Search results for: minimally invasive surgery
187 A Ring-Shaped Tri-Axial Force Sensor for Minimally Invasive Surgery
Authors: Beibei Han, Yong-Jin Yoon, Muhammad Hamidullah, Angel Tsu-Hui Lin, Woo-Tae Park
Abstract:
This paper presents the design of a ring-shaped tri-axial fore sensor that can be incorporated into the tip of a guidewire for use in minimally invasive surgery (MIS). The designed sensor comprises a ring-shaped structure located at the center of four cantilever beams. The ringdesign allows surgical tools to be easily passed through which largely simplified the integration process. Silicon nanowires (SiNWs) are used aspiezoresistive sensing elementsembeddedon the four cantilevers of the sensor to detect the resistance change caused by the applied load.An integration scheme with new designed guidewire tip structure having two coils at the distal end is presented. Finite element modeling has been employed in the sensor design to find the maximum stress location in order to put the SiNWs at the high stress regions to obtain maximum output. A maximum applicable force of 5 mN is found from modeling. The interaction mechanism between the designed sensor and a steel wire has been modeled by FEM. A linear relationship between the applied load on the steel wire and the induced stress on the SiNWs were observed.
Keywords: Triaxial MEMS force sensor, Ring shape, Silicon Nanowire, Minimally invasive surgery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2277186 FEM Analysis of the Interaction between a Piezoresistive Tactile Sensor and Biological Tissues
Authors: Ahmad Atieh, Masoud Kalantari, Roozbeh Ahmadi, Javad Dargahi, Muthukumaran Packirisamy, Mehrdad Hosseini Zadeh
Abstract:
The present paper presents a finite element model and analysis for the interaction between a piezoresistive tactile sensor and biological tissues. The tactile sensor is proposed for use in minimally invasive surgery to deliver tactile information of biological tissues to surgeons. The proposed sensor measures the relative hardness of soft contact objects as well as the contact force. Silicone rubbers were used as the phantom of biological tissues. Finite element analysis of the silicone rubbers and the mechanical structure of the sensor were performed using COMSOL Multiphysics (v3.4) environment. The simulation results verify the capability of the sensor to be used to differentiate between different kinds of silicone rubber materials.Keywords: finite element analysis, minimally invasive surgery, Neo-Hookean hyperelastic materials, tactile sensor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2762185 A Force Measurement Evaluation Tool for Telerobotic Cutting Applications: Development of an Effective Characterization Platform
Authors: Dean J. Callaghan, Mark M. McGrath
Abstract:
Sensorized instruments that accurately measure the interaction forces (between biological tissue and instrument endeffector) during surgical procedures offer surgeons a greater sense of immersion during minimally invasive robotic surgery. Although there is ongoing research into force measurement involving surgical graspers little corresponding effort has been carried out on the measurement of forces between scissor blades and tissue. This paper presents the design and development of a force measurement test apparatus, which will serve as a sensor characterization and evaluation platform. The primary aim of the experiments is to ascertain whether the system can differentiate between tissue samples with differing mechanical properties in a reliable, repeatable manner. Force-angular displacement curves highlight trends in the cutting process as well the forces generated along the blade during a cutting procedure. Future applications of the test equipment will involve the assessment of new direct force sensing technologies for telerobotic surgery.
