
 

 

 

Abstract—The Wavelet-Galerkin finite element method for 
solving the one-dimensional heat equation is presented in this work. 

Two types of basis functions which are the Lagrange and multi-level 

wavelet bases are employed to derive the full form of matrix system. 

We consider both linear and quadratic bases in the Galerkin method. 

Time derivative is approximated by polynomial time basis that 

provides easily extend the order of approximation in time space. Our 

numerical results show that the rate of convergences for the linear 

Lagrange and the linear wavelet bases are the same and in order 2 

while the rate of convergences for the quadratic Lagrange and the 

quadratic wavelet bases are approximately in order 4. It also reveals 

that the wavelet basis provides an easy treatment to improve 

numerical resolutions that can be done by increasing just its desired 

levels in the multilevel construction process. 

 

Keywords—Galerkin finite element method, Heat equation , 
Lagrange basis function, Wavelet basis function.  

I. INTRODUCTION 

HE Galerkin approach is one of the very successful 

methods for finding approximate solutions from the 

partial differential equation. The main concept is using an 

appropriate basis function for the solution space of the 

governing equation, and then projecting the terms of 

approximate solution on the functional basis space. This 

process provides residual that needed to be minimized with 

respect to the functional basis. By this concept, the accuracy 

of numerical solutions depends directly on the type of basis 

function.   

In this work, we apply the Galerkin method with wavelet 

bases called the Wavelet-Galerkin method to solve 

numerically the linear one-dimensional heat equation. 

Wavelets in our consideration are compactly supported 

wavelets introduced by Chen et al. [1]. They introduced the 

multilevel augmentation method related with some wavelet 

bases  for solving certain boundary value problems. This 

method has then been applied for solving the sine-Gordon 

equation in [2] and some types of nonlinear boundary value 

problems in [3]. For solving the partial differential equations, 

the wavelet applications have been introduced by several 

authors, such as a wavelet-Galerkin method for solving 

parabolic equations [4], the singularly perturbed convection-

dominated diffusion equation [5], non-homogeneous heat and 

wave equations [6], some types of elliptic problems [7], and 

diffusion equation [8].  
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Instead of applying the Wavelet-Gelerkin method to solve 

the unsteady heat equation, we have compared the accuracy of 

numerical results when using the traditional Lagrange base. 

Rates of convergence for two types of linear and quadratic 

bases are also presented. The rates of convergence for linear 

and quadratic bases of both the Lagrange and Wavelet are in 

the same order as expected. We have revealed in this work 

that the linear wavelet  has more advantages than the linear 

Lagrange when high numerical resolutions are required. The 

accuracy by the linear wavelet is easily improved by just 

increasing wavelet levels (multilevel concept) and the 

computations for finding coefficients are performing just the 

coefficients extra included in the corresponding level. This 

concept is different from using the tradition Lagrange bases 

that it is required to calculate the whole system. 

Furthermore, we have presented the polynomial time basis 

to march numerical solutions in time. It is represented as a 

tensor product vector when the order of time polynomial basis 

is specified. By this approximation , the order of accuracy in 

time discretization is easily increased unlike the standard time 

marching scheme such as  the forward Euler or the Crank-

Nicolson method. 

The details of this presented work are organized as follows. 

In Section 2, we introduce the Galerkin finite element method. 

Time discretization with polynomial basis is presented in 

Section 3.The applications of the Lagrange and wavelet basis 

functions to solve the heat equation are shown in Sections 4 

and 5. Some numerical examples and comparisons of 

numerical results are demonstrated in Section 6. We have 

made some conclusions in Section 7.  

II. GALERKIN FINITE ELEMENT METHOD 

The time-dependent heat equation in terms of variable 

( ),T x t  is written in its one-dimensional form as ( ),T x t  

2

2
  ,

T T

t x
α

∂ ∂
=

∂ ∂    
( )0    ,x l≤ ≤                 (1) 

 

where  T is temperature and α is the thermal diffusivity 

(constant). The domain is Ω  ( )0 x l≤ ≤
 
with  boundary Γ . 

 

We give the boundary conditions as 

 

      
( ) ( )0, , 0T t T l t= =  ,                                  (2) 

and  initial conditions as 

 

                    
( ) ( )0
, 0T x T x=  .                                        (3) 
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By the weighted residual method, equation (1) can be written 

as 

                   

2

2
 d 0 ,

T T
W

t x
α

Ω

 ∂ ∂
− Ω = ∂ ∂ 

∫                     (4) 

 

where  W  is a weighting function. Using integration by 

part, yields 

 

   

                                                0 .

T T W
W d d

t x x

T
W

x

α

α

Ω Ω

Γ

∂ ∂ ∂   Ω + Ω   ∂ ∂ ∂   

∂
− =

∂

∫ ∫
    (5) 

 

Let us begin by approximating the unknown function in 

terms of the Lagrange basis as 

 

  ( ) ( ) ( )
0 1

 ,      .
p m

n n

n i k n ik

k i

T T x t N x t cθ
= =

= = ∑∑            (6) 

 

Another choice is done by assuming the unknown variable 

in terms of the wavelet basis as 

 

 

( ) ( ) ( )
dim( )

0 1 0

 ,      ,
p iM

n n

n ij k n ijk

k i j

T T x t w x t cθ
= = =

= = ∑∑ ∑   (7) 

 

where  ( ),n

nT T x t=  denotes the variable’s value at time 

nt t=
 
,   

( )iN x  is spatial basis function,  ( )ijw x  is the 

wavelet basis function,     ( )k ntθ  is the time basis function, m  

is the number of elements, M  is the number of level in multi-

level wavelet approach, and
  
p  is the number of level for time 

discretization. 

