Search results for: mechanical loads
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1638

Search results for: mechanical loads

1548 Analytical Development of a Failure Limit and Iso-Uplift Curves for Eccentrically Loaded Shallow Foundations

Authors: N. Abbas, S. Lagomarsino, S. Cattari

Abstract:

Examining existing experimental results for shallow rigid foundations subjected to vertical centric load (N), accompanied or not with a bending moment (M), two main non-linear mechanisms governing the cyclic response of the soil-foundation system can be distinguished: foundation uplift and soil yielding. A soil-foundation failure limit, is defined as a domain of resistance in the two dimensional (2D) load space (N, M) inside of which lie all the admissible combinations of loads; these latter correspond to a pure elastic, non-linear elastic or plastic behavior of the soil-foundation system, while the points lying on the failure limit correspond to a combination of loads leading to a failure of the soil-foundation system. In this study, the proposed resistance domain is constructed analytically based on mechanics. Original elastic limit, uplift initiation limit and iso-uplift limits are constructed inside this domain. These limits give a prediction of the mechanisms activated for each combination of loads applied to the foundation. A comparison of the proposed failure limit with experimental tests existing in the literature shows interesting results. Also, the developed uplift initiation limit and iso-uplift curves are confronted with others already proposed in the literature and widely used due to the absence of other alternatives, and remarkable differences are noted, showing evident errors in the past proposals and relevant accuracy for those given in the present work.

Keywords: Foundation uplift, Iso-uplift curves, Resistance domain, Soil yield.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2140
1547 A Practical Scheme for Transmission Loss Allocation to Generators and Loads in Restructured Power Systems

Authors: M.R. Ebrahimi, M. Ehsan

Abstract:

This paper presents a practical scheme that can be used for allocating the transmission loss to generators and loads. In this scheme first the share of a generator or load on the current through a branch is determined using Z-bus modified matrix. Then the current components are decomposed and the branch loss allocation is obtained. A motivation of proposed scheme is to improve the results of Z-bus method and to reach more fair allocation. The proposed scheme has been implemented and tested on several networks. To achieve practical and applicable results, the proposed scheme is simulated and compared on the transmission network (400kv) of Khorasan region in Iran and the 14-bus standard IEEE network. The results show that the proposed scheme is comprehensive and fair to allocating the energy losses of a power market to its participants.

Keywords: Transmission Loss, Loss Allocation, Z-bus modifiedmatrix, current Components Decomposition and Restructured PowerSystems

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1456
1546 Free Vibration and Buckling of Rectangular Plates under Nonuniform In-Plane Edge Shear Loads

Authors: T. H. Young, Y. J. Tsai

Abstract:

A method for determining the stress distribution of a rectangular plate subjected to two pairs of arbitrarily distributed in-plane edge shear loads is proposed, and the free vibration and buckling of such a rectangular plate are investigated in this work.  The method utilizes two stress functions to synthesize the stress-resultant field of the plate with each of the stress functions satisfying the biharmonic compatibility equation. The sum of stress-resultant fields due to these two stress functions satisfies the boundary conditions at the edges of the plate, from which these two stress functions are determined. Then, the free vibration and buckling of the rectangular plate are investigated by the Galerkin method. Numerical results obtained by this work are compared with those appeared in the literature