Keywords: Force measurement, minimally invasive surgery, scissor blades, tissue cutting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1835184 Design, Modeling and Fabrication of a Tactile Sensor and Display System for Application in Laparoscopic Surgery
Authors: M. Ramezanifard, J. Dargahi, S. Najarian, N. Narayanan
Abstract:
One of the major disadvantages of the minimally invasive surgery (MIS) is the lack of tactile feedback to the surgeon. In order to identify and avoid any damage to the grasped complex tissue by endoscopic graspers, it is important to measure the local softness of tissue during MIS. One way to display the measured softness to the surgeon is a graphical method. In this paper, a new tactile sensor has been reported. The tactile sensor consists of an array of four softness sensors, which are integrated into the jaws of a modified commercial endoscopic grasper. Each individual softness sensor consists of two piezoelectric polymer Polyvinylidene Fluoride (PVDF) films, which are positioned below a rigid and a compliant cylinder. The compliant cylinder is fabricated using a micro molding technique. The combination of output voltages from PVDF films is used to determine the softness of the grasped object. The theoretical analysis of the sensor is also presented. A method has been developed with the aim of reproducing the tactile softness to the surgeon by using a graphical method. In this approach, the proposed system, including the interfacing and the data acquisition card, receives signals from the array of softness sensors. After the signals are processed, the tactile information is displayed by means of a color coding method. It is shown that the degrees of softness of the grasped objects/tissues can be visually differentiated and displayed on a monitor.Keywords: Minimally invasive surgery, Robotic surgery, Sensor, Softness, Tactile.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1709183 Evaluation of a New Method for Detection of Kidney Stone during Laparoscopy Using 3D Conceptual Modeling
Authors: Elnaz Afshari, Siamak Najarian, Naser Simforoosh, Siamak Hajizadeh Farkoush
Abstract:
Minimally invasive surgery (MIS) is now being widely used as a preferred choice for various types of operations. The need to detect various tactile properties, justifies the key role of tactile sensing that is currently missing in MIS. In this regard, Laparoscopy is one of the methods of minimally invasive surgery that can be used in kidney stone removal surgeries. At this moment, determination of the exact location of stone during laparoscopy is one of the limitations of this method that no scientific solution has been found for so far. Artificial tactile sensing is a new method for obtaining the characteristics of a hard object embedded in a soft tissue. Artificial palpation is an important application of artificial tactile sensing that can be used in different types of surgeries. In this study, a new method for determining the exact location of stone during laparoscopy is presented. In the present study, the effects of stone existence on the surface of kidney were investigated using conceptual 3D model of kidney containing a simulated stone. Having imitated palpation and modeled it conceptually, indications of stone existence that appear on the surface of kidney were determined. A number of different cases were created and solved by the software and using stress distribution contours and stress graphs, it is illustrated that the created stress patterns on the surface of kidney show not only the existence of stone inside, but also its exact location. So three-dimensional analysis leads to a novel method of predicting the exact location of stone and can be directly applied to the incorporation of tactile sensing in artificial palpation, helping surgeons in non-invasive procedures.
Keywords: Kidney Stone, Laparoscopic Surgery, Artificial Tactile Sensing, Finite Element Method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1793182 A New Rigid Fistulectomy Set for Minimally Invasive “Core-Out“ Excision of High Anal Fistulas
Authors: Siamak Najarian, Meysam Esmaeili, Mohsen Towliat Kashani
Abstract:
In this article, we propose a new surgical device for circumferentially excision of high anal fistulas in a minimally invasive manner. The new apparatus works on the basis of axially rotating and moving a tubular blade along a fistulous tract straightened using a rigid straight guidewire. As the blade moves along the tract, its sharp circular cutting edge circumferentially separates approximately 2.25 mm thickness of tract encircling the rigid guidewire. We used the new set to excise two anal fistulas in a 62-year-old male patient, an extrasphincteric type and a long tract with no internal opening. With regard to the results of this test, the new device can be considered as a sphincter preserving mechanism for treatment of high anal fistulas. Consequently, a major reduction in the risk of fecal incontinence, recurrence rate, convalescence period and patient morbidity may be achieved using the new device for treatment of fistula-in-ano.Keywords: Fecal Incontinence, Fistulectomy, High Anal Fistula, Minimally Invasive.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1730181 Low-Cost Robotic-Assisted Laparoscope
Authors: Ege Can Onal, Enver Ersen, Meltem Elitas
Abstract:
Laparoscopy is a surgical operation, well known as keyhole surgery. The operation is performed through small holes, hence, scars of a patient become much smaller, patients can recover in a short time and the hospital stay becomes shorter in comparison to an open surgery. Several tools are used at laparoscopic operations; among them, the laparoscope has a crucial role. It provides the vision during the operation, which will be the main focus in here. Since the operation area is very small, motion of the surgical tools might be limited in laparoscopic operations compared to traditional surgeries. To overcome this limitation, most of the laparoscopic tools have become more precise, dexterous, multi-functional or automated. Here, we present a robotic-assisted laparoscope that is controlled with pedals directly by a surgeon. Thus, the movement of the laparoscope might be controlled better, so there will not be a need to calibrate the camera during the operation. The need for an assistant that controls the movement of the laparoscope will be eliminated. The duration of the laparoscopic operation might be shorter since the surgeon will directly operate the camera.
