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Abstract—This paper focuses on the quadratic stabilization prob-
lem for a class of uncertain impulsive switched systems. The uncer-
tainty is assumed to be norm-bounded and enters both the state and
the input matrices. Based on the Lyapunov methods, some results
on robust stabilization and quadratic stabilization for the impulsive
switched system are obtained. A stabilizing state feedback control
law realizing the robust stabilization of the closed-loop system is
constructed.

Keywords—Impulsive systems; Switched systems; Quadratic sta-
bilization; Robust stabilization.

I. INTRODUCTION

S
WITCHED systems are an important class of hybrid
dynamical systems, which are composed of a family of

continuous-time or discrete-time subsystems and a rule or-
chestrating the switch among them. These systems arise when
modeling dynamical systems which exhibit switching among
several subsystems due to jumping parameters or changing
environmental factors. Some examples of switched control
systems can be found (see,[1], [2]). Another category of hybrid
systems is the system with impulse effects, namely, impulsive
systems, which arose in scientific practice in 1950s in order to
describe certain evolutionary processes and dynamical control
systems that are subjected to sudden and sharp changes of
states. Due to the existence of the states jump, these new
class of hybrid systems cannot be well described by using
pure continuous or pure discrete models [3], [4], [8].

In fact, many practical systems in physics, biology, engi-
neering, and information science exhibit impulsive dynamical
behaviors due to abrupt changes at certain instants during the
dynamical process [15]. Although hybrid and switched system
is an important model for dealing with many complex physical
processes, it does not cover above dynamical process when the
impulse effects appear at the switching points because state
jump usually occurs under such circumstances. In recent years,
the study of hybrid and switched control systems with impulse
effects called impulsive switched systems provides many ef-
fective approaches for controlling highly non-linear complex
dynamical systems and systems with large uncertainties and
unknown parameters [15], [7].

Robust stability analysis and control of dynamic systems
with parameter uncertainty are problems of considerable theo-
retical and practical significance that have been attracting the
interest of a number of investigators for several decades. The
main focus has been on stabilization for linear systems [17],
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nonlinear systems [11], and systems without delay as well
as with delays [11], [17], [6] and so on. Recently, interest
has been extended to the stabilization of impulsive switched
systems with norm-bounded time-varying uncertainty. A feed-
back control law realizing the closed loop impulsive switched
system is asymptotically stable and robustly stable with defi-
nite attenuance and H∞ performance is given in [12]. Among
various techniques for robust stabilization (e.g., [5]), the so-
called quadratic stabilization theory (see, [18], [16]) seems
to be most effective in dealing with time-varying parameter
uncertainty see, for example, [14].

In this paper, we consider the quadratic stabilization for
the case in which norm bounded uncertainty appears both the
state and input matrices. The problem is to design a feedback
control law such that the closed loop impulsive switched
system is quadratically stable and robustly stable. Based on the
Riccati equation approach, a new result on the robust quadratic
stabilization is obtained.

II. PRELIMINARIES

Throughout, R denotes the set of all real numbers. R
n

stands for the n−dimensional real vector space and R
n×m

is the space of n × m matrices with real entries. For matrix
A in R

n×n, A > 0 (< 0) means that A is a symmetrical
positive (negative) definite matrix and A ≥ 0 (≤ 0) means that
A is a symmetrical positive (negative) semi-definite matrix.
We use λmin(A) and λmax(A) to denote the smallest and
largest eigenvalue of A, respectively. N presents the set of
all nonnegative integers and ‖ · ‖ denotes the Euclidean norm
of vectors.
Consider the uncertain impulsive switched system given by

ẋ(t) = Aσ(t)(t)x(t) + Āσ(t)(t)u(t), t 6= tk,

∆x(t) = Dkx(t) + gk(t, x(t)), t = tk,

x(t0) = x0,

(1)

where x(t) ∈ R
n is the state vector, u(t) ∈ R

m is the control
input, σ(t) : [0,∞) → M is the switching signal mapping
time to some finite index set M and a piecewise-constant
continuous-from-the-left function taking values in M, σ(t) =
ik ∈ M for t ∈ [tk, tk+1), M = {1, 2, · · · ,m}, k ∈ N. Under
the control of a switching signal σ, coupling with the impulsive
effects, system (1) enters from the ik−1 subsystem to the ik
subsystem at the point t = tk, tk is impulsive switching time
point satisfying 0 = t0 < t1 < · · · < tk < · · · < t∞ = ∞.
∆x(tk) = x(t+k ) − x(t−k ), x(t+k ) = limh→0+ x(tk + h) and
x(tk) = x(t−k ) = limh→0+ x(tk − h) mean that the solution
of the system (1) is left continuous.