 

After setting ( )iW N x=
 
where ( )iN x  is the Lagrange 

basis function, equation (5) can be written in the matrix form 

as 

 

[ ]{ } [ ]{ } { } { }1 0  ,n n n n

L ik L ik L ik L ikC c K c M c M c++ −+ −   + + − =   

[ ] [ ]{ } 1   .n n

L L L ik L ikC K M c M c++ −+ −   + + =                             (8) 

 

Similarly, if we set ( )ijW w x= , equation (5) can be 

written in the matrix form as 

 

[ ]{ } [ ]{ } { } { }1 0 ,n n n n

ijk ijk ijk ijkC c K c M c M c++ −+ −   + + − =   

[ ] [ ]{ } 1   .n n

i j k i j kC K M c M c+ + − + −   + + =   
     (9) 

 

The coefficients in each matrix element can be obtained. 

For brevity, the results are summarized in the table shown 

below. 

 

In the case of the Lagrange basis function, the initial 

condition provides the starting unknown coefficients as 

 

               
[ ] ( )1

0 ( ) 0  .n

ikc T x θ− = ⊗                                (10) 

 

For the wavelet basis function, the initial unknown 

coefficients are obtained by 

 

               
[ ] ( )1

0 ( ) 0  ,n

ijkc T x θ− = ⊗                               (11) 

 

where ⊗  is the outer tensor operation of two matrices 

defined below. 

 

The coefficients in each matrix element can be obtained. 

Lagrange basis functions : 

 

[ ] ( )

( )
1

1

0

0

   

          

 
n

n

n

n

Ttl

i i

t

t Tl

T

i i

t

L

T
C W d N N dtdx

t t

N N dx dt
t

θ
θ

θ
θ

−

−

Ω

∂ ∂
= Ω = ⊗ ⊗

∂ ∂

∂
= ⊗

∂

 
 
 

 
 
 

∫ ∫ ∫

∫ ∫

           (12) 

 

[ ]

( )

1

1

0

0

   

          

n

n

n

n

Ttl

i i

t

tTl

Ti i

t

L

T W N N
K d dtdx

x x x x

N N
dx dt

x x

α θ θ

α θθ

α
−

−

Ω

∂ ∂ ∂ ∂
= Ω = ⊗ ⊗

∂ ∂ ∂ ∂

∂ ∂
= ⊗

∂ ∂

  
  
  

 
 
 

∫ ∫ ∫

∫ ∫
 

(13) 

 

( ) ( )( )

( )( )

0

0

      

                  

l
T

i i

l
TT

i i

LM N N dx

N N dx

θ θ

θ θ

+ +

+ +

++ =

= ⊗

  

 
 

∫

∫

                              (14) 

( ) ( )( )

( )( )

0

0

      

                  

l
T

i i

l
TT

i i

LM N N dx

N N dx

θ θ

θ θ

− +

− +

−+ =

= ⊗

  

 
 

∫

∫

                              (15) 

 

Wavelet  basis functions : 

 

[ ] ( )

( )

1

1

0

0

    

         

n

n

n

n

Ttl

ij ij

t

t Tl

T

ij ij

t

T
C W d w w dtdx

t t

w w dx dt
t

θ
θ

θ
θ

−

−

Ω

∂ ∂
= Ω = ⊗ ⊗

∂ ∂

∂
= ⊗

∂

 
 
 

 
 
 

∫ ∫ ∫

∫ ∫

            (16) 

 

[ ]

( )

1

1

0

0

    

        

n

n

n

n

Ttl

ij ij

t

T tl

ij ij T

t

w wT W
K d dtdx

x x x x

w w
dx dt

x x

α θ θ

α θθ

α
−

−

Ω

∂ ∂∂ ∂
= Ω = ⊗ ⊗

∂ ∂ ∂ ∂

∂ ∂
= ⊗

∂ ∂

  
  
  

 
  
 

∫ ∫ ∫

∫ ∫

 (17) 
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( ) ( )( )

( )( )

0

0

      

                  

l
T

ij ij

l
TT

ij ij

M w w dx

w w dx

θ θ

θ θ

++ + +

+ +

=

= ⊗

  

 
 

∫

∫

                              (18) 

 

( ) ( )( )

( )( )

0

0

      

                  

l
T

ij ij

l
TT

ij ij

M w w dx

w w dx

θ θ

θ θ

−+ − +

− +

=

= ⊗

  

 
 

∫

∫

                              (19) 

 

For example, when matrices A  and B  are given in 
dimension of 2 2× , the outer tensor operation is defined as 

follows. 

