and Q. Given a quadratic irrational γ, there exist a quadratic ideal Iγ = [Q, δ + P] and an indefinite quadratic form Fγ(x, y) = Q(x−γy)(x−γy) of discriminant Δ = t 2−4n. In the first section, we give some preliminaries form binary quadratic forms, quadratic irrationals and quadratic ideals. In the second section, we obtain some results on γ, Iγ and Fγ for some specific values of Q and P.
Keywords: Quadratic irrationals, quadratic ideals, indefinite quadratic forms, extended modular group.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1251737 Applications of Conic Optimization and Quadratic Programming in the Investigation of Index Arbitrage in the Thai Derivatives and Equity Markets
Authors: Satjaporn Tungsong, Gun Srijuntongsiri
Abstract:
This research seeks to investigate the frequency and profitability of index arbitrage opportunities involving the SET50 futures, SET50 component stocks, and the ThaiDEX SET50 ETF (ticker symbol: TDEX). In particular, the frequency and profit of arbitrage are measured in the following three arbitrage tests: (1) SET50 futures vs. ThaiDEX SET50 ETF, (2) SET50 futures vs. SET50 component stocks, and (3) ThaiDEX SET50 ETF vs. SET50 component stocks are investigated. For tests (2) and (3), the problems involve conic optimization and quadratic programming as subproblems. This research is first to apply conic optimization and quadratic programming techniques in the context of index arbitrage and is first to investigate such index arbitrage in the Thai equity and derivatives markets. Thus, the contribution of this study is twofold. First, its results would help understand the contribution of the derivatives securities to the efficiency of the Thai markets. Second, the methodology employed in this study can be applied to other geographical markets, with minor adjustments.Keywords: Conic optimization, Equity index arbitrage, Executionlags, Quadratic programming, SET50 index futures, ThaiDEX SET50ETF, Transaction costs
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1575736 Perturbation Based Search Method for Solving Unconstrained Binary Quadratic Programming Problem
Authors: Muthu Solayappan, Kien Ming Ng, Kim Leng Poh
Abstract:
This paper presents a perturbation based search method to solve the unconstrained binary quadratic programming problem. The proposed algorithm was tested with some of the standard test problems and the results are reported for 10 instances of 50, 100, 250, & 500 variable problems. A comparison of the performance of the proposed algorithm with other heuristics and optimization software is made. Based on the results, it was found that the proposed algorithm is computationally inexpensive and the solutions obtained match the best known solutions for smaller sized problems. For larger instances, the algorithm is capable of finding a solution within 0.11% of the best known solution. Apart from being used as a stand-alone method, this algorithm could also be incorporated with other heuristics to find better solutions.Keywords: unconstrained binary quadratic programming, perturbation, interior point methods
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1525735 On Problem of Parameters Identification of Dynamic Object
Authors: Kamil Aida-zade, C. Ardil
Abstract:
In this paper, some problem formulations of dynamic object parameters recovery described by non-autonomous system of ordinary differential equations with multipoint unshared edge conditions are investigated. Depending on the number of additional conditions the problem is reduced to an algebraic equations system or to a problem of quadratic programming. With this purpose the paper offers a new scheme of the edge conditions transfer method called by conditions shift. The method permits to get rid from differential links and multipoint unshared initially-edge conditions. The advantage of the proposed approach is concluded by capabilities of reduction of a parametric identification problem to essential simple problems of the solution of an algebraic system or quadratic programming.Keywords: dynamic objects, ordinary differential equations, multipoint unshared edge conditions, quadratic programming, conditions shift
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1458734 A Quadratic Programming for Truck-to-Door Assignment Problem
Authors: Y. Fathi, B. Karimi, S. M. J. Mirzapour Al-e-Hashem
Abstract:
Cross-docking includes receiving products supplied by a set of suppliers, unloading them from inbound trucks (ITs) at strip doors, consolidating and handling these products to stack doors based on their destinations, loading them into outbound trucks (OTs); then, delivering these products to customers. An effective assignment of the trucks to the doors would enhance the advantages of the cross-docking (e.g. reduction of the handling costs). This paper addresses the truck-to-door assignment problem in a cross-dock in which assignment of the ITs to the strip doors as well as assignment of the OTs to the stacks doors is determined so that total material handling cost in the cross-dock is minimized. Capacity constraints are applied for the ITs, OTs, strip doors, and stack doors. We develop a Quadratic Programming (QP) to formulate the problem. To solve it, the model is coded in LINGO software to specify the best assignment of the trucks to the doors.