Keywords: Laparoscope, laparoscopy, low-cost, minimally invasive surgery, robotic-assisted surgery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 949180 Modeling and Analysis of the Effects of Nephrolithiasis in Kidney Using a Computational Tactile Sensing Approach
Authors: Elnaz Afshari, Siamak Najarian
Abstract:
Having considered tactile sensing and palpation of a surgeon in order to detect kidney stone during open surgery; we present the 2D model of nephrolithiasis (two dimensional model of kidney containing a simulated stone). The effects of stone existence that appear on the surface of kidney (because of exerting mechanical load) are determined. Using Finite element method, it is illustrated that the created stress patterns on the surface of kidney and stress graphs not only show existence of stone inside kidney, but also show its exact location.Keywords: Nephrolithiasis, Minimally Invasive Surgery, Artificial Tactile Sensing, Finite Element Method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1361179 Tactile Sensory Digit Feedback for Cochlear Implant Electrode Insertion
Authors: Yusuf Bulale, Mark Prince, Geoff Tansley, Peter Brett
Abstract:
Cochlear Implantation (CI) which became a routine procedure for the last decades is an electronic device that provides a sense of sound for patients who are severely and profoundly deaf. The optimal success of this implantation depends on the electrode technology and deep insertion techniques. However, this manual insertion procedure may cause mechanical trauma which can lead to severe destruction of the delicate intracochlear structure. Accordingly, future improvement of the cochlear electrode implant insertion needs reduction of the excessive force application during the cochlear implantation which causes tissue damage and trauma. This study is examined tool-tissue interaction of large prototype scale digit embedded with distributive tactile sensor based upon cochlear electrode and large prototype scale cochlea phantom for simulating the human cochlear which could lead to small scale digit requirements. The digit, distributive tactile sensors embedded with silicon-substrate was inserted into the cochlea phantom to measure any digit/phantom interaction and position of the digit in order to minimize tissue and trauma damage during the electrode cochlear insertion. The digit have provided tactile information from the digitphantom insertion interaction such as contact status, tip penetration, obstacles, relative shape and location, contact orientation and multiple contacts. The tests demonstrated that even devices of such a relative simple design with low cost have potential to improve cochlear implant surgery and other lumen mapping applications by providing tactile sensory feedback information and thus controlling the insertion through sensing and control of the tip of the implant during the insertion. In that approach, the surgeon could minimize the tissue damage and potential damage to the delicate structures within the cochlear caused by current manual electrode insertion of the cochlear implantation. This approach also can be applied to other minimally invasive surgery applications as well as diagnosis and path navigation procedures.Keywords: Cochlear electrode insertion, distributive tactile sensory feedback information, flexible digit, minimally invasive surgery, tool/tissue interaction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2179178 In Search of Robustness and Efficiency via l1− and l2− Regularized Optimization for Physiological Motion Compensation
Authors: Angelica I. Aviles, Pilar Sobrevilla, Alicia Casals
Abstract:
Compensating physiological motion in the context of minimally invasive cardiac surgery has become an attractive issue since it outperforms traditional cardiac procedures offering remarkable benefits. Owing to space restrictions, computer vision techniques have proven to be the most practical and suitable solution. However, the lack of robustness and efficiency of existing methods make physiological motion compensation an open and challenging problem. This work focusses on increasing robustness and efficiency via exploration of the classes of 1−and 2−regularized optimization, emphasizing the use of explicit regularization. Both approaches are based on natural features of the heart using intensity information. Results pointed out the 1−regularized optimization class as the best since it offered the shortest computational cost, the smallest average error and it proved to work even under complex deformations.
Keywords: Motion Compensation, Optimization, Regularization, Beating Heart Surgery, Ill-posed problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2027177 Side Effects of Dental Tooth Whitening: Data from Literature
Authors: Saimir Heta, Ilma Robo, Emela Dalloshi, Nevila Alliu, Vera Ostreni
Abstract:
The dental whitening process, beyond the fact that it is a mini-invasive dental treatment, has effects on the dental structure or on the pulp of the tooth where it is applied. The electronic search was performed using keywords to find articles published within the last 10 years about side effects, assessed as such, of the minimally invasive dental bleaching treatment. The aim of the study was to evaluate the side effects of bleaching based on the percentage and type of solution used, where the latter was evaluated on the basic solution used for bleaching. The side effects of bleaching are evaluated in selected articles depending on the method of bleaching application, which means it is carried out with recommended solutions, or with mixtures of alternative solutions or substances based on Internet information. The dental bleaching process has side effects which have not yet been definitively evaluated, experimentally in large samples of individuals or animals (mice or cattle) to arrive at accurate numerical conclusions. The trend of publications about this topic is increasing in recent years, as long as the trend for aesthetic facial treatments, including dental ones, is increasing.