 

   

11 12 11 12

21 22 21 22

  ,      ,
a a b b

A B
a a b b

   
= =   

   
 

 

  

11 11 12 11 112 12 12 12

11 12 21 11 22 11 21 12 22 12

21 22 11 21 12 21 11 22 12 22

21 21 22 21 21 22 22 22

   .

a b a b a b a b

Ab Ab a b a b a b a b
A B

Ab Ab a b a b a b a b

a b a b a b a b

 
    ⊗ = =    
 
  

(20) 

 

Finally, we have the systems of equation in equation (8), or 

in equation (9) that can be solved to find the coefficients 

{ }n

ikc , or { }n

ijkc , and hence we know the approximate values 

nT . Note that the system of linear equation is solved 

iteratively by the Gauss-Seidel method in this work. 

 

III. TIME DISCRETIZATION 

For the discretization in time, we give the basis function in 

time as 
 

             
( ) ( )( )

1
/  ,

k

k n
t tt tθ −= ∆−                                  (21)

 
where 

 

         

2

1 1 1

0 1 2

1  .

T
p

n n n

p

t t t t t t

t t t

θ θ θ θ θ

− − −

=

− − −
=

∆ ∆ ∆

  

    
    

    
⋯

⋯

(22) 

 

We give the notations ( )
1n

tθ θ+

−

+
=  and ( )

1n
tθ θ−

−

−
=  

referring to the right and left limits at time 
1n

t −  respectively 

where
 1n n

t t t+∆ = − . 

 

The coefficients of matrices 

1

n

n

t

t

T

dt
t

θ
θ

−

∂

∂

  
  

  
∫  , ( )

1

n

n

t

T

t

dtθθ
−

 
 
 
∫  ,  

( )( )T

θ θ+ + 
 

 and ( )( )T

θ θ− + 
 

 can be calculated by 

 

1

0 1 1 1

1 2
0

2 3 1
      

1 2
0

1 2 2

   ,
n

n

t T

t

p

p

p

p p p

dt
t

θ
θ

−

+
=

+ +

 
 
 

 ∂  
   ∂   

 
 
 

∫

⋯

⋯

⋮ ⋮ ⋮ ⋯ ⋮

⋯

       (23) 

  

( )
1

1 1 1
1

2 3 +1

1 1 1 1

2 3 4 +2         

1 1 1 1

+1 +2 +3 2 +1

  ,
n

n

t

T

t

p

pdt

p p p p

tθθ
−

=

 
 
 
 
 ∆
 
 
 
 
  

∫

⋯

⋯

⋮ ⋮ ⋮ ⋯ ⋮

⋯

    (24) 

 

( )( )

1 0 0 0

0 0 0 0
      

0 0 0 0

   , 
T

θ θ+ + =

 
 

   
   

 
 

⋯

⋯

⋮ ⋮ ⋮ ⋯ ⋮

⋯

                     (25) 

 

( ) ( )

1 0 0 0

1 0 0 0
      

1 0 0 0

  .
T

θ θ− + =

 
 

   
   

 
 

⋯

⋯

⋮ ⋮ ⋮ ⋯ ⋮

⋯

                         (26) 

 

So, we can derive the full form of all matrices resulting to 

the full system that can be solved iteratively to obtain 

approximate solutions when the initial and boundary 

conditions are specified. 

 

For the discretization in time of  level 2,  

 

we set  11 .

T

n
t t

t
θ −−

=
∆

 
  

 So, we can find, 

 

1

0 1

       
0

   ,1

2

n

n

t T

t

dt
t

θ
θ

−

∂
=

∂

          
∫

                                     (27) 

 

( )
1

1

         

1

2
  ,

1 1

2 3

n

n

t

T

t

d t tθθ
−

=

 
 

∆  
 
  

∫
                                    (28) 

 

( )( )
1 0

      
0 0

   , 
T

θ θ+ + =
  
    

                                    (29) 

 

( ) ( )
1 0

      
1 0

  .
T

θ θ− + =
       

                                       (30) 

IV. LAGRANGE BASIS FUNCTIONS 

In this section, we will show in details the derivation of 

matrix coefficients by two classes of the Lagrange basis 

function which are linear and quadratic bases. 
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A. Linear Lagrange Basis Function  

We begin defining nodal points in the domain 0 x l≤ ≤  

with K  elements of uniform element size. Thus, there are 
1K +
 
nodes corresponding to the coordinates 

1 2 1, ,..., Kx x x +  as 

shown in Fig.1. 

 

 

Fig. 1 Partition of the domain in linear element grid 

 

In this case, we assume the approximate solution in 

equation (6) as 

 

( ) ( ) ( )( )1 1 2 2

0

,    ( ) ( )  ,
p

n n n

n k n k k n k

k

T x t N x t c N x t cθ θ
=

= +∑   (31) 

 

where 

             
( )1  1  ,

x
N x

L
= −                                                 (32) 

 

             
( )2   .

x
N x

L
=                                                      (33) 

 

These are the well-known linear Lagrange basis functions. 

Their variations in an element are shown in Fig. 2. 