Keywords: Cross-docking, truck-to-door assignment, supply chain, quadratic programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1738733 A Deterministic Dynamic Programming Approach for Optimization Problem with Quadratic Objective Function and Linear Constraints
Authors: S. Kavitha, Nirmala P. Ratchagar
Abstract:
This paper presents the novel deterministic dynamic programming approach for solving optimization problem with quadratic objective function with linear equality and inequality constraints. The proposed method employs backward recursion in which computations proceeds from last stage to first stage in a multi-stage decision problem. A generalized recursive equation which gives the exact solution of an optimization problem is derived in this paper. The method is purely analytical and avoids the usage of initial solution. The feasibility of the proposed method is demonstrated with a practical example. The numerical results show that the proposed method provides global optimum solution with negligible computation time.
Keywords: Backward recursion, Dynamic programming, Multi-stage decision problem, Quadratic objective function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3588732 Application of Hermite-Rodriguez Functions to Pulse Shaping Analog Filter Design
Authors: Mohd Amaluddin Yusoff
Abstract:
In this paper, we consider the design of pulse shaping filter using orthogonal Hermite-Rodriguez basis functions. The pulse shaping filter design problem has been formulated and solved as a quadratic programming problem with linear inequality constraints. Compared with the existing approaches reported in the literature, the use of Hermite-Rodriguez functions offers an effective alternative to solve the constrained filter synthesis problem. This is demonstrated through a numerical example which is concerned with the design of an equalization filter for a digital transmission channel.Keywords: channel equalization filter, Hermite-Rodriguez, pulseshaping filter, quadratic programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1947731 Evolutionary Algorithm Based Centralized Congestion Management for Multilateral Transactions
Authors: T. Mathumathi, S. Ganesh, R. Gunabalan
Abstract:
This work presents an approach for AC load flow based centralized model for congestion management in the forward markets. In this model, transaction maximizes its profit under the limits of transmission line capacities allocated by Independent System Operator (ISO). The voltage and reactive power impact of the system are also incorporated in this model. Genetic algorithm is used to solve centralized congestion management problem for multilateral transactions. Results obtained for centralized model using genetic algorithm is compared with Sequential Quadratic Programming (SQP) technique. The statistical performances of various algorithms such as best, worst, mean and standard deviations of social welfare are given. Simulation results clearly demonstrate the better performance of genetic algorithm over SQP.
Keywords: Congestion management, Genetic algorithm, Sequential quadratic programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1762730 Improvement over DV-Hop Localization Algorithm for Wireless Sensor Networks
Authors: Shrawan Kumar, D. K. Lobiyal
Abstract:
In this paper, we propose improved versions of DVHop algorithm as QDV-Hop algorithm and UDV-Hop algorithm for better localization without the need for additional range measurement hardware. The proposed algorithm focuses on third step of DV-Hop, first error terms from estimated distances between unknown node and anchor nodes is separated and then minimized. In the QDV-Hop algorithm, quadratic programming is used to minimize the error to obtain better localization. However, quadratic programming requires a special optimization tool box that increases computational complexity. On the other hand, UDV-Hop algorithm achieves localization accuracy similar to that of QDV-Hop by solving unconstrained optimization problem that results in solving a system of linear equations without much increase in computational complexity. Simulation results show that the performance of our proposed schemes (QDV-Hop and UDV-Hop) is superior to DV-Hop and DV-Hop based algorithms in all considered scenarios.Keywords: Wireless sensor networks, Error term, DV-Hop algorithm, Localization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2266729 Preliminary Study on Fixture Layout Optimization Using Element Strain Energy
Authors: Zeshan Ahmad, Matteo Zoppi, Rezia Molfino
Abstract:
