Search results for: project life cycle
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3007

Search results for: project life cycle

2797 Modeling And Analysis of Simple Open Cycle Gas Turbine Using Graph Networks

Authors: Naresh Yadav, I.A. Khan, Sandeep Grover

Abstract:

This paper presents a unified approach based graph theory and system theory postulates for the modeling and analysis of Simple open cycle Gas turbine system. In the present paper, the simple open cycle gas turbine system has been modeled up to its subsystem level and system variables have been identified to develop the process subgraphs. The theorems and algorithms of the graph theory have been used to represent behavioural properties of the system like rate of heat and work transfers rates, pressure drops and temperature drops in the involved processes of the system. The processes have been represented as edges of the process subgraphs and their limits as the vertices of the process subgraphs. The system across variables and through variables has been used to develop terminal equations of the process subgraphs of the system. The set of equations developed for vertices and edges of network graph are used to solve the system for its process variables.

Keywords: Simple open cycle gas turbine, Graph theoretic approach, process subgraphs, gas turbines system modeling, systemtheory

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2575
2796 Exergy Analysis of Combined Cycle of Air Separation and Natural Gas Liquefaction

Authors: Hanfei Tuo, Yanzhong Li

Abstract:

This paper presented a novel combined cycle of air separation and natural gas liquefaction. The idea is that natural gas can be liquefied, meanwhile gaseous or liquid nitrogen and oxygen are produced in one combined cryogenic system. Cycle simulation and exergy analysis were performed to evaluate the process and thereby reveal the influence of the crucial parameter, i.e., flow rate ratio through two stages expanders β on heat transfer temperature difference, its distribution and consequent exergy loss. Composite curves for the combined hot streams (feeding natural gas and recycled nitrogen) and the cold stream showed the degree of optimization available in this process if appropriate β was designed. The results indicated that increasing β reduces temperature difference and exergy loss in heat exchange process. However, the maximum limit value of β should be confined in terms of minimum temperature difference proposed in heat exchanger design standard and heat exchanger size. The optimal βopt under different operation conditions corresponding to the required minimum temperature differences was investigated.

Keywords: combined cycle simulation, exergy analysis, natural gas liquefaction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2746
2795 Practical Experiences as Part of Project Management Course

Authors: H. Hussain, N. H. Mohamad

Abstract:

Practical experiences have been one of the successful criteria for the Project Management course for the art and design students. There are series of events that the students have to undergo as part of their practical exercises in the learning context for Project Management courses. These series have been divided into few mini programs that involved the whole individual in each group. Therefore, the events have been one of the bench marks for these students. Through the practical experience, the task that has been given to individual has been performed according to the needs of professional practice and ethics.

Keywords: Practical experiences, project management, art and design students, events, programs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1226
2794 A Second Law Assessment of Organic Rankine Cycle Depending on Source Temperature

Authors: Kyoung Hoon Kim

Abstract:

Organic Rankine Cycle (ORC) has potential in reducing fossil fuels and relaxing environmental problems. In this work performance analysis of ORC is conducted based on the second law of thermodynamics for recovery of low temperature heat source from 100oC to 140oC using R134a as the working fluid. Effects of system parameters such as turbine inlet pressure or source temperature are theoretically investigated on the exergy destructions (anergies) at various components of the system as well as net work production or exergy efficiency. Results show that the net work or exergy efficiency has a peak with respect to the turbine inlet pressure when the source temperature is low, however, increases monotonically with increasing turbine inlet pressure when the source temperature is high.

Keywords: Organic Rankine cycle (ORC), low temperature heat source, exergy, source temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1827
2793 Music for Peace, a Model for Socialization

Authors: Mina Fenercioglu

Abstract:

This study discusses a Turkish music education model similar to its Venezuelan counterpart El Sistema, in which socialization and human development are the main goals. The Music for Peace (Baris Icin Muzik) model, founded in 2005 by an idealist humanitarian in Istanbul, started as a pilot project with accordion and today makes symphonic music education. The program aims to offer social change through free-of-charge. In such a big city like Istanbul, in a deprived inner city center people have poor economic, social and cultural conditions. In that Edirnekapi district people don’t have opportunities to join the cultural and social life, like music or sports. It is believed that this initiative covered a part of this gap by giving children the opportunities to participate in social and cultural life. In this study it is planned to understand what social changes could music education could make in children’s lives. In the complimentary music lessons children works in groups, which helps them to learn the feelings of solidarity, friendship, communion and sharing. By Music for Peace project children connect with the community, they have the belief to succeed in life because they feel that they are loved by their friends, instructors and families. In short they feel that they are important, thus brings the success in life. Additionally, it is believed that, this program has achieved success. Today approximately 400 children participate in this programs orchestras and choirs. Some of the students get into the conservatories. And the center is not just a place where they get music lessons but also a place where they get socialized. And music education helps children to have strong sense of identity, self-confidence and self-esteem.