Keywords: Teeth whitening, side effects, permanent teeth, formed dental apex.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20176 Bioarm, a Prostheses without Surgery
Authors: J. Sagouis, A. Chamel, E. Carre, C. Casasreales, G. Rudnik, M. Cerdan
Abstract:
Robotics provides answers to amputees. The most expensive solutions surgically connect the prosthesis to nerve endings. There are also several types of non-invasive technologies that recover nerve messages passing through the muscles. After analyzing these messages, myoelectric prostheses perform the desired movement. The main goal is to avoid all surgeries, which can be heavy and offer cheaper alternatives. For an amputee, we use valid muscles to recover the electrical signal involved in a muscle movement. EMG sensors placed on the muscle allows us to measure a potential difference, which our program transforms into control for a robotic arm with two degrees of freedom. We have shown the feasibility of non-invasive prostheses with two degrees of freedom. Signal analysis and an increase in degrees of freedom is still being improved.
Keywords: Prosthesis, electromyography (EMG), robotic arm, nerve message.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1874175 International E-Learning for Assuring Ergonomic Working Conditions of Orthopaedic Surgeons: First Research Outcomes from Train4OrthoMIS
Authors: J. Bartnicka, J. A. Piedrabuena, R. Portilla, L. Moyano - Cuevas, J. B. Pagador, P. Augat, J. Tokarczyk, F. M. Sánchez Margallo
Abstract:
Orthopaedic surgeries are characterized by a high degree of complexity. This is reflected by four main groups of resources: 1) surgical team which is consisted of people with different competencies, educational backgrounds and positions; 2) information and knowledge about medical and technical aspects of surgery; 3) medical equipment including surgical tools and materials; 4) space infrastructure which is important from an operating room layout point of view. These all components must be integrated and build a homogeneous organism for achieving an efficient and ergonomically correct surgical workflow. Taking this as a background, there was formulated a concept of international project, called “Online Vocational Training course on ergonomics for orthopaedic Minimally Invasive” (Train4OrthoMIS), which aim is to develop an e-learning tool available in 4 languages (English, Spanish, Polish and German). In the article, there is presented the first project research outcomes focused on three aspects: 1) ergonomic needs of surgeons who work in hospitals around different European countries, 2) the concept of structure of e-learning course, 3) the definition of tools and methods for knowledge assessment adjusted to users’ expectation. The methodology was based on the expert panels and two types of surveys: 1) on training needs, 2) on evaluation and self-assessment preferences. The major findings of the study allowed describing the subjects of four training modules and learning sessions. According to peoples’ opinion there were defined most expected test methods which are single choice test and right after quizzes: “True or False” and “Link elements” The first project outcomes confirmed the necessity of creating a universal training tool for orthopaedic surgeons regardless of the country in which they work. Because of limited time that surgeons have, the e-learning course should be strictly adjusted to their expectation in order to be useful.Keywords: International e-learning, ergonomics, orthopaedic surgery, Train4OrthoMIS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1439174 A Numerical Strategy to Design Maneuverable Micro-Biomedical Swimming Robots Based on Biomimetic Flagellar Propulsion
Authors: Arash Taheri, Meysam Mohammadi-Amin, Seyed Hossein Moosavy
Abstract:
Medical applications are among the most impactful areas of microrobotics. The ultimate goal of medical microrobots is to reach currently inaccessible areas of the human body and carry out a host of complex operations such as minimally invasive surgery (MIS), highly localized drug delivery, and screening for diseases at their very early stages. Miniature, safe and efficient propulsion systems hold the key to maturing this technology but they pose significant challenges. A new type of propulsion developed recently, uses multi-flagella architecture inspired by the motility mechanism of prokaryotic microorganisms. There is a lack of efficient methods for designing this type of propulsion system. The goal of this paper is to overcome the lack and this way, a numerical strategy is proposed to design multi-flagella propulsion systems. The strategy is based on the implementation of the regularized stokeslet and rotlet theory, RFT theory and new approach of “local corrected velocity". The effects of shape parameters and angular velocities of each flagellum on overall flow field and on the robot net forces and moments are considered. Then a multi-layer perceptron artificial neural network is designed and employed to adjust the angular velocities of the motors for propulsion control. The proposed method applied successfully on a sample configuration and useful demonstrative results is obtained.Keywords: Artificial Neural Network, Biomimetic Microrobots, Flagellar Propulsion, Swimming Robots.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1909173 Blood Glucose Measurement and Analysis: Methodology
Authors: I. M. Abd Rahim, H. Abdul Rahim, R. Ghazali
Abstract:
There is numerous non-invasive blood glucose measurement technique developed by researchers, and near infrared (NIR) is the potential technique nowadays. However, there are some disagreements on the optimal wavelength range that is suitable to be used as the reference of the glucose substance in the blood. This paper focuses on the experimental data collection technique and also the analysis method used to analyze the data gained from the experiment. The selection of suitable linear and non-linear model structure is essential in prediction system, as the system developed need to be conceivably accurate.Keywords: Invasive, linear, near-infrared (Nir), non-invasive, non-linear, prediction system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 857172 A Novel Method for Non-Invasive Diagnosis of Hepatitis C Virus Using Electromagnetic Signal Detection: A Multicenter International Study
Authors: Gamal Shiha, Waleed Samir, Zahid Azam, Premashis Kar, Saeed Hamid, Shiv Sarin
Abstract:
A simple, rapid and non-invasive electromagnetic sensor (C-FAST device) was- patented; for diagnosis of HCV RNA. Aim: To test the validity of the device compared to standard HCV PCR. Subjects and Methods: The first phase was done as pilot in Egypt on 79 participants; the second phase was done in five centers: one center from Egypt, two centers from Pakistan and two centers from India (800, 92 and 113 subjects respectively). The third phase was done nationally as multicenter study on (1600) participants for ensuring its representativeness. Results: When compared to PCR technique, C-FAST device revealed sensitivity 95% to 100%, specificity 95.5% to 100%, PPV 89.5% to 100%, NPV 95% to 100% and positive likelihood ratios 21.8% to 38.5%. Conclusion: It is practical evidence that HCV nucleotides emit electromagnetic signals that can be used for its identification. As compared to PCR, C-FAST is an accurate, valid and non-invasive device.