The objective of positioning the fixture elements in the fixture is to make the workpiece stiff, so that geometric errors in the manufacturing process can be reduced. Most of the work for optimal fixture layout used the minimization of the sum of the nodal deflection normal to the surface as objective function. All deflections in other direction have been neglected. We propose a new method for fixture layout optimization in this paper, which uses the element strain energy. The deformations in all the directions have been considered in this way. The objective function in this method is to minimize the sum of square of element strain energy. Strain energy and stiffness are inversely proportional to each other. The optimization problem is solved by the sequential quadratic programming method. Three different kinds of case studies are presented, and results are compared with the method using nodal deflections as objective function to verify the propose method.Keywords: Fixture layout, optimization, strain energy, quadratic programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1554728 Application of Computational Intelligence Techniques for Economic Load Dispatch
Authors: S.C. Swain, S. Panda, A.K. Mohanty, C. Ardil
Abstract:
This paper presents the applications of computational intelligence techniques to economic load dispatch problems. The fuel cost equation of a thermal plant is generally expressed as continuous quadratic equation. In real situations the fuel cost equations can be discontinuous. In view of the above, both continuous and discontinuous fuel cost equations are considered in the present paper. First, genetic algorithm optimization technique is applied to a 6- generator 26-bus test system having continuous fuel cost equations. Results are compared to conventional quadratic programming method to show the superiority of the proposed computational intelligence technique. Further, a 10-generator system each with three fuel options distributed in three areas is considered and particle swarm optimization algorithm is employed to minimize the cost of generation. To show the superiority of the proposed approach, the results are compared with other published methods.
Keywords: Economic Load Dispatch, Continuous Fuel Cost, Quadratic Programming, Real-Coded Genetic Algorithm, Discontinuous Fuel Cost, Particle Swarm Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2274727 Ride Control of Passenger Cars with Semi-active Suspension System Using a Linear Quadratic Regulator and Hybrid Optimization Algorithm
Authors: Ali Fellah Jahromi, Wen Fang Xie, Rama B. Bhat
Abstract:
A semi-active control strategy for suspension systems of passenger cars is presented employing Magnetorheological (MR) dampers. The vehicle is modeled with seven DOFs including the, roll pitch and bounce of car body, and the vertical motion of the four tires. In order to design an optimal controller based on the actuator constraints, a Linear-Quadratic Regulator (LQR) is designed. The design procedure of the LQR consists of selecting two weighting matrices to minimize the energy of the control system. This paper presents a hybrid optimization procedure which is a combination of gradient-based and evolutionary algorithms to choose the weighting matrices with regards to the actuator constraint. The optimization algorithm is defined based on maximum comfort and actuator constraints. It is noted that utilizing the present control algorithm may significantly reduce the vibration response of the passenger car, thus, providing a comfortable ride.Keywords: Full car model, Linear Quadratic Regulator, Sequential Quadratic Programming, Genetic Algorithm
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2941726 A Parametric Study of an Inverse Electrostatics Problem (IESP) Using Simulated Annealing, Hooke & Jeeves and Sequential Quadratic Programming in Conjunction with Finite Element and Boundary Element Methods
Authors: Ioannis N. Koukoulis, Clio G. Vossou, Christopher G. Provatidis
Abstract:
The aim of the current work is to present a comparison among three popular optimization methods in the inverse elastostatics problem (IESP) of flaw detection within a solid. In more details, the performance of a simulated annealing, a Hooke & Jeeves and a sequential quadratic programming algorithm was studied in the test case of one circular flaw in a plate solved by both the boundary element (BEM) and the finite element method (FEM). The proposed optimization methods use a cost function that utilizes the displacements of the static response. The methods were ranked according to the required number of iterations to converge and to their ability to locate the global optimum. Hence, a clear impression regarding the performance of the aforementioned algorithms in flaw identification problems was obtained. Furthermore, the coupling of BEM or FEM with these optimization methods was investigated in order to track differences in their performance.