Keywords: El Sistema, music education, Music for Peace, socialization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2026
2792 Effects of Canned Cycles and Cutting Parameters on Hole Quality in Cryogenic Drilling of Aluminum 6061-6T

Authors: M. N. Islam, B. Boswell, Y. R. Ginting

Abstract:

The influence of canned cycles and cutting parameters on hole quality in cryogenic drilling has been investigated experimentally and analytically. A three-level, three-parameter experiment was conducted by using the design-of-experiment methodology. The three levels of independent input parameters were the following: for canned cycles—a chip-breaking canned cycle (G73), a spot drilling canned cycle (G81), and a deep hole canned cycle (G83); for feed rates—0.2, 0.3, and 0.4 mm/rev; and for cutting speeds—60, 75, and 100 m/min. The selected work and tool materials were aluminum 6061-6T and high-speed steel (HSS), respectively. For cryogenic cooling, liquid nitrogen (LN2) was used and was applied externally. The measured output parameters were the three widely used quality characteristics of drilled holes—diameter error, circularity, and surface roughness. Pareto ANOVA was applied for analyzing the results. The findings revealed that the canned cycle has a significant effect on diameter error (contribution ratio 44.09%) and small effects on circularity and surface finish (contribution ratio 7.25% and 6.60%, respectively). The best results for the dimensional accuracy and surface roughness were achieved by G81. G73 produced the best circularity results; however, for dimensional accuracy, it was the worst level.

Keywords: Circularity, diameter error, drilling canned cycle, Pareto ANOVA, surface roughness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1100
2791 The Importance of Project Post-Implementation Reviews

Authors: Catalin-Teodor Dogaru, Ana-Maria Dogaru

Abstract:

Success means different things for different people. For us, project managers, it becomes even harder to actually find a definition. Many factors have to be included in the evaluation. Moreover, literature is not very helpful, lacking consensus and neutrality. Post-implementation reviews (PIR) can be an efficient tool in evaluating how things worked on a certain project. Despite the visible progress, PIR is not a very detailed subject yet and there is not common understanding in this matter. This may be the reason that some organizations include it in the projects’ lifecycle and some do not. Through this paper, we point out the reasons why all project managers should pay proper attention to this important step and to the elements which can be assessed, beside the already famous triple constraints: cost, budget and time. It is essential to take notice that PIR is not a checklist. It brings the edge in eliminating subjectivity and judging projects based on actual proof. Based on our experience, our success indicator model, presented in this paper, contributes to the success of the project! In the same time, it increases trust among customers who will perceive success more objectively.

Keywords: Project, post-implementation, success, model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4855
2790 Analysis of the Interference from Risk-Determining Factors of Cooperative and Conventional Construction Contracts

Authors: E. Harrer, M. Mauerhofer, T. Werginz

Abstract:

As a result of intensive competition, the building sector is suffering from a high degree of rivalry. Furthermore, there can be observed an unbalanced distribution of project risks. Clients are aimed to shift their own risks into the sphere of the constructors or planners. The consequence of this is that the number of conflicts between the involved parties is inordinately high or even increasing; an alternative approach to counter on that developments are cooperative project forms in the construction sector. This research compares conventional contract models and models with partnering agreements to examine the influence on project risks by an early integration of the involved parties. The goal is to show up deviations in different project stages from the design phase to the project transfer phase. These deviations are evaluated by a survey of experts from the three spheres: clients, contractors and planners. By rating the influence of the participants on specific risk factors it is possible to identify factors which are relevant for a smooth project execution.

Keywords: Collaborative work, construction industry, contract-models, influence, partnering, project management, risk.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 819
2789 A Systematic Review on the Integration of Project Management with Organizational Flows

Authors: Maurício Covolan Rosito, Ricardo Melo Bastos

Abstract:

Software projects are very dynamic and require recurring adjustments of their project plans. These settings can be understood as reconfigurations in the schedule, in the resources allocation and other design elements. Yet, during the planning and execution of a software project, the integration of specific activities in the projects with the activities that take part in the organization-s common activity flow should be considered. This article presents the results from a systematic review of aspects related to software projects- dynamic reconfiguration emphasizing the integration of project management with the organizational flows. A series of studies was analyzed from the year 2000 to the present. The results of this work show that there is a diversity of techniques and strategies for dynamic reconfiguration of software projects-. However, few approaches consider the integration of software project activities with the activities that take part in the organization-s common workflow.

Keywords: Dynamic Reconfiguration, Organizational workflows, Project Management, Systematic Review

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1690
2788 Multi-Objective Optimization of Gas Turbine Power Cycle

Authors: Mohsen Nikaein

Abstract:

Because of importance of energy, optimization of power generation systems is necessary. Gas turbine cycles are suitable manner for fast power generation, but their efficiency is partly low. In order to achieving higher efficiencies, some propositions are preferred such as recovery of heat from exhaust gases in a regenerator, utilization of intercooler in a multistage compressor, steam injection to combustion chamber and etc. However thermodynamic optimization of gas turbine cycle, even with above components, is necessary. In this article multi-objective genetic algorithms are employed for Pareto approach optimization of Regenerative-Intercooling-Gas Turbine (RIGT) cycle. In the multiobjective optimization a number of conflicting objective functions are to be optimized simultaneously. The important objective functions that have been considered for optimization are entropy generation of RIGT cycle (Ns) derives using Exergy Analysis and Gouy-Stodola theorem, thermal efficiency and the net output power of RIGT Cycle. These objectives are usually conflicting with each other. The design variables consist of thermodynamic parameters such as compressor pressure ratio (Rp), excess air in combustion (EA), turbine inlet temperature (TIT) and inlet air temperature (T0). At the first stage single objective optimization has been investigated and the method of Non-dominated Sorting Genetic Algorithm (NSGA-II) has been used for multi-objective optimization. Optimization procedures are performed for two and three objective functions and the results are compared for RIGT Cycle. In order to investigate the optimal thermodynamic behavior of two objectives, different set, each including two objectives of output parameters, are considered individually. For each set Pareto front are depicted. The sets of selected decision variables based on this Pareto front, will cause the best possible combination of corresponding objective functions. There is no superiority for the points on the Pareto front figure, but they are superior to any other point. In the case of three objective optimization the results are given in tables.

Keywords: Exergy, Entropy Generation, Brayton Cycle, DesignParameters, Optimization, Genetic Algorithm, Multi-Objective.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2479
2787 Simulation of Low Cycle Fatigue Behaviour of Nickel-Based Alloy at Elevated Temperatures

Authors: Harish Ramesh Babu, Marco Böcker, Mario Raddatz, Sebastian Henkel, Horst Biermann, Uwe Gampe

Abstract:

Thermal power machines are subjected to cyclic loading conditions under elevated temperatures. At these extreme conditions, the durability of the components has a significant influence. The material mechanical behaviour has to be known in detail for a failsafe construction. For this study a nickel-based alloy is considered, the deformation and fatigue behaviour of the material is analysed under cyclic loading. A viscoplastic model is used for calculating the deformation behaviour as well as to simulate the rate-dependent and cyclic plasticity effects. Finally, the cyclic deformation results of the finite element simulations are compared with low cycle fatigue (LCF) experiments.

Keywords: Complex low cycle fatigue, elevated temperatures, IN718, viscoplastic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 644
2786 Does Material Choice Drive Sustainability of 3D Printing?

Authors: Jeremy Faludi, Zhongyin Hu, Shahd Alrashed, Christopher Braunholz, Suneesh Kaul, Leulekal Kassaye

Abstract:

Environmental impacts of six 3D printers using various materials were compared to determine if material choice drove sustainability, or if other factors such as machine type, machine size, or machine utilization dominate. Cradle-to-grave life-cycle assessments were performed, comparing a commercial-scale FDM machine printing in ABS plastic, a desktop FDM machine printing in ABS, a desktop FDM machine printing in PET and PLA plastics, a polyjet machine printing in its proprietary polymer, an SLA machine printing in its polymer, and an inkjet machine hacked to print in salt and dextrose. All scenarios were scored using ReCiPe Endpoint H methodology to combine multiple impact categories, comparing environmental impacts per part made for several scenarios per machine. Results showed that most printers’ ecological impacts were dominated by electricity use, not materials, and the changes in electricity use due to different plastics was not significant compared to variation from one machine to another. Variation in machine idle time determined impacts per part most strongly. However, material impacts were quite important for the inkjet printer hacked to print in salt: In its optimal scenario, it had up to 1/38th the impacts coreper part as the worst-performing machine in the same scenario. If salt parts were infused with epoxy to make them more physically robust, then much of this advantage disappeared, and material impacts actually dominated or equaled electricity use. Future studies should also measure DMLS and SLS processes / materials.

Keywords: 3D printing, Additive Manufacturing, Sustainability, Life-cycle assessment, Design for Environment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3547
2785 Economic Evaluation Offshore Wind Project under Uncertainly and Risk Circumstances

Authors: Sayed Amir Hamzeh Mirkheshti

Abstract:

Offshore wind energy as a strategic renewable energy, has been growing rapidly due to availability, abundance and clean nature of it. On the other hand, budget of this project is incredibly higher in comparison with other renewable energies and it takes more duration. Accordingly, precise estimation of time and cost is needed in order to promote awareness in the developers and society and to convince them to develop this kind of energy despite its difficulties. Occurrence risks during on project would cause its duration and cost constantly changed. Therefore, to develop offshore wind power, it is critical to consider all potential risks which impacted project and to simulate their impact. Hence, knowing about these risks could be useful for the selection of most influencing strategies such as avoidance, transition, and act in order to decrease their probability and impact. This paper presents an evaluation of the feasibility of 500 MV offshore wind project in the Persian Gulf and compares its situation with uncertainty resources and risk. The purpose of this study is to evaluate time and cost of offshore wind project under risk circumstances and uncertain resources by using Monte Carlo simulation. We analyzed each risk and activity along with their distribution function and their effect on the project.

Keywords: Wind energy project; uncertain resources; risks; Monte Carlo simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 740
2784 Influence of Flash Temperature on Exergetical Performance of Organic Flash Cycle

Authors: Kyoung Hoon Kim, Chul Ho Han

Abstract:

Organic Flash Cycle (OFC) has potential of improving efficiency for recovery of low temperature heat sources mainly due to reducing temperature mismatch in the heat exchanger. In this work exergetical performance analysis of ORC is conducted for recovery of low grade heat source. Effects of system parameters such as flash evaporation temperature or heating temperature are theoretically investigated on the exergy destructions (anergies) at various components of the system as well as exergy efficiency. Results show that exergy efficiency has a peak with respect to the flash temperature, and the optimum flash temperature increases with the heating temperature. The component where the largest exergy destruction occurs varies with the flash temperature or heating temperature.

Keywords: Organic flash cycle (OFC), low grade heat source, exergy, anergy, flash temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1860
2783 A Study on Human Musculoskeletal Model for Cycle Fitting: Comparison with EMG

Authors: Yoon- Ho Shin, Jin-Seung Choi, Dong-Won Kang, Jeong-Woo Seo, Joo-Hack Lee, Ju-Young Kim, Dae-Hyeok Kim, Seung-Tae Yang, Gye-Rae Tack

Abstract:

It is difficult to study the effect of various variables on cycle fitting through actual experiment. To overcome such difficulty, the forward dynamics of a musculoskeletal model was applied to cycle fitting in this study. The measured EMG data weres compared with the muscle activities of the musculoskeletal model through forward dynamics. EMG data were measured from five cyclists who do not have musculoskeletal diseases during three minutes pedaling with a constant load (150 W) and cadence (90 RPM). The muscles used for the analysis were the Vastus Lateralis (VL), Tibialis Anterior (TA), Bicep Femoris (BF), and Gastrocnemius Medial (GM). Person’s correlation coefficients of the muscle activity patterns, the peak timing of the maximum muscle activities, and the total muscle activities were calculated and compared. BIKE3D model of AnyBody (Anybodytech, Denmark) was used for the musculoskeletal model simulation. The comparisons of the actual experiments with the simulation results showed significant correlations in the muscle activity patterns (VL: 0.789, TA: 0.503, BF: 0.468, GM: 0.670). The peak timings of the maximum muscle activities were distributed at particular phases. The total muscle activities were compared with the normalized muscle activities, and the comparison showed about 10% difference in the VL (+10%), TA (+9.7%), and BF (+10%), excluding the GM (+29.4%). Thus, it can be concluded that muscle activities of model & experiment showed similar results. The results of this study indicated that it was possible to apply the simulation of further improved musculoskeletal model to cycle fitting.

Keywords: Cycle fitting, EMG, Musculoskeletal modeling, Simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3129
2782 Characteristics of Cascade and C3MR Cycle on Natural Gas Liquefaction Process

Authors: Jung-in Yoon, Ho-saeng Lee, Seung-taek Oh, Sang-gyu Lee, Keun-hyung Choi

Abstract:

In this paper, several different types of natural gas liquefaction cycle. First, two processes are a cascade process with two staged compression were designed and simulated. These include Inter-cooler which is consisted to Propane, Ethylene and Methane cycle, and also, liquid-gas heat exchanger is applied to between of methane and ethylene cycles (process2) and between of ethylene and propane (process2). Also, these cycles are compared with two staged cascade process using only a Inter-cooler (process1). The COP of process2 and process3 showed about 13.99% and 6.95% higher than process1, respectively. Also, the yield efficiency of LNG improved comparing with process1 by 13.99% lower specific power. Additionally, C3MR process are simulated and compared with Process 2.

Keywords: Cascade, C3MR, LNG, Inter-cooler

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7857
2781 Multi-Criteria Decision-Making Selection Model with Application to Chemical Engineering Management Decisions

Authors: Mohsen Pirdashti, Arezou Ghadi, Mehrdad Mohammadi, Gholamreza Shojatalab

Abstract:

Chemical industry project management involves complex decision making situations that require discerning abilities and methods to make sound decisions. Project managers are faced with decision environments and problems in projects that are complex. In this work, case study is Research and Development (R&D) project selection. R&D is an ongoing process for forward thinking technology-based chemical industries. R&D project selection is an important task for organizations with R&D project management. It is a multi-criteria problem which includes both tangible and intangible factors. The ability to make sound decisions is very important to success of R&D projects. Multiple-criteria decision making (MCDM) approaches are major parts of decision theory and analysis. This paper presents all of MCDM approaches for use in R&D project selection. It is hoped that this work will provide a ready reference on MCDM and this will encourage the application of the MCDM by chemical engineering management.

Keywords: Chemical Engineering, R&D Project, MCDM, Selection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4023
2780 Innovation at the Faculty-level Education through Service Learning

Authors: Nives Mikelic Preradovic, Damir Boras, Tomislava Lauc

Abstract:

The paper presents the service learning project titled DicDucFac (idea-leadership-product), that was planned and conducted by the team of information sciences students. It was planned as a workshop dealing with the application of modern social media (Facebook, YouTube, Gmail) for the purposes of selfpromotion, free advertising via social networks and marketing own ideas and/or products in the virtual world. The workshop was organized for highly-skilled computer literate unemployed youth. These youth, as final beneficiaries, will be able to apply what they learned in this workshop to “the real world“, increasing their chances for employment and self-employment. The results of the project reveal that the basic, active-learning principles embodied in our teaching approach allow students to learn more effectively and gain essential life skills (from computer applications to teamwork) that can only be learned by doing. It also shows that our students received the essentials of professional ethics and citizenship through direct, personal engagement in professional activities and the life of the community.

Keywords: Service Learning, Innovation, Engaged Citizenship, Leadership, Social Networks, Marketing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1956
2779 Mathematical Modelling and Numerical Simulation of Maisotsenko Cycle

Authors: Rasikh Tariq, Fatima Z. Benarab

Abstract:

Evaporative coolers has a minimum potential to reach the wet-bulb temperature of intake air which is not enough to handle a large cooling load; therefore, it is not a feasible option to overcome cooling requirement of a building. The invention of Maisotsenko (M) cycle has led evaporative cooling technology to reach the sub-wet-bulb temperature of the intake air; therefore, it brings an innovation in evaporative cooling techniques. In this work, we developed a mathematical model of the Maisotsenko based air cooler by applying energy and mass balance laws on different air channels. The governing ordinary differential equations are discretized and simulated on MATLAB. The temperature and the humidity plots are shown in the simulation results. A parametric study is conducted by varying working air inlet conditions (temperature and humidity), inlet air velocity, geometric parameters and water temperature. The influence of these aforementioned parameters on the cooling effectiveness of the HMX is reported.  Results have shown that the effectiveness of the M-Cycle is increased by increasing the ambient temperature and decreasing absolute humidity. An air velocity of 0.5 m/sec and a channel height of 6-8mm is recommended.

Keywords: Renewable energy, indirect evaporative cooling, Maisotsenko cycle, HMX, mathematical model, numerical simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1216
2778 An Overview of Project Management Application in Computational Fluid Dynamics

Authors: Sajith Sajeev

Abstract:

The application of Computational Fluid Dynamics (CFD) is widespread in engineering and industry, including aerospace, automotive, and energy. CFD simulations necessitate the use of intricate mathematical models and a substantial amount of computational power to accurately describe the behavior of fluids. The implementation of CFD projects can be difficult, and a well-structured approach to project management is required to assure the timely and cost-effective delivery of high-quality results. This paper's objective is to provide an overview of project management in CFD, including its problems, methodologies, and best practices. The study opens with a discussion of the difficulties connected with CFD project management, such as the complexity of the mathematical models, the need for extensive computational resources, and the difficulties associated with validating and verifying the results. In addition, the study examines the project management methodologies typically employed in CFD, such as the Traditional/Waterfall model, Agile and Scrum. Comparisons are made between the advantages and disadvantages of each technique, and suggestions are made for their effective implementation in CFD projects. The study concludes with a discussion of the best practices for project management in CFD, including the utilization of a well-defined project scope, a clear project plan, and effective teamwork. In addition, it highlights the significance of continuous process improvement and the utilization of metrics to monitor progress and discover improvement opportunities. This article is a resource for project managers, researchers, and practitioners in the field of CFD. It can aid in enhancing project outcomes, reducing risks, and enhancing the productivity of CFD projects. This paper provides a complete overview of project management in CFD and is a great resource for individuals who wish to implement efficient project management methods in CFD projects.

Keywords: Project management, Computational Fluid Dynamics, Traditional/Waterfall methodology, agile methodology, scrum methodology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 639
2777 First and Second Analysis on the Reheat Organic Rankine Cycle

Authors: E. Moradimaram, H. Sayehvand

Abstract:

In recent years the increasing use of fossil fuels has led to various environmental problems including urban pollution, ozone layer depletion and acid rains. Moreover, with the increased number of industrial centers and higher consumption of these fuels, the end point of the fossil energy reserves has become more evident. Considering the environmental pollution caused by fossil fuels and their limited availability, renewable sources can be considered as the main substitute for non-renewable resources. One of these resources is the Organic Rankine Cycles (ORCs). These cycles while having high safety, have low maintenance requirements. Combining the ORCs with other systems, such as ejector and reheater will increase overall cycle efficiency. In this study, ejector and reheater are used to improve the thermal efficiency (ηth), exergy efficiency (η_ex) and net output power (w_net); therefore, the ORCs with reheater (RORCs) are proposed. A computational program has been developed to calculate the thermodynamic parameters required in Engineering Equations Solver (EES). In this program, the analysis of the first and second law in RORC is conducted, and a comparison is made between them and the ORCs with Ejector (EORC). R245fa is selected as the working fluid and water is chosen as low temperature heat source with a temperature of 95 °C and a mass transfer rate of 1 kg/s. The pressures of the second evaporator and reheater are optimized in terms of maximum exergy efficiency. The environment is at 298.15 k and at 101.325 kpa. The results indicate that the thermodynamic parameters in the RORC have improved compared to EORC.

Keywords: Organic rankine cycle, organic rankine cycle with reheater, organic rankine cycle with ejector, exergy efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 923
2776 Usage of Military Continuity Management System for Supporting of Emergency Management

Authors: R. Hajkova, J. Palecek, H. Malachova, A. Oulehlova

Abstract:

Ensuring of continuity of business is basic strategy of every company. Continuity of organization activities includes comprehensive procedures that help in solving unexpected situations of natural and anthropogenic character (for example flood, blaze, economic situations). Planning of continuity operations is a process that helps identify critical processes and implement plans for the security and recovery of key processes. The aim of this article is to demonstrate application of system approach to managing business continuity called business continuity management systems in military issues. This article describes the life cycle of business continuity management which is based on the established cycle PDCA (Plan- Do-Check-Act). After this is carried out by activities which are making by University of Defence during activation of forces and means of the integrated rescue system in case of emergencies - accidents at a nuclear power plant in Czech Republic. Activities of various stages of deployment earmarked forces and resources are managed and evaluated by using MCMS application (Military Continuity Management System).

Keywords: Business continuity management system, emergency management, military, nuclear safety.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2076
2775 The Relationship of Building Information Modeling (BIM) Capability in Quantity Surveying Practice and Project Performance

Authors: P. F. Wong, H. Salleh, F. A. Rahim

Abstract:

The adoption of building information modeling (BIM) is increasing in the construction industry. However, quantity surveyors are slow in adoption compared to other professions due to lack of awareness of the BIM’s potential in their profession. It is still unclear on how BIM application can enhance quantity surveyors’ work performance and project performance. The aim of this research is to identify the capabilities of BIM in quantity surveying practices and examine the relationship between BIM capabilities and project performance. Questionnaire survey and interviews were adopted for data collection. Literature reviews identified there are eleven BIM capabilities in quantity surveying practice. Questionnaire results showed that there are several BIM capabilities significantly correlated with project performance in time, cost and quality aspects and the results were validated through interviews. These findings show that BIM has the capabilities to enhance quantity surveyors’ performances and subsequently improved project performance.

Keywords: Building information modeling (BIM), quantity surveyors, capability, project performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7192
2774 Neural Network Based Approach of Software Maintenance Prediction for Laboratory Information System

Authors: Vuk M. Popovic, Dunja D. Popovic

Abstract:

Software maintenance phase is started once a software project has been developed and delivered. After that, any modification to it corresponds to maintenance. Software maintenance involves modifications to keep a software project usable in a changed or a changing environment, to correct discovered faults, and modifications, and to improve performance or maintainability. Software maintenance and management of software maintenance are recognized as two most important and most expensive processes in a life of a software product. This research is basing the prediction of maintenance, on risks and time evaluation, and using them as data sets for working with neural networks. The aim of this paper is to provide support to project maintenance managers. They will be able to pass the issues planned for the next software-service-patch to the experts, for risk and working time evaluation, and afterward to put all data to neural networks in order to get software maintenance prediction. This process will lead to the more accurate prediction of the working hours needed for the software-service-patch, which will eventually lead to better planning of budget for the software maintenance projects.

Keywords: Laboratory information system, maintenance engineering, neural networks, software maintenance, software maintenance costs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1068
2773 Signal Generator Circuit Carrying Information as Embedded Features from Multi-Transducer Signals

Authors: Sheroz Khan, Mustafa Zeki, Shihab Abdel Hameed, AHM Zahirul Alam, Aisha Hassan Abdalla, A. F. Salami, W. A. Lawal

Abstract:

A novel circuit for generating a signal embedded with features about data from three sensors is presented. This suggested circuit is making use of a resistance-to-time converter employing a bridge amplifier, an integrator and a comparator. The second resistive sensor (Rz) is transformed into duty cycle. Another bridge with varying resistor, (Ry) in the feedback of an OP AMP is added in series to change the amplitude of the resulting signal in a proportional relationship while keeping the same frequency and duty cycle representing proportional changes in resistors Rx and Rz already mentioned. The resultant output signal carries three types of information embedded as variations of its frequency, duty cycle and amplitude.

Keywords: Integrator, Comparator, Bridge Circuit, Resistanceto-Time Converter, Conditioning Circuit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1336
2772 Optimization of Solar Rankine Cycle by Exergy Analysis and Genetic Algorithm

Authors: R. Akbari, M. A. Ehyaei, R. Shahi Shavvon

Abstract:

Nowadays, solar energy is used for energy purposes such as the use of thermal energy for domestic, industrial and power applications, as well as the conversion of the sunlight into electricity by photovoltaic cells. In this study, the thermodynamic simulation of the solar Rankin cycle with phase change material (paraffin) was first studied. Then energy and exergy analyses were performed. For optimization, a single and multi-objective genetic optimization algorithm to maximize thermal and exergy efficiency was used. The parameters discussed in this paper included the effects of input pressure on turbines, input mass flow to turbines, the surface of converters and collector angles on thermal and exergy efficiency. In the organic Rankin cycle, where solar energy is used as input energy, the fluid selection is considered as a necessary factor to achieve reliable and efficient operation. Therefore, silicon oil is selected for a high-temperature cycle and water for a low-temperature cycle as an operating fluid. The results showed that increasing the mass flow to turbines 1 and 2 would increase thermal efficiency, while it reduces and increases the exergy efficiency in turbines 1 and 2, respectively. Increasing the inlet pressure to the turbine 1 decreases the thermal and exergy efficiency, and increasing the inlet pressure to the turbine 2 increases the thermal efficiency and exergy efficiency. Also, increasing the angle of the collector increased thermal efficiency and exergy. The thermal efficiency of the system was 22.3% which improves to 33.2 and 27.2% in single-objective and multi-objective optimization, respectively. Also, the exergy efficiency of the system was 1.33% which has been improved to 1.719 and 1.529% in single-objective and multi-objective optimization, respectively. These results showed that the thermal and exergy efficiency in a single-objective optimization is greater than the multi-objective optimization.

Keywords: Exergy analysis, Genetic algorithm, Rankine cycle, Single and Multi-objective function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 579
2771 Wind Power Mapping and NPV of Embedded Generation Systems in Nigeria

Authors: Oluseyi O. Ajayi, Ohiose D. Ohijeagbon, Mercy Ogbonnaya, Ameh Attabo

Abstract:

The study assessed the potential and economic viability of stand-alone wind systems for embedded generation, taking into account its benefits to small off-grid rural communities at 40 meteorological sites in Nigeria. A specific electric load profile was developed to accommodate communities consisting of 200 homes, a school and a community health centre. This load profile was incorporated within the distributed generation analysis producing energy in the MW range, while optimally meeting daily load demand for the rural communities. Twenty-four years (1987 to 2010) of wind speed data at a height of 10m utilized for the study were sourced from the Nigeria Meteorological Department, Oshodi. The HOMER® software optimizing tool was engaged for the feasibility study and design. Each site was suited to 3MW wind turbines in sets of five, thus 15MW was designed for each site. This design configuration was adopted in order to easily compare the distributed generation system amongst the sites to determine their relative economic viability in terms of life cycle cost, as well as levelised cost of producing energy. A net present value was estimated in terms of life cycle cost for 25 of the 40 meteorological sites. On the other hand, the remaining sites yielded a net present cost; meaning the installations at these locations were not economically viable when utilizing the present tariff regime for embedded generation in Nigeria.

Keywords: Wind speed, wind power, distributed generation, cost per kilowatt-hour, clean energy, Nigeria.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1393
2770 Design and Implementation of Project Time Management Risk Assessment Tool for SME Projects using Oracle Application Express

Authors: Abdullahi Mohamud Sharif, Mohd. Zaidi Abd. Rozan

Abstract:

Risk Assessment Tool (RAT) is an expert system that assesses, monitors, and gives preliminary treatments automatically based on the project plan. In this paper, a review was taken out for the current project time management risk assessment tools for SME software development projects, analyze risk assessment parameters, conditions, scenarios, and finally propose risk assessment tool (RAT) model to assess, treat, and monitor risks. An implementation prototype system is developed to validate the model.

Keywords: Project Time Management, Risk Assessment Tool(RAT), Small and Medium Enterprises (SME).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2272
2769 Concept to Enhance the Project Success and Promote the Implementation of Success Factors in Infrastructure Projects

Authors: A. Elbaz, K. Spang

Abstract:

Infrastructure projects are often subjected to delays and cost overruns and mistakenly described as unsuccessful projects. These projects have many peculiarities such as public attention, impact on the environment, subjected to special regulations, etc. They also deal with several stakeholders with different motivations and face unique risks. With this in mind we need to reconsider our approach to manage them, define their success factors and implement these success factors. Infrastructure projects are not only lacking a unified meaning of project success or a definition of success factors, but also a clear method to implement these factors. This paper investigates this gap and introduces a concept to implement success factors in an efficient way, taking into consideration the specific characteristics of infrastructure projects. This concept consists of six enablers such as project organization, project team, project management workflow, contract management, communication and knowledge transfer and project documentations. These enablers allow other success factors to be efficiently implemented in projects. In conclusion, this paper provides project managers as well as company managers with a tool to define and implement success factors efficiently in their projects, along with upgrading their assets for the coming projects. This tool consists of processes and validated checklists to ensure the best use of company resources and knowledge. Due to the special features of infrastructure projects this tool will be tested in the German infrastructure market. However, it is meant to be adaptable to other markets and industries.

Keywords: Infrastructure projects, enablers, project success, success factors, transportation projects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 907
2768 Effect of Time Delay on the Transmission of Dengue Fever

Authors: K. Patanarapelert, I.M. Tang

Abstract:

The effect of a time delay on the transmission on dengue fever is studied. The time delay is due to the presence of an incubation period for the dengue virus to develop in the mosquito before the mosquito becomes infectious. The conditions for the existence of a Hopf bifurcation to limit cycle behavior are established. The conditions are different from the usual one and they are based on whether a particular third degree polynomial has positive real roots. A theorem for determining whether for a given set of parameter values, a critical delay time exist is given. It is found that for a set of realistic values of the parameters in the model, a Hopf bifurcation can not occur. For a set of unrealistic values of some of the parameters, it is shown that a Hopf bifurcation can occur. Numerical solutions using this last set show the trajectory of two of the variables making a transition from a spiraling orbit to a limit cycle orbit.

Keywords: Dengue fever transmission, time delay, Hopfbifurcation, limit cycle behavior

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1752