Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1
Search results for: QAPLIB.
1 Solving the Quadratic Assignment Problems by a Genetic Algorithm with a New Replacement Strategy
Authors: Yongzhong Wu, Ping Ji
Abstract:
This paper proposes a genetic algorithm based on a new replacement strategy to solve the quadratic assignment problems, which are NP-hard. The new replacement strategy aims to improve the performance of the genetic algorithm through well balancing the convergence of the searching process and the diversity of the population. In order to test the performance of the algorithm, the instances in QAPLIB, a quadratic assignment problem library, are tried and the results are compared with those reported in the literature. The performance of the genetic algorithm is promising. The significance is that this genetic algorithm is generic. It does not rely on problem-specific genetic operators, and may be easily applied to various types of combinatorial problems.Keywords: Quadratic assignment problem, Genetic algorithm, Replacement strategy, QAPLIB.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2745