Keywords: Elastostatic, inverse problem, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1876725 Optimal Design of the Power Generation Network in California: Moving towards 100% Renewable Electricity by 2045
Authors: Wennan Long, Yuhao Nie, Yunan Li, Adam Brandt
Abstract:
To fight against climate change, California government issued the Senate Bill No. 100 (SB-100) in 2018 September, which aims at achieving a target of 100% renewable electricity by the end of 2045. A capacity expansion problem is solved in this case study using a binary quadratic programming model. The optimal locations and capacities of the potential renewable power plants (i.e., solar, wind, biomass, geothermal and hydropower), the phase-out schedule of existing fossil-based (nature gas) power plants and the transmission of electricity across the entire network are determined with the minimal total annualized cost measured by net present value (NPV). The results show that the renewable electricity contribution could increase to 85.9% by 2030 and reach 100% by 2035. Fossil-based power plants will be totally phased out around 2035 and solar and wind will finally become the most dominant renewable energy resource in California electricity mix.
Keywords: 100% renewable electricity, California, capacity expansion, binary quadratic programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 732724 Method of Parameter Calibration for Error Term in Stochastic User Equilibrium Traffic Assignment Model
Authors: Xiang Zhang, David Rey, S. Travis Waller
Abstract:
Stochastic User Equilibrium (SUE) model is a widely used traffic assignment model in transportation planning, which is regarded more advanced than Deterministic User Equilibrium (DUE) model. However, a problem exists that the performance of the SUE model depends on its error term parameter. The objective of this paper is to propose a systematic method of determining the appropriate error term parameter value for the SUE model. First, the significance of the parameter is explored through a numerical example. Second, the parameter calibration method is developed based on the Logit-based route choice model. The calibration process is realized through multiple nonlinear regression, using sequential quadratic programming combined with least square method. Finally, case analysis is conducted to demonstrate the application of the calibration process and validate the better performance of the SUE model calibrated by the proposed method compared to the SUE models under other parameter values and the DUE model.
Keywords: Parameter calibration, sequential quadratic programming, Stochastic User Equilibrium, traffic assignment, transportation planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2130723 Positive Definite Quadratic Forms, Elliptic Curves and Cubic Congruences
Authors: Ahmet Tekcan
Abstract:
Let F(x, y) = ax2 + bxy + cy2 be a positive definite binary quadratic form with discriminant Δ whose base points lie on the line x = -1/m for an integer m ≥ 2, let p be a prime number and let Fp be a finite field. Let EF : y2 = ax3 + bx2 + cx be an elliptic curve over Fp and let CF : ax3 + bx2 + cx ≡ 0(mod p) be the cubic congruence corresponding to F. In this work we consider some properties of positive definite quadratic forms, elliptic curves and cubic congruences.Keywords: Binary quadratic form, elliptic curves, cubic congruence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1528722 Robust Quadratic Stabilization of Uncertain Impulsive Switched Systems
Authors: Xiu Liu, Shouming Zhong, Xiuyong Ding
Abstract:
This paper focuses on the quadratic stabilization problem for a class of uncertain impulsive switched systems. The uncertainty is assumed to be norm-bounded and enters both the state and the input matrices. Based on the Lyapunov methods, some results on robust stabilization and quadratic stabilization for the impulsive switched system are obtained. A stabilizing state feedback control law realizing the robust stabilization of the closed-loop system is constructed.
Keywords: Impulsive systems, switched systems, quadratic stabilization, robust stabilization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1537721 The Impact of Transaction Costs on Rebalancing an Investment Portfolio in Portfolio Optimization
Authors: B. Marasović, S. Pivac, S. V. Vukasović
Abstract:
Constructing a portfolio of investments is one of the most significant financial decisions facing individuals and institutions. In accordance with the modern portfolio theory maximization of return at minimal risk should be the investment goal of any successful investor. In addition, the costs incurred when setting up a new portfolio or rebalancing an existing portfolio must be included in any realistic analysis. In this paper rebalancing an investment portfolio in the presence of transaction costs on the Croatian capital market is analyzed. The model applied in the paper is an extension of the standard portfolio mean-variance optimization model in which transaction costs are incurred to rebalance an investment portfolio. This model allows different costs for different securities, and different costs for buying and selling. In order to find efficient portfolio, using this model, first, the solution of quadratic programming problem of similar size to the Markowitz model, and then the solution of a linear programming problem have to be found. Furthermore, in the paper the impact of transaction costs on the efficient frontier is investigated. Moreover, it is shown that global minimum variance portfolio on the efficient frontier always has the same level of the risk regardless of the amount of transaction costs. Although efficient frontier position depends of both transaction costs amount and initial portfolio it can be concluded that extreme right portfolio on the efficient frontier always contains only one stock with the highest expected return and the highest risk.