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences

 Vol:5, No:12, 2011 

2065International Scholarly and Scientific Research & Innovation 5(12) 2011 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 M
at

he
m

at
ic

al
 a

nd
 C

om
pu

ta
tio

na
l S

ci
en

ce
s 

V
ol

:5
, N

o:
12

, 2
01

1 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/5
09

4.
pd

f



For each k, Dk ∈ R
n×n is known matrix. Aik

(t) and Āik
(t)

are assumed to be uncertain and satisfy[
Aik

(t) Āik
(t)

]
=

[
Aik

Āik

]
+ Eik

Fik
(t)

[
Hik

H̄ik

]
(2)

with Aik
, Āik

, Eik
, Hik

, H̄ik
∈ R

n×n are known real
matrices and Fik

(t) ∈ R
p×q is unknown time-varying matrix

satisfying ‖Fik
(t)‖ ≤ 1. Besides, the elements of Fik

(t)
are lebesgue measurable. Impulsive perturbation gk(t, x(t)) :
[t0,∞) × R

n → R
n satisfies

gT
k (t, x(t))gk(t, x(t)) ≤ xT (t)(I + Dk)T (I + Dk)x(t). (3)

Also, gk(t, 0) ≡ 0 for all t ∈ [t0,∞).
Throughout this paper we shall use the following concept of

quadratic stability and quadratic stabilization for system (1).
Definition 1: ([14]) The system (1)with u(t) = 0 is said to

be quadratically stable if there exists a positive definite matrix
Pik

∈ R
n×n such that, for any admissible uncertainty satisfy-

ing (2), there exists a Lyapunov function V (t) = xT (t)Pik
x(t)

such that V (t) decreases along every nonzero trajectory of
system (1).

Definition 2: The system (1) is said to be quadratically
stabilizable via linear state feedback if there exists a state
feedback control u(t) = −Kik

x(t) such that the closed-loop
system is quadratically stable.

Next, we present some lemmas and assumptions that are
useful in deriving the principal contribution of this paper.

Lemma 1: ([9]) Let E, F and H be real matrices of appro-
priate dimensions with ‖F‖ ≤ 1. Then for any scalars ε > 0,

EFH + HT FT ET ≤ ε−1EET + εHT H.

Lemma 2: ([10]) If the algebraic Riccati equation GT S +
SG−SWS +Q = 0, W > 0, has a positive definite solution
S, then for any 0 < W1 ≤ W and Q1 ≥ Q, the equation
GT S1 + S1G − S1W1S1 + Q1 = 0 has a positive definite
solution S1 ≥ S.

Lemma 3: ([12]) Let P ∈ R
n×n be a given positive definite

matrix and U ∈ R
n×n be a given symmetric matrix. Then

λmin(P−1U)Φ(t) ≤ xT (t)Ux(t) ≤ λmax(P
−1U)Φ(t),

where Φ(t) = xT (t)Px(t), x(t) ∈ R
n.

Lemma 4: ([9]) Given any x ∈ R
n, max{(xT PEFHx)2 :

FT F ≤ I} = xT PEET PxxT HT Hx.
Lemma 5: ([13]) Given n × n matrices X ≥ 0, Y < 0,

and Z ≥ 0 such that (ξT Y ξ)2 − 4(ξT XξξT Zξ) > 0 for all
ξ ∈ R

n with ξ 6= 0. Then there exists a constant δ > 0 such
that δ2X + δY + Z < 0.

Lemma 6: (Finsler’s Theorem) Let X be a given symmetric
matrix and Z be a matrix such that ξT Xξ < 0 for all nonzero
vectors ξ such that Zξ = 0. Then there exists a constant ϑ > 0
such that X − ϑZT Z < 0.

Assumption 1: Suppose rank(H̄ik
) = j ≤ q. Define Σik

∈
R

j×m such that rank(Σik
) = j and H̄T

ik
H̄ik

= ΣT
ik

Σik
.

Let Φik
∈ R

(m−j)×m be chosen such that Φik
ΣT

ik
= 0

and Φik
ΦT

ik
= I (Φik

= 0 if j = m). Let Ξik
=

ΣT
ik

(Σik
ΣT

ik
)−2Σik

. (Clearly, Ξik
= ΞT

ik
).