 

 
Fig. 2  Linear basis functions 

 

Hence, some parts in the matrices [ ]LC , [ ]LK , 
LM
++    and 

LM
−+    can be evaluated as follows 

 

( )
0 0

1
2 1

    1      
1 26

 ,
L L

T

i i

x

x x LL
N N dx dx

x L L

L

−
= − =

 
      
        
  

∫ ∫
   (34) 

0 0

1

1 11 1 1
        

1 1 1

TL L

i i
N N L

dx dx
x x L L L

L

•

−
−∂ ∂

= − =
−∂ ∂

 
       
           
  

∫ ∫
 (35) 

 

The full definition of these matrices are obtained by using 

the outer tensor  operator ⊗  in equation (20). 

 

The region 0 x l≤ ≤  has been divided byK elements of 

equal length 
l

L
K

= . After assembling all elements together, 

we obtain the full system of linear equation as 

 

[ ]

( ) ( ) ( ) ( )1 1
2 1 2 1

2 1 0 0 0

1 4 1 0 0 1

0 0 1
6 0
0 1 4 1 2

0 0 0 1 2

,

K K
K K

L

L
C

+ × + + × +

⊗

  
  

   
  =  
       

     

⋱

⋱ ⋱ ⋱

⋱

         (36) 

 

[ ]

( ) ( ) ( ) ( )1 1
2 1 2 1

1 1 0 0 0

1
1 2 1 0 1

1 2
0 0

1 1
0 1 2 1

2 3
0 0 0 1 1

,

K K
K K

L t
L

K α

+ × + + × +

−

− −

⊗∆

− −

  
    
    
 =    
    
          

⋱

⋱ ⋱ ⋱

⋱

   (37) 

 

( ) ( ) ( ) ( )1 1
2 1 2 1

2 1 0 0 0

1 4 1 0
1 0

0 0
0 06

0 1 4 1

0 0 0 1 2

,

K K
K K

L

L
M

+ × + + × +

++ ⊗

  
  
       =         
  
     

⋱

⋱ ⋱ ⋱

⋱

   (38) 

 

( ) ( ) ( ) ( )
1 1

2 1 2 1

2 1 0 0 0

1 4 1 0
1 1

0 0
0 06

0 1 4 1

0 0 0 1 2

.L

K K
K K

L
M −+

+ × +
+ × +

⊗

           =                

⋱

⋱ ⋱ ⋱

⋱

    (39) 

 

B. Quadratic Lagrange Basis Function  

The nodal notation used in this case is shown in Fig.4. 

There are three nodes in one element. The i th element is 

defined on 
2 1 2 1,   1, 2,...,i ix x x i K− +≤ ≤ =  and its element 

size is given by  
2 1 2 1i iL x x+ −= − . 

 

Fig. 3 Partition of the domain in Quadratic element grid 

 

By this basis function, we assume the approximate 

( ),n

nT x t  as 

( )
( ) ( )

( )
1 1 2 2

0 3 3

( ) ( )
,   ,

                               ( )

n np
k n k k n kn

n n
k k n k

N x t c N x t c
T x t

N x t c

θ θ

θ=

 +
=   + 
∑          (40) 

and the quadratic Lagrange basis functions are 
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( )
2

1

3
  1 2  ,

x x
N x

L L

 = − +  
 

                                     (41) 

( )2

4
  1  ,

x x
N x

L L

 = − 
 

                                             (42) 

( )3

2
  1  .

x x
N x

L L

 = − 
 

                                            (43) 

 

 
Fig. 4  Quadratic basis functions 

 

 

Hence, some parts in the matrices [ ]LC , [ ]LK , 
LM
++    and 

LM
−+    can be evaluated as 

 

( )

2

2

0 0

3
1 2

4 3 4 2
     1 1 2 1 1  

2
1

4 2 1

                        2 16 2   ,
30

1 2 4

L L
T

i i

x x

L L

x x x x x x x x
NN dx dx

L L L L L L L L

x x

L L

L

  − +  
  

          = − − + − −         
          

  −  
   

− 
 =  
 − 

∫ ∫

   (44)

 

 

0 0

1 4
3

4 2 1 4 4 2 1 4
  1 3 1 1  

1 4
1

7 8 1
1

                             8 16 8   
3

1 8 7

.

TL L

i i

x

L L

N N x x x x
dx dx

x x L L L L L L L L

x

L L

L

  −    
   ∂ ∂         = − − − −           ∂ ∂            

  −  
  

− 
 = − − 
 − 

∫ ∫

     (45)

 

 

Using the same time polynomial basis as in the linear 

approximation and after assembling all elements together, we 

obtain the full linear system as 

 

[ ]

( ) ( ) ( ) ( )2 1 2 1
2 2 1 2 2 1

4 2 1 0 0 0

2 16 2 1 0 0

1 2 8 2 1 0 0 1

0 0 1
30 0

0 1 2 8 2 1 2

0 0 1 2 16 2

0 0 0 1 2 4

,
L

K K
K K

L
C

+ × + + × +

−

−

− −

− −

−

−

⊗

  
  
  
        =         
  
  
     

⋯

⋯

⋮

⋱ ⋱ ⋱ ⋱ ⋱

⋮

⋯

⋯

       (46)

 

 

 

[ ]