Keywords: Croatian capital market, Fractional quadratic programming, Markowitz model, Portfolio optimization, Transaction costs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2947720 Simulation and 40 Years of Object-Oriented Programming
Authors: Eugene Kindler
Abstract:
2007 is a jubilee year: in 1967, programming language SIMULA 67 was presented, which contained all aspects of what was later called object-oriented programming. The present paper contains a description of the development unto the objectoriented programming, the role of simulation in this development and other tools that appeared in SIMULA 67 and that are nowadays called super-object-oriented programming.
Keywords: Simulation, super-object-oriented programming, object-oriented programming, SIMULA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1317719 Solving the Quadratic Assignment Problems by a Genetic Algorithm with a New Replacement Strategy
Authors: Yongzhong Wu, Ping Ji
Abstract:
This paper proposes a genetic algorithm based on a new replacement strategy to solve the quadratic assignment problems, which are NP-hard. The new replacement strategy aims to improve the performance of the genetic algorithm through well balancing the convergence of the searching process and the diversity of the population. In order to test the performance of the algorithm, the instances in QAPLIB, a quadratic assignment problem library, are tried and the results are compared with those reported in the literature. The performance of the genetic algorithm is promising. The significance is that this genetic algorithm is generic. It does not rely on problem-specific genetic operators, and may be easily applied to various types of combinatorial problems.Keywords: Quadratic assignment problem, Genetic algorithm, Replacement strategy, QAPLIB.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2749718 A Common Automated Programming Platform for Knowledge Based Software Engineering
Authors: Ivan Stanev, Maria Koleva
Abstract:
Common Platform for Automated Programming (CPAP) is defined in details. Two versions of CPAP are described: Cloud based (including set of components for classic programming, and set of components for combined programming); and Knowledge Based Automated Software Engineering (KBASE) based (including set of components for automated programming, and set of components for ontology programming). Four KBASE products (Module for Automated Programming of Robots, Intelligent Product Manual, Intelligent Document Display, and Intelligent Form Generator) are analyzed and CPAP contributions to automated programming are presented.Keywords: Automated Programming, Cloud Computing, Knowledge Based Software Engineering, Service Oriented Architecture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1890717 Neighbors of Indefinite Binary Quadratic Forms
Authors: Ahmet Tekcan
Abstract:
In this paper, we derive some algebraic identities on right and left neighbors R(F) and L(F) of an indefinite binary quadratic form F = F(x, y) = ax2 + bxy + cy2 of discriminant Δ = b2 -4ac. We prove that the proper cycle of F can be given by using its consecutive left neighbors. Also we construct a connection between right and left neighbors of F.Keywords: Quadratic form, indefinite form, cycle, proper cycle, right neighbor, left neighbor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1400716 Orthogonal Functions Approach to LQG Control
Authors: B. M. Mohan, Sanjeeb Kumar Kar
Abstract:
In this paper a unified approach via block-pulse functions (BPFs) or shifted Legendre polynomials (SLPs) is presented to solve the linear-quadratic-Gaussian (LQG) control problem. Also a recursive algorithm is proposed to solve the above problem via BPFs. By using the elegant operational properties of orthogonal functions (BPFs or SLPs) these computationally attractive algorithms are developed. To demonstrate the validity of the proposed approaches a numerical example is included.