In fact, if H̄ik
= 0, then Σik

= 0, Φik
= I , and Ξik

= 0.
Also, if rank(H̄ik

) = m, then Σik
is square and nonsingular,

Ξik
= (ΣT

ik
Σik

)−1 = (H̄T
ik

H̄ik
)−1 and Φik

= 0. Besides,
since Φik

ΣT
ik

= 0, then Φik
H̄T

ik
= 0.

III. MAIN RESULTS

In the sequel we shall present a sufficient condition for
the quadratic stabilization of the uncertain impulsive switched
system (1) via linear non-dynamic state feedback.

Theorem 1: The system (1) is quadratically stabilizable via
linear control if there exists positive scalars ε and λk, positive
definite matrix Pik

such that the following conditions are
satisfied: (i)

(i) 0 < λk < 1, λk = (2 + 2
λmax(Pik

)

λmin(Pik
) )λmax[P

−1
ik−1

(I +

Dk)T Pik
(I + Dk)].

(ii)

Ωik
=

[
Ω11ik

Pik

∗ −Ω22ik

]
< 0,

where
Ω11ik

= (Aik
− Āik

Ξik
H̄T

ik
Hik

)T Pik
+ Pik

(Aik
−

Āik
Ξik

H̄T
ik

Hik
) + HT

ik
(I − H̄ik

ΞH̄T
ik

)Hik
, Ω−1

22ik
=

Eik
ET

ik
− Āik

Ξik
ĀT

ik
− 1

ε
Āik

ΦT
ik

Φik
Āik

.
(iii) A stabilizing state feedback control law is given by

u(t) = −

[(
1

2ε
ΦT

ik
Φik

+ Ξik

)
ĀT

ik
Pik

+ Ξik
H̄T

ik
Hik

]
x(t).

Proof: Let the control law u(t) be defined as in ((iii).
We now show that system (1) with control law in ((iii) is
quadratically stabilizale with the Lyapunov function

V (t) = xT (t)Pik
x(t).

Firstly, at the impulsive switching time point t = tk,
noticing that ∆x(tk) = x(t+k ) − x(t−k ), we have

V (t+k )

=xT (t+k )Pik
x(t+k )

=(∆x(tk) + x(t−k ))T Pik
(∆x(tk) + x(t−k ))

=[(I + Dk)x(tk) + gk(tk, x(tk))]T Pik

× [(I + Dk)x(tk) + gk(tk, x(tk))].

By Lemma 1 and Lemma 3, we further derive that

V (t+k )

≤2xT (I + Dk)T Pik
(I + Dk)x(tk)

+ 2gk(tk, x(tk))T Pik
gk(tk, x(tk))

≤(2 + 2
λmax(Pik

)

λmin(Pik
)
)xT (tk)(I + Dk)T Pik

(I + Dk)x(tk)

≤(2 + 2
λmax(Pik

)

λmin(Pik
)
)λmax[P

−1
ik−1

(I + Dk)T Pik
(I + Dk)]

× xT (tk)Pik−1
x(tk)

=λkV (t−k ).
(4)

Since 0 < λk < 1, then V (t) is non-increasing at all
impulsive switching time points tk, k ∈ N.

Secondly, we claim that the Lyapunov functional V (t) is
decreasing on each (tk, tk+1].

In fact, for t ∈ (tk, tk+1), consider the upper right-hand
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derivative of V (t) along the trajectory of system (1). Accord-
ing to the (2) and ((iii), it follows that

D+V (t) =xT (t)
[
(Aik

+ Eik
Fik

(t)Hik
)
T

Pik

+Pik
(Aik

+ Eik
Fik

(t)Hik
)]x(t)−

2xT (t)Pik
(Āik

+ Eik
Fik

(t)H̄ik
)

×

[(
1

2ε
ΦT

ik
Φik

+ Ξik

)
ĀT

ik
Pik

+ Ξik
H̄T

ik
Hik

]
x(t)

Noticing that Φik
H̄T

ik
= 0 and applying Lemma 1, one can

obtain

D+V (t)

=xT (t)(AT
ik

Pik
+ Pik

Aik
−

1

ε
Pik

Āik
ΦT

ik
Φik

ĀT
ik

Pik

− 2Pik
Āik

Ξik
ĀT

ik
Pik

− Pik
Āik

Ξik
H̄T

ik
Hik

− HT
ik

H̄ik
Ξik

ĀT
ik

Pik
)x(t) + 2xT (t)Pik

Eik
Fik

(t)