Keywords: C-FAST- a valid and reliable device, Distant cellular interaction, Electromagnetic signal detection, Non-invasive diagnosis of HCV.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18050171 Analysis of Endovascular Graft Features Affecting Endotension Following Endovascular Aneurysm Repair
Authors: Zeinab Hooshyar, Alireza Mehdizadeh
Abstract:
Endovascular aneurysm repair is a new and minimally invasive repair for patients with abdominal aortic aneurysm (AAA). This method has potential advantages that are incomparable with other repair methods. However, the enlargement of aneurysm in the absence of endoleak, which is known as endotension, may occur as one of post-operative compliances of this method. Typically, endotension is mainly as a result of pressure transmitted to aneurysm sac by endovascular installed graft. After installation of graft the aneurysm sac reduces significantly but remains non-zero. There are some factors which affect this pressure transmitted. In this study, the geometry features of installed vascular graft have been considered. It is inferred that graft neck angle and iliac bifurcation angle are two factors which can affect the drag force on graft and consequently the pressure transmitted to aneurysm.
Keywords: Endovascular graft, transmitted pressure, Drag force, Finite Element Modeling, neck angle, iliac bifurcation angle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1567170 Development of a Real-Time Simulink Based Robotic System to Study Force Feedback Mechanism during Instrument-Object Interaction
Authors: Jaydip M. Desai, Antonio Valdevit, Arthur Ritter
Abstract:
Robotic surgery is used to enhance minimally invasive surgical procedure. It provides greater degree of freedom for surgical tools but lacks of haptic feedback system to provide sense of touch to the surgeon. Surgical robots work on master-slave operation, where user is a master and robotic arms are the slaves. Current, surgical robots provide precise control of the surgical tools, but heavily rely on visual feedback, which sometimes cause damage to the inner organs. The goal of this research was to design and develop a realtime Simulink based robotic system to study force feedback mechanism during instrument-object interaction. Setup includes three VelmexXSlide assembly (XYZ Stage) for three dimensional movement, an end effector assembly for forceps, electronic circuit for four strain gages, two Novint Falcon 3D gaming controllers, microcontroller board with linear actuators, MATLAB and Simulink toolboxes. Strain gages were calibrated using Imada Digital Force Gauge device and tested with a hard-core wire to measure instrument-object interaction in the range of 0-35N. Designed Simulink model successfully acquires 3D coordinates from two Novint Falcon controllers and transfer coordinates to the XYZ stage and forceps. Simulink model also reads strain gages signal through 10-bit analog to digital converter resolution of a microcontroller assembly in real time, converts voltage into force and feedback the output signals to the Novint Falcon controller for force feedback mechanism. Experimental setup allows user to change forward kinematics algorithms to achieve the best-desired movement of the XYZ stage and forceps. This project combines haptic technology with surgical robot to provide sense of touch to the user controlling forceps through machine-computer interface.