( ) ( ) ( ) ( )2 1 2 1
2 2 1 2 2 1

7 8 1 0 0 0

8 16 8 1 0 0

1
1 8 14 8 1 0 1

1 2
0 0

1 13
0 1 8 14 8 1

2 3
0 0 1 8 16 2

0 0 0 1 8 7

,
L

K K
K K

t
L

K α

+ × + + × +

−

− −

− − −

∆

− −

−

−

⊗

  
  
  

   
   =    
        

  
     

⋯

⋯

⋮

⋱ ⋱ ⋱ ⋱ ⋱

⋮

⋯

⋯

   (47)

 

 

( ) ( ) ( ) ( )2 1 2 1
2 2 1 2 2 1

4 2 1 0 0 0

2 16 2 1 0 0

1 2 8 2 1 0
1 0

0 0
0 030

0 1 2 8 2 1

0 0 1 2 16 2

0 0 0 1 2 4

,
L

K K
K K

L
M

++

+ × + + × +

−

−

− −

− −

−

−

= ⊗

  
  
  
  
              
  
  
     

⋯

⋯

⋮

⋱ ⋱ ⋱ ⋱ ⋱

⋮

⋯

⋯

    (48)

 

 

( ) ( ) ( ) ( )2 1 2 1
2 2 1 2 2 1

4 2 1 0 0 0

2 16 2 1 0 0

1 2 8 2 1 0
1 1

0 0
0 030

0 1 2 8 2 1

0 0 1 2 16 2

0 0 0 1 2 4

.
L

K K
K K

L
M

− +

+ × + + × +

−

−

− −

− −

−

−

= ⊗

  
  
  
  
              
  
  
     

⋯

⋯

⋮

⋱ ⋱ ⋱ ⋱ ⋱

⋮

⋯

⋯

  (49)

 

 

This system can be solved iteratively to find the coefficients
 { }n

ikc . 

V.  WEVELET BASIS FUNCTIONS 

The construction of the wavelet basis functions used in the 

Galerkin method follows the derivations proposed by [1]. We 

construct multi-scale orthonormal bases for the Sobolev space 

on the unit interval
 

[ ]: 0,1 .I =
 
Specifically, we let m be a 

fixed positive integer and ( )0

mH I denoted the Sobolev spaces 

of element that T satisfies the homogeneous boundary 

conditions of ( ) ( )( ) ( )0 1 0  ,    j j

mT T j Z= = ∈ , where
  

{ }: 0,1, 2,..., 1nZ n= − .  For any nonnegative integer n , we 

denote by 
nΧ  the subspace of ( )0

mH I  whose elements are 

the piecewise polynomials of order k  with knots
 

1
/ ,   1 n

nj j Z
µ

µ
−

− ∈ , when 2k m>  and 1µ > be a fixed 

positive integer. We have that ( ){ }0 2
span 1 :

mm j

k m
x x j Z

+
−Χ = − ∈ , 

so we let Wn
be the orthonormal complement of  1n+Χ  in

nΧ , 

i.e., 
1

W
n n m n−Χ = Χ ⊕  and thus, repeatedly using this 

decomposition leads to 
0 1

W W
n m m m n

Χ = Χ ⊕ ⊕ ⊕⋯ . Spaces 

W
n
can be recursively constructed once 

1W  has been given. 

To describe the construction, the family of affine mappings   

{ }: :e e Zµ µφΦ = ∈   is required where

 
( )( ) /e x x eφ µ= + ; 

e Zµ∈ .           
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Finally, the wavelet basis function can be constructed by the 

composition as follows.    

( )
1

1 12

e 1 1 e    ;  e .
n m

i

ij l lw w w x Zµµ φτ
 −  − − = = ∈�         (50) 

 

This construction will be applied to obtain both linear and 

quadratic wavelet bases in the next sections. 

 

A. Linear Wevelet Basis Function  

From equation (50), we set 1  ,   2,m µ= =  and 1r = . We 

also give  l
 
,
 
Zµ
 , and e  by  { } { }0  ,   0,1rl Z e Zµ∈ = ∈ =    

and  

 
0 1

1
( )    ,   ( )

2 2
 .

x x
x xφ φ

+
= =  

 

The desired basis of 
1W  (level 1) is obtained  by 

 

( ) [ ]
[ ]10

        ; 0,1/ 2
 .

1    ; 1/ 2,1

x x
w x

x x

 ∈
= 

− ∈
                                       (51) 

 

The wavelet  basis  function  of 
2W  (level 2)  is  given  by  

{ }( )1

21,  e 0,1n Z= ∈ =  

 

( ) ( )
1

1 1
1 12

2 1 e 1 e

1
 ,

2
j l lw w x w xµ φ φ

 −  − − = =� �                   (52) 

 

( )
[ ]

( ) [ ]20

2 / 2        ; 0,1/ 4
  ,

1 2 / 2   ; 1/ 4,1/2

x x
w x

x x

 ∈
= 

− ∈

                                (53) 

( )
( ) [ ]
( ) [ ]21

2 1 / 2    ; 1/ 2,3 / 4
  .