Keywords: Linear quadratic Gaussian control, linear quadratic estimator, linear quadratic regulator, time-invariant systems, orthogonal functions, block-pulse functions, shifted legendre polynomials.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1860715 Programming Aid Tool for Detecting Common Mistakes of Novice Programmers in OpenMP Code
Authors: Jae Young Park, Seung Wook Lee, Jong Tae Kim
Abstract:
OpenMP is an API for parallel programming model of shared memory multiprocessors. Novice OpenMP programmers often produce the code that compiler cannot find human errors. It was investigated how compiler coped with the common mistakes that can occur in OpenMP code. The latest version(4.4.3) of GCC is used for this research. It was found that GCC compiled the codes without any errors or warnings. In this paper the programming aid tool is presented for OpenMP programs. It can check 12 common mistakes that novice programmer can commit during the programming of OpenMP. It was demonstrated that the programming aid tool can detect the various common mistakes that GCC failed to detect.
Keywords: Parallel programming, OpenMP, programming aid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1553714 Enhanced Particle Swarm Optimization Approach for Solving the Non-Convex Optimal Power Flow
Authors: M. R. AlRashidi, M. F. AlHajri, M. E. El-Hawary
Abstract:
An enhanced particle swarm optimization algorithm (PSO) is presented in this work to solve the non-convex OPF problem that has both discrete and continuous optimization variables. The objective functions considered are the conventional quadratic function and the augmented quadratic function. The latter model presents non-differentiable and non-convex regions that challenge most gradient-based optimization algorithms. The optimization variables to be optimized are the generator real power outputs and voltage magnitudes, discrete transformer tap settings, and discrete reactive power injections due to capacitor banks. The set of equality constraints taken into account are the power flow equations while the inequality ones are the limits of the real and reactive power of the generators, voltage magnitude at each bus, transformer tap settings, and capacitor banks reactive power injections. The proposed algorithm combines PSO with Newton-Raphson algorithm to minimize the fuel cost function. The IEEE 30-bus system with six generating units is used to test the proposed algorithm. Several cases were investigated to test and validate the consistency of detecting optimal or near optimal solution for each objective. Results are compared to solutions obtained using sequential quadratic programming and Genetic Algorithms.Keywords: Particle Swarm Optimization, Optimal Power Flow, Economic Dispatch.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2368713 Quadratic Pulse Inversion Ultrasonic Imaging(QPI): A Two-Step Procedure for Optimization of Contrast Sensitivity and Specificity
Authors: Mamoun F. Al-Mistarihi
Abstract:
We have previously introduced an ultrasonic imaging approach that combines harmonic-sensitive pulse sequences with a post-beamforming quadratic kernel derived from a second-order Volterra filter (SOVF). This approach is designed to produce images with high sensitivity to nonlinear oscillations from microbubble ultrasound contrast agents (UCA) while maintaining high levels of noise rejection. In this paper, a two-step algorithm for computing the coefficients of the quadratic kernel leading to reduction of tissue component introduced by motion, maximizing the noise rejection and increases the specificity while optimizing the sensitivity to the UCA is presented. In the first step, quadratic kernels from individual singular modes of the PI data matrix are compared in terms of their ability of maximize the contrast to tissue ratio (CTR). In the second step, quadratic kernels resulting in the highest CTR values are convolved. The imaging results indicate that a signal processing approach to this clinical challenge is feasible.Keywords: Volterra Filter, Pulse Inversion, Ultrasonic Imaging, Contrast Agent.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1590712 Adaptive Dynamic Time Warping for Variable Structure Pattern Recognition
Authors: S. V. Yendiyarov
Abstract:
Pattern discovery from time series is of fundamental importance. Particularly, when information about the structure of a pattern is not complete, an algorithm to discover specific patterns or shapes automatically from the time series data is necessary. The dynamic time warping is a technique that allows local flexibility in aligning time series. Because of this, it is widely used in many fields such as science, medicine, industry, finance and others. However, a major problem of the dynamic time warping is that it is not able to work with structural changes of a pattern. This problem arises when the structure is influenced by noise, which is a common thing in practice for almost every application. This paper addresses this problem by means of developing a novel technique called adaptive dynamic time warping.
Keywords: Pattern recognition, optimal control, quadratic programming, dynamic programming, dynamic time warping, sintering control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2043