Keywords: Haptic feedback, MATLAB, Simulink, Strain Gage, Surgical Robot.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3212169 Concept of Transforaminal Lumbar Interbody Fusion Cage Insertion Device
Authors: Sangram A. Sathe, Neha A. Madgulkar, Shruti S. Raut, S. P. Wadkar
Abstract:
Transforaminal lumbar interbody fusion (TLIF) surgeries have nowadays became popular for treatment of degenerated spinal disorders. The interbody fusion technique like TLIF maintains load bearing capacity of the spine and a suitable disc height. Currently many techniques have been introduced to cure Spondylolisthesis. This surgery provides greater rehabilitation of degenerative spines. While performing this TLIF surgery existing methods use guideway, which is a troublesome surgery technique as the use of two separate instruments is required to perform this surgery. This paper presents a concept which eliminates the use of guideway. This concept also eliminates problems that occur like reverting the cage. The concept discussed in this paper also gives high accuracy while performing surgery.Keywords: Degenerative disc diseases, pedicle screw, spine, spondylolisthesis, transforaminal lumbar interbody fusion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1376168 Blood Glucose Level Measurement from Breath Analysis
Authors: Tayyab Hassan, Talha Rehman, Qasim Abdul Aziz, Ahmad Salman
Abstract:
The constant monitoring of blood glucose level is necessary for maintaining health of patients and to alert medical specialists to take preemptive measures before the onset of any complication as a result of diabetes. The current clinical monitoring of blood glucose uses invasive methods repeatedly which are uncomfortable and may result in infections in diabetic patients. Several attempts have been made to develop non-invasive techniques for blood glucose measurement. In this regard, the existing methods are not reliable and are less accurate. Other approaches claiming high accuracy have not been tested on extended dataset, and thus, results are not statistically significant. It is a well-known fact that acetone concentration in breath has a direct relation with blood glucose level. In this paper, we have developed the first of its kind, reliable and high accuracy breath analyzer for non-invasive blood glucose measurement. The acetone concentration in breath was measured using MQ 138 sensor in the samples collected from local hospitals in Pakistan involving one hundred patients. The blood glucose levels of these patients are determined using conventional invasive clinical method. We propose a linear regression classifier that is trained to map breath acetone level to the collected blood glucose level achieving high accuracy.
Keywords: Blood glucose level, breath acetone concentration, diabetes, linear regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1550167 Biological Characterization of the New Invasive Brine Shrimp Artemia franciscana in Tunisia: Sabkhet Halk El-Menzel
Authors: Hachem Ben Naceur, Amel Ben Rejeb Jenhani, Mohamed Salah Romdhane
Abstract:
Endemic Artemia franciscana populations can be found throughout the American continent and also as an introduced specie in several country all over the world, such as in the Mediterranean region where Artemia franciscana was identified as an invasive specie replacing native Artemia parthenogenetica and Artemia salina. In the present study, the characterization of the new invasive Artemia franciscana reported from Sabkhet Halk El-Menzel (Tunisia) was done based on the cysts biometry, nauplii instar-I length, Adult sexual dimorphism and fatty acid profile. The mean value of the diameter of non-decapsulated and decapsulated cysts, chorion thickness and naupliar length is 235.8, 226.3, 4.75 and 426.8 μm, respectively. Sexual dimorphism for adults specimen showed that maximal distance between compound eyes, diameter for compound eyes, length of first antenna and the abdomen length compared to the total body length ratio, are the most important variables for males and females discrimination with a total contribution of 62.39 %. The analysis of fatty acid methyl esters profile of decapsulated cysts resulted in low levels of linolenic acid (LLA, C18:3n-3) and high levels of eicosapentaenoic acid (EPA, C20:5n-3) with 3.11 and 11.10 %, respectively. Low quantity of docosahexaenoic acid (DHA, 22:6n-3) was also observed with 0.17 mg.g-1 dry weight.
Keywords: Invasive Artemia franciscana, biometry, sexualdimorphism, fatty acid, Tunisia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1897166 Test Method Development for Evaluation of Process and Design Effect on Reinforced Tube
Authors: Cathal Merz, Gareth O’Donnell
Abstract:
Coil reinforced thin-walled (CRTW) tubes are used in medicine to treat problems affecting blood vessels within the body through minimally invasive procedures. The CRTW tube considered in this research makes up part of such a device and is inserted into the patient via their femoral or brachial arteries and manually navigated to the site in need of treatment. This procedure replaces the requirement to perform open surgery but is limited by reduction of blood vessel lumen diameter and increase in tortuosity of blood vessels deep in the brain. In order to maximize the capability of these procedures, CRTW tube devices are being manufactured with decreasing wall thicknesses in order to deliver treatment deeper into the body and to allow passage of other devices through its inner diameter. This introduces significant stresses to the device materials which have resulted in an observed increase in the breaking of the proximal segment of the device into two separate pieces after it has failed by buckling. As there is currently no international standard for measuring the mechanical properties of these CRTW tube devices, it is difficult to accurately analyze this problem. The aim of the current work is to address this discrepancy in the biomedical device industry by developing a measurement system that can be used to quantify the effect of process and design changes on CRTW tube performance, aiding in the development of better performing, next generation devices. Using materials testing frames, micro-computed tomography (micro-CT) imaging, experiment planning, analysis of variance (ANOVA), T-tests and regression analysis, test methods have been developed for assessing the impact of process and design changes on the device. The major findings of this study have been an insight into the suitability of buckle and three-point bend tests for the measurement of the effect of varying processing factors on the device’s performance, and guidelines for interpreting the output data from the test methods. The findings of this study are of significant interest with respect to verifying and validating key process and design changes associated with the device structure and material condition. Test method integrity evaluation is explored throughout.