× [Hik
− H̄ik

Ξik
(ĀT

ik
Pik

+ H̄T
ik

Hik
)]x(t)

≤xT (t)(AT
ik

Pik
+ Pik

Aik
−

1

ε
Pik

Āik
ΦT

ik
Φik

ĀT
ik

Pik

− 2Pik
Āik

Ξik
ĀT

ik
Pik

− Pik
Āik

Ξik
H̄T

ik
Hik

− HT
ik

H̄ik
Ξik

ĀT
ik

Pik
)x(t) + xT (t)Pik

Eik
ET

ik
Pik

x(t)

+ xT (t)[Hik
− H̄ik

Ξik
(ĀT

ik
Pik

+ H̄T
ik

Hik
)]T

× [Hik
− H̄ik

Ξik
(ĀT

ik
Pik

+ H̄T
ik

Hik
)]x(t).

(5)

Substituting Ξik
= ΣT

ik
(Σik

ΣT
ik

)−2Σik
and H̄T

ik
H̄ik

= ΣT
ik

Σik

defined in Assumption 1 into (5), we get

D+V (t)

≤xT (t)(AT
ik

Pik
+ Pik

Aik
−

1

ε
Pik

Āik
ΦT

ik
Φik

ĀT
ik

Pik

− Pik
Āik

Ξik
ĀT

ik
Pik

− Pik
Āik

Ξik
H̄T

ik
Hik

− HT
ik

H̄ik
Ξik

ĀT
ik

Pik
+ Pik

Eik
ET

ik
Pik

+ HT
ik

Hik

− HT
ik

H̄ik
Ξik

H̄T
ik

Hik
)x(t).

For all x(t) 6= 0, t ∈ (tk, tk+1), taking ((ii) into account,
yields

D+V (t) < 0. (6)

Moreover, since x(tk+1) = x(t−k+1), then V (t) is decreasing
on (tk, tk+1] as the claim.

From (4) and (6), we conclude that system (1) via the linear
control law ((iii) is quadratically stabilizable.
Next, we suppose (1) is quadratically stabilizable via linear
state feedback u(t) = −Kik

x(t), Kik
∈ R

m×n. It follows
from Definition 1 that there exists a positive definite symmetric
matrix Sik

such that

[Aik
+ Eik

Fik
(t)Hik

− (Āik
+ Eik

Fik
(t)H̄ik

)Kik
]T Sik

+ Sik
[Aik

+ Eik
Fik

(t)Hik
− (Āik

+ Eik
Fik

(t)H̄ik
)Kik

] < 0.

The above inequality can be rewritten as

(Aik
− Āik

Kik
)T Sik

+ Sik
(Aik

− Āik
Kik

)

< Sik
Eik

Fik
(t)(H̄ik

Kik
− Hik

) − (Hik
− H̄ik

Kik
)T FT

ik
ET

ik
Sik

.

Thus, for all x(t) ∈ R
n, x 6= 0,

xT (t)[(Aik
− Āik

Kik
)T Sik

+ Sik
(Aik

− Āik
Kik

)]x(t)

< −2xT (t)Sik
Eik

Fik
(t)(Hik

− H̄ik
Kik

)x(t).

Clearly,

xT (t)[(Aik
− Āik

Kik
)T Sik

+ Sik
(Aik

− Āik
Kik

)]x(t)

< −2max[xT (t)Sik
Eik

Fik
(t)(Hik

− H̄ik
Kik

)x(t)] ≤ 0.

Using Lemma 4, we see that

{xT (t)[(Aik
− Āik

Kik
)T Sik

+ Sik
(Aik

− Āik
Kik

)]x(t)}2

>4xT (t)Sik
Eik

ET
ik

Sik
x(t)xT (t)(Hik

− H̄ik
Kik

)T

× (Hik
− H̄ik

Kik
)x(t).

By Lemma 5 then yields that there exists a constant δ > 0
such that

δ2Sik
Eik

ET
ik

Sik
+ δ[(Aik

− Āik
Kik

)T Sik

+ Sik
(Aik

− Āik
Kik

)]

+ (Hik
− H̄ik

Kik
)T (Hik

− H̄ik
Kik

) < 0.