2 2 / 2     ; 3 / 4,1

x x
w x

x x

 − ∈= 
− ∈

                             (54) 

 

The wavelet  basis  function  of 
3W  (level 3)  is  that  

( ) ( ) ( ) ( ){ }( )2

2
2,  e 0, 0 , 0,1 , 1,0 , 1,1n Z= ∈ =  

 

( ) ( )
1

2 1
1 12

3 1 e 1 e

1
 ,

2
j l lw w x w xµ φ φ

 −  − − = =� �                       (55) 

 

( ) [ ]
( ) [ ]30

4 / 2        ; 0,1/ 8
    ,

1 4 / 2   ; 1/8,1/ 4

x x
w x

x x

 ∈
= 

− ∈

                           (56) 

( )
( ) [ ]
( ) [ ]31

4 1 / 2   ; 1/ 4,3/ 8
  ,

2 4 / 2    ; 3 /8,1/ 2

x x
w x

x x

 − ∈
= 

− ∈
                           (57) 

( ) ( ) [ ]
( ) [ ]32

4 2 / 2   ; 1/ 2,5/8
  ,

3 4 / 2   ; 5/8,3/ 4

x x
w x

x x

 − ∈
= 

− ∈
                              (58) 

( ) ( ) [ ]
( ) [ ]33

4 3 / 2   ; 3 / 4,7 /8
 .

4 4 / 2 ; 7 / 8,1

x x
w x

x x

 − ∈
= 

− ∈
                             (59) 

 

The profiles of these three linear wavelet basis functions

1W , 2W and 3W are shown in Fig.5. In practice, any levels of 

the linear wavelet basis can be obtained recursively by the 

same process of this construction.  

 

 
Fig. 5 Linear Wavelet basis functions 

 

 

For example, using the linear wavelet functions for the first 

three levels which are composed of
 1W ,

2W and 
3W , some 

parts of the coefficients in matrices [ ]C , [ ]K , M
++   and 

M
−+   can be evaluated as 

 

( )
0

1 2 2 1 3 3 1

1 2 6 4 6 4 2 5 6 2 5 6 2 5 6 2 5 6

2 1 2 2
0 0 0

6 4 4 8 2 5 6 2 5 6

2 1 2 2
0 0 0

6 4 4 8 2 5 6 2 5 6

1 2 1
     ,0 0 0 0

2 5 6 2 5 6 1 9 2

3 2 1
0 0 0 0

2 5 6 2 5 6 1 9 2

3 2 1
0 0 0 0

2 5 6 2 5 6 1 9 2

1 2 1
0 0 0 0

2 5 6 2 5 6 1 9 2

L
T

i j i jw w d x

 
 
 
 
 
 
 
 
 
 

=  
 
 
 
 
 
 
 
 
   

∫
    (60)

 

 

0

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

   0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

  .

TL

ij ij
w w

dx
x x

∂ ∂
=

∂ ∂

 
 
 
 

   
   
   

 
 
  

∫

                 (61) 

     

     Then we can apply the outer tensor operator ⊗  in equation 

(20) to find the full form of matrices. 

B. Quadratic Wevelet Basis Function 

In this case, we set 1 ,  2m µ= =  
and 2r = ,  thus l

 
,
 
Zµ
, 

e  are given by   { }0,1rl Z∈ =   ,   { }0,1e Z µ∈ =   and   

0 1

1
( )    ,   ( )

2 2

x x
x xφ φ

+
= =  . 
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The desired bases of 
0W  and 

1W  are given by 

 

( ) [ ]00
3 (1 )   ; 0,1  ,w x x x x= − ∈                                   (62) 

( ) ( ) [ ]
( ) ( ) [ ]10

1 3         ; 0,1/ 2
  ,  

1 3 2   ; 1/ 2,1

x x x
w x

x x x

 − ∈
= 

− − ∈
                          (63) 

( )
( ) [ ]

( )( ) [ ]11

3 1 2    ; 0,1 / 2
  .

3 1 1 2     ; 1 / 2,1

x x x
w x

x x x

 − ∈
= 

− − ∈

                   (64) 

 

The quadratic wavelet basis of level two, 2W  is given by 

{ }( )1

21,  e 0,1n Z= ∈ = , 

 

( ) ( )
1

1 1
1 12

2 1 e 1 e

1
 ,

2
j l lw w x w xµ φ φ

 −  − − = =� �                (65) 

 

( )
( ) [ ]

( )( ) [ ]
20

2
1 6       ; 0,1 / 4

2
  ,

2
1 2 3 1 ; 1 / 4,1 / 2

2

x
x x

w x

x x x

− ∈

=

− − ∈







                        (66) 

( )
( ) [ ]

( )( ) [ ]
21

6 1 4    ; 0,1 / 4

6
1 2 3 1 ; 1 / 4,1 / 2

2

  ,

x x x

w x
x x x

− ∈

=
− − ∈







                       (67) 

( )
( ) ( ) [ ]

( ) ( ) [ ]
22

1
4 6 2 1 ; 1 / 2, 3 / 4

2
  ,

1
2 2 6 5 ; 3 / 4,1

2

x x x

w x

x x x

− − ∈

=

− − ∈







                       (68) 

( )
( ) ( ) [ ]

( ) ( ) [ ]
23

6
2 1 3 4 ; 1 / 2, 3 / 4

2

6
2 2 3 4 ; 3 / 4,1

2

  .