Keywords: Buckling, coil reinforced thin-walled tubes, fracture, test method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 696165 An Ergonomic Handle Design for Instruments in Laparoscopic Surgery
Authors: Ramon Sancibrian, Carlos Redondo-Figuero, Maria C. Gutierrez-Diez, Esther G. Sarabia, Maria A. Benito-Gonzalez, Jose C. Manuel-Palazuelos
Abstract:
In this paper, the design and evaluation of a handle for laparoscopic surgery is presented. The design of the handle is based on ergonomic principles and tries to avoid awkward postures for surgeons. The handle combines the so-called power-grip and accurate-grip in order to provide strength and accuracy in the performance of surgery. The handle is tested using both objective and subjective approaches. The objective approach uses motion capture techniques to obtain the angles of forearm, arm, wrist and hand. The muscular effort is obtained with electromyography electrodes. On the other hand, a subjective survey has been carried out using questionnaires. Results confirm that the handle is preferred by the majority of the surgeons.
Keywords: Laparoscopic Surgery, Ergonomics, Mechanical Design, Biomechanics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2879164 Wireless Based System for Continuous Electrocardiography Monitoring during Surgery
Authors: K. Bensafia, A. Mansour, G. Le Maillot, B. Clement, O. Reynet, P. Ariès, S. Haddab
Abstract:
This paper presents a system designed for wireless acquisition, the recording of electrocardiogram (ECG) signals and the monitoring of the heart’s health during surgery. This wireless recording system allows us to visualize and monitor the state of the heart’s health during a surgery, even if the patient is moved from the operating theater to post anesthesia care unit. The acquired signal is transmitted via a Bluetooth unit to a PC where the data are displayed, stored and processed. To test the reliability of our system, a comparison between ECG signals processed by a conventional ECG monitoring system (Datex-Ohmeda) and by our wireless system is made. The comparison is based on the shape of the ECG signal, the duration of the QRS complex, the P and T waves, as well as the position of the ST segments with respect to the isoelectric line. The proposed system is presented and discussed. The results have confirmed that the use of Bluetooth during surgery does not affect the devices used and vice versa. Pre- and post-processing steps are briefly discussed. Experimental results are also provided.
Keywords: Electrocardiography, monitoring, surgery, wireless system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1048163 Development of a Non-invasive System to Measure the Thickness of the Subcutaneous Adipose Tissue Layer for Human
Authors: Hyuck Ki Hong, Young Chang Jo, Yeon Shik Choi, Beom Joon Kim, Hyo Derk Park
Abstract:
To measure the thickness of the subcutaneous adipose tissue layer, a non-invasive optical measurement system (λ=1300 nm) is introduced. Animal and human subjects are used for the experiments. The results of human subjects are compared with the data of ultrasound device measurements, and a high correlation (r=0.94 for n=11) is observed. There are two modes in the corresponding signals measured by the optical system, which can be explained by two-layered and three-layered tissue models. If the target tissue is thinner than the critical thickness, detected data using diffuse reflectance method follow the three-layered tissue model, so the data increase as the thickness increases. On the other hand, if the target tissue is thicker than the critical thickness, the data follow the two-layered tissue model, so they decrease as the thickness increases.Keywords: Subcutaneous adipose tissue layer, non-invasive measurement system, two-layered and three-layered tissue models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1845162 Machine Vision for the Inspection of Surgical Tasks: Applications to Robotic Surgery Systems
Authors: M. Ovinis, D. Kerr, K. Bouazza-Marouf, M. Vloeberghs
Abstract:
The use of machine vision to inspect the outcome of surgical tasks is investigated, with the aim of incorporating this approach in robotic surgery systems. Machine vision is a non-contact form of inspection i.e. no part of the vision system is in direct contact with the patient, and is therefore well suited for surgery where sterility is an important consideration,. As a proof-of-concept, three primary surgical tasks for a common neurosurgical procedure were inspected using machine vision. Experiments were performed on cadaveric pig heads to simulate the two possible outcomes i.e. satisfactory or unsatisfactory, for tasks involved in making a burr hole, namely incision, retraction, and drilling. We identify low level image features to distinguish the two outcomes, as well as report on results that validate our proposed approach. The potential of using machine vision in a surgical environment, and the challenges that must be addressed, are identified and discussed.Keywords: Visual inspection, machine vision, robotic surgery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1799161 A Modern Review of the Non-Invasive Continuous Blood Glucose Measuring Devices and Techniques for Remote Patient Monitoring System