(7)

We now define Pik
= δSik

, then (7) becomes

AT
ik

Pik
+ Pik

Aik
+ HT

ik
Hik

+ Pik
Eik

ET
ik

Pik

− KT
ik

(H̄T
ik

Hik
+ ĀT

ik
Pik

) − (H̄T
ik

Hik
+ ĀT

ik
Pik

)T Kik

+ KT
ik

H̄T
ik

H̄ik
Kik

< 0.

(8)

Set Tik
= [ΣT

ik
ΦT

ik
] ∈ R

m×m and L = [LT
1 LT

2 ]T = T−1
ik

Kik
,

then T is nonsingular and Kik
= Tik

L. Besides, if H̄ik
= 0,

then Tik
= Φik

. It follows that

KT
ik

H̄T
ik

H̄ik
Kik

− KT
ik

(H̄T
ik

Hik
+ ĀT

ik
Pik

)

− (H̄T
ik

Hik
+ ĀT

ik
Pik

)T Kik

=LT
1 (Σik

ΣT
ik

)2L1 − LT
1 Σik

(H̄T
ik

Hik
+ ĀT

ik
Pik

)

− (HT
ik

H̄ik
+ Pik

Āik
)ΣT

ik
L1

− LT
2 Φik

ĀT
ik

Pik
− Pik

Āik
ΦT

ik
L2

=[(Σik
ΣT

ik
)−1Σik

(H̄T
ik

Hik
+ ĀT

ik
Pik

)

− Σik
ΣT

ik
L1]

T [(Σik
ΣT

ik
)−1Σik

(H̄T
ik

Hik

+ ĀT
ik

Pik
) − Σik

ΣT
ik

L1] − (HT
ik

H̄ik
+ Pik

Āik
)

× Ξik
(H̄T

ik
Hik

+ ĀT
ik

Pik
)

− LT
2 Φik

ĀT
ik

Pik
− Pik

Āik
ΦT

ik
L2.

(9)

Combining (8) and (9), we obtain

[(Σik
ΣT

ik
)−1Σik

(H̄T
ik

Hik
+ ĀT

ik
Pik

) − Σik
ΣT

ik
L1]

T

× [(Σik
ΣT

ik
)−1Σik

(H̄T
ik

Hik
+ ĀT

ik
Pik

) − Σik
ΣT

ik
L1]

− (HT
ik

H̄ik
+ Pik

Āik
)Ξik

(H̄T
ik

Hik
+ ĀT

ik
Pik

) − LT
2 Φik

ĀT
ik

Pik

− Pik
Āik

ΦT
ik

L2 + AT
ik

Pik
+ Pik

Aik
+ HT

ik
Hik

+ Pik
Eik

ET
ik

Pik
< 0.

For all x(t) 6= 0 such that Φik
ĀT

ik
Pik

x(t) = 0. Then

xT (t)[AT
ik

Pik
+ Pik

Aik
+ HT

ik
Hik

+ Pik
Eik

ET
ik

Pik

− (HT
ik

H̄ik
+ Pik

Āik
)Ξik

(H̄T
ik

Hik
+ ĀT

ik
Pik

)]x(t) < 0.
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Applying Lemma 6, one can derive that there exists a positive
scalar ε such that

AT
ik

Pik
+ Pik

Aik
+ HT

ik
Hik

+ Pik
Eik

ET
ik

Pik

− (HT
ik

H̄ik
+ Pik

Āik
)Ξik

(H̄T
ik

Hik

+ ĀT
ik

Pik
) −

1

ε
Pik

Āik
ΦT

ik
Φik

ĀT
ik

Pik
< 0.

That is,

(Aik
− Āik

Ξik
H̄T

ik
Hik

)T Pik
+ Pik

(Aik
− Āik

Ξik
H̄T

ik
Hik

)

+ HT
ik

(I − H̄ik
ΞH̄T

ik
)Hik

+ Pik
Eik

ET
ik

Pik

− Pik
Āik

Ξik
ĀT

ik
Pik

−
1

ε
Pik

Āik
ΦT

ik
Φik

Āik
Pik

< 0.

(10)

By Schur complement, (10) is equivalent to the condition given
by ((ii). This completes the proof of the theorem.

IV. CONCLUSIONS

In this paper, we considered a class of uncertain impulsive
switched systems. By applying Lyapunov function method,
some sufficient conditions of robust stabilization and quadratic
stabilization for such systems were established. These condi-
tions can guarantee the design of the stabilizing state feedback
control law.
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