x x x

w x

x x x

− − ∈
=

− − ∈







                        (69) 

 

The profiles of quadratic wavelet functions
  0
W ,

1
W  and

 

2
W  are shown in Fig.6. 

 

 
Fig. 6 Quadratic Wavelet basis functions 

 

For example, after using the quadratic wavelet functions for 

the first two levels, some parts of the coefficients in matrices 

[ ]C , [ ]K , M
++   and M

−+   can be evaluated as 

 

( )
0

1 3 6 2 6 2
0

10 240 3840 256 3840 256

3 1 2 6 2 6
0

240 120 1280 768 1280 768

1 6 6
0 0 0 0

40 1920 1920

6 2 6 1
0 0 0

3840 1280 1920 480

2 6 1
0 0 0 0

256 768 160

6 2 6 1
0 0 0

3840 1280 1920 480

2 6 1
0 0 0 0

256 768 160

L
T

ij ij
w w dω

 − − − −
 

 − − − −


 −


 − − −= 

 −


 − −


 −

 

∫     ,





















     (70) 

 

0

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

      .0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

TL
ij i jw w

d
x x

ω

 
 
 
 

 ∂ ∂  =    ∂ ∂   
 
 
  

∫

                  (71)

 

 

Then we can apply the outer tensor operator ⊗  in equation 

(20) to find the full form of matrices. 

 

For a given initial condition , 
 

( ) 0, 0 ( )  ,T x T x=  

and we have assumed that 

 

( ) ( ) ( )
dim( )

0 1 0

,   ,
p iM

n n

n ij k n ijk

k i j

T x t w x t cθ
= = =

= ∑ ∑ ∑  

so,

    

( ) ( ) ( )
dim( )

0

0 1 0

, 0 0   .
p iM

ij k ijk

k i j

T x w x cθ
= = =

= ∑ ∑ ∑                 (72) 

 

Thus, in the case of wavelet basis function, we can find the 

coefficients { }0

ijkc  from the system 

 

( ) [ ]0

0 ( )  ,ij s ijk sw x c T x   =                           (73) 

 

where  , 1 /  ,   1, 2, ..., 1
s
x s x x n s n= ∆ ∆ = = + , and 1n+  is 

the number of knots. 

VI. NUMERICAL RESULTS 

The time-dependent heat equation in terms of temperature 

( ),T x t  is  

2

2
 ,

T k T

t c xρ
∂ ∂

=
∂ ∂

                                         (74) 

 

where /T t∂ ∂  is the rate of change of temperature. We set the 

thermal diffusivity as

 

1/k c αρ = = .  

The boundary and initial conditions are given by 

 

       
( ) ( )0, 1, 0 ,T t T t= =

                                           
(75)

 

       
( ) ( ), 0 sin  .T x xπ=

                                              
(76)
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The exact solution for this problem is (T x t e x

 

For discretization in time, we set  

 

θ  =   
corresponds to 0k =  and 1. The time step is 

all calculations.To check the accuracy of t

numerical schemes, we use the RMS error defined by

             
( )2

1  .

N

i Exact

i

T T

RMS
N

=

−
=

∑
                                  

The profiles of numerical solutions at various time steps 

(0.005, 0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 0.04, 

are shown in Fig 8. The temperature profile decreases 

dramatically as time increases. In this figure, the numerical 

solutions are obtained by the finite element method based on 

linear Lagrange basis with 8 elements. The numerical results 

are in good agreement with the exact solutions even though 

we have used a small number of elements. 

To investigate the convergent rate of numerical schemes for 

various types of basis functions, if we have observed in two 

cases of the element size, x∆  and 

convergence ( )r  of the numerical method would be defined 

by 

 

              

( )/2
log /

log(2)
 .x x

RMS RMS
r

∆ ∆=                                 

 

 

Fig. 7 The finite element results with Linear Lagrange 

solution 

 

The numerical solutions at various time steps are shown in 

Tables I- IV. Comparing Table I with Table 

by the linear Lagrange basis are almost the same as the RMS 

errors by the linear wavelet basis. This implies that the 

accuracy is the same for these two types of basis function 

when we use the same element size. The rate of convergence 

is approximately 2.1 as expected for the linear basis. The RMS 

errors and the rate of convergences for the quadratic Lagrange 

and wavelet bases are shown in Tables III

The rates of convergence for the quadratic Lagrange and the 

quadratic wavelet are approximately 4.1 and 4.4 respectively. 

The plots of rate of convergence are shown in Fig. 8

 

) ( )
2

, sin
t

T x t e x
π π−= . 

11

T

nt t

t

−− =  ∆ 
 which 

and 1. The time step is 0.005t∆ =  for 

To check the accuracy of the presented 

numerical schemes, we use the RMS error defined by 

                                  (77) 

The profiles of numerical solutions at various time steps 

(0.005, 0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 0.04, 0.045, 0.05) 

are shown in Fig 8. The temperature profile decreases 

dramatically as time increases. In this figure, the numerical 

solutions are obtained by the finite element method based on 

linear Lagrange basis with 8 elements. The numerical results 

n good agreement with the exact solutions even though 

we have used a small number of elements.  