Authors: Muhibul Haque Bhuyan
Abstract:
Diabetes disease that arises from the higher glucose level due to insulin shortage or insulin opposition in the human body has become a common disease in the world. No medicine can cure it completely. However, by taking medicine, maintaining diets, and having exercises regularly, a diabetes patient can keep his glucose level within the specified limits and in this way, he/she can lead a normal life like a healthy person. But to control glucose levels, a patient needs to monitor them regularly. Various techniques are being used over the last four decades. This modern review article aims to provide a comparative study report on various blood glucose monitoring techniques in a very concise and organized manner. The review mainly emphasizes working principles, cost, technology, sensors, measurement types, measurement accuracy, advantages, and disadvantages, etc. of various techniques and then compares among each other. Besides, the use of algorithms and simulators for the growth of this technology is also presented. Finally, current research trends of this measurement technology have also been discussed.
Keywords: blood glucose measurement, sensors, measurement devices, invasive and non-invasive techniques
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 974160 Evaluation of the exIWO Algorithm Based On the Traveling Salesman Problem
Authors: Daniel Kostrzewa, Henryk Josiński
Abstract:
The expanded Invasive Weed Optimization algorithm (exIWO) is an optimization metaheuristic modelled on the original IWO version created by the researchers from the University of Tehran. The authors of the present paper have extended the exIWO algorithm introducing a set of both deterministic and non-deterministic strategies of individuals’ selection. The goal of the project was to evaluate the exIWO by testing its usefulness for solving some test instances of the traveling salesman problem (TSP) taken from the TSPLIB collection which allows comparing the experimental results with optimal values.
Keywords: Expanded Invasive Weed Optimization algorithm (exIWO), Traveling Salesman Problem (TSP), heuristic approach, inversion operator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2251159 Artificial Intelligence Support for Interferon Treatment Decision in Chronic Hepatitis B
Authors: Alexandru George Floares
Abstract:
Chronic hepatitis B can evolve to cirrhosis and liver cancer. Interferon is the only effective treatment, for carefully selected patients, but it is very expensive. Some of the selection criteria are based on liver biopsy, an invasive, costly and painful medical procedure. Therefore, developing efficient non-invasive selection systems, could be in the patients benefit and also save money. We investigated the possibility to create intelligent systems to assist the Interferon therapeutical decision, mainly by predicting with acceptable accuracy the results of the biopsy. We used a knowledge discovery in integrated medical data - imaging, clinical, and laboratory data. The resulted intelligent systems, tested on 500 patients with chronic hepatitis B, based on C5.0 decision trees and boosting, predict with 100% accuracy the results of the liver biopsy. Also, by integrating the other patients selection criteria, they offer a non-invasive support for the correct Interferon therapeutic decision. To our best knowledge, these decision systems outperformed all similar systems published in the literature, and offer a realistic opportunity to replace liver biopsy in this medical context.Keywords: Interferon, chronic hepatitis B, intelligent virtualbiopsy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1457158 Development of a Microsensor to Minimize Post Cataract Surgery Complications
Authors: M. Mottaghi, F. Ghalichi, H. Badri Ghavifekr, H. Niroomand Oskui
Abstract:
This paper presents design and characterization of a microaccelerometer designated for integration into cataract surgical probe to detect hardness of different eye tissues during cataract surgery. Soft posterior lens capsule of eye can be easily damaged in comparison with hard opaque lens since the surgeon can not see directly behind cutting needle during the surgery. Presence of microsensor helps the surgeon to avoid rupturing posterior lens capsule which if occurs leads to severe complications such as glaucoma, infection, or even blindness. The microsensor having overall dimensions of 480 μm x 395 μm is able to deliver significant capacitance variations during encountered vibration situations which makes it capable to distinguish between different types of tissue. Integration of electronic components on chip ensures high level of reliability and noise immunity while minimizes space and power requirements. Physical characteristics and results on performance testing, proves integration of microsensor as an effective tool to aid the surgeon during this procedure.Keywords: Cataract surgery, MEMS, Microsensor, Phacoemulsification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1843