To investigate the convergent rate of numerical schemes for 

various types of basis functions, if we have observed in two 

x/2∆ , the rate of 

of the numerical method would be defined 

                                (78) 

 
lts with Linear Lagrange basis and exact 

The numerical solutions at various time steps are shown in 

with Table II, the RMS errors 

by the linear Lagrange basis are almost the same as the RMS 

let basis. This implies that the 

accuracy is the same for these two types of basis function 

when we use the same element size. The rate of convergence 

is approximately 2.1 as expected for the linear basis. The RMS 

e quadratic Lagrange 

 and IV respectively. 

The rates of convergence for the quadratic Lagrange and the 

quadratic wavelet are approximately 4.1 and 4.4 respectively. 

convergence are shown in Fig. 8. 

             Fig. 8 Rate of convergence

RMS ERROR GALERKIN FINITE 

Elements
\Time 

0.02 

  

8 

element 

1.580224097

3e-003 

16 

element 

3.807355277

4e-004 

32 
element 

9.370994776

4e-005 

64 

element 

2.348287635

3e-005 

                                                                  

Approximate convergence rate = 2.

RMS ERROR GALERKIN FINITE 

Level\ 
Time 

0.02 

  

3W  
1.58022e-003 

4W  
3.80734e-004 

5W  
9.37094e-005 

6W  
2.33765e-005 

                                                       

Approximate convergence rate = 2.

 
Rate of convergence for Lagrange and Wavelet bases 

 

 

 

TABLE I 

ELEMENT METHOD (LINEAR LAGRANGE BASIS 
FUNCTION) 

0.03 0.04 0.05 

   

2.146199506

7e-003 

2.591009692

4e-003 

2.932508760

0e-003 

5.173477287

3e-004 

6.248692519

1e-004 

7.075661517

0e-004 

1.273489192

2e-004 

1.538339394

8e-004 

1.742128449

8e-004 

3.192320535

6e-005 

3.857644890

4e-005 

4.370406764

4e-005 

 

                                                                  ( 0.005t∆ = ,  TOL = 10^(-8) ) 

pproximate convergence rate = 2.1 

TABLE II  
INITE ELEMENT METHOD (LINEAR WAVELET BASIS 

FUNCTION) 

0.03 0.04 0.05 

   

2.14620e-003 2.59101e-003 2.93251e-003 

5.17346e-004 6.24867e-004 7.07563e-004 

1.27348e-004 1.53833e-004 1.74212e-004 

3.17686e-005 3.83766e-005 4.34614e-005 

 

                                                       ( 0.005t∆ = ,  TOL = 10^(-8) ) 

Approximate convergence rate = 2.1 
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We have also investigated the rate of convergence of time 

basis. Two cases of time basis levels are considered. We set 

the final time as 0.8, and 0.5α = . Numerical results are 

shown in Tables 5-7. The RMS errors resulted from using time 

basis level 1 ( )1θ  and by the linear Lagrange and wavelet 

bases are almost the same as those errors by the quadratic 

Lagrange and wavelet bases. The rates of convergence are 

approximately 1.1. Similarly, we have found that the rates of 

convergence are approximately in order between 2 and 3 when 

using the time basis of level two. This shows an advantage of 

using this type of time basis that the order of accuracy in time 

can be improved just increasing the dimension of time matrix. 

It is unlike other standard schemes such as the Euler method 

or the Runge-Kutta scheme that the order of accuracy is fixed 

after derivation. Using this presented time basis is more 

flexible than the standard approach. 

 

VII. CONCLUSION 

In this work, we have presented the Galerkin finite element 

method to solve numerically the one-dimensional heat 

equation. The purpose is to show and compare the order of 

accuracy in space and time for wavelet basis. Two types of 

basis functions which are the Lagrange (for comparing) and 

wavelet bases are employed to derive the full matrix system. 

We consider both linear and quadratic bases. Also, we have 

introduced a time basis for the time discretization process. 

When the initial and boundary conditions are specified, the 

full system matrices can be solved iteratively by the Gauss-

Seidel method. Our numerical results show that the rate of 

convergence for the Linear Lagrange and the Linear Wavelet 

is the same in order of 2 while the rate of convergence for the 

quadratic Lagrange and the quadratic wavelet is approximately 

in order of 4. These two rates are in expected as theoretical 

results follow the Lagrange basis. The numerical resolutions 

can be increased by increasing the number of wavelet basis 

levels. This shows an advantage of the wavelet basis over 

using the Lagrange basis. By this point of investigation, we 

can apply the presented wavelet bases with multilevel 

approach to further solving other types of differential 

equation, especially the singularly perturbed problem. Some of 

the results will be reported elsewhere further. 
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0.4t∆ =
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0.2t∆ =
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0.1t∆ =
 

 

 

r 
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RMS ERROR GALERKIN FINITE ELEMENT METHOD   
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level ( )θ  

Level\ 

Time 

 

0.8 

0.4t∆ =
 

 

0.8 

0.2t∆ =
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0.1t∆ =
 

 

 

r 

      

( )
1

θ
 
 4W  
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1.51638
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Level 1 16 element 6.81299

e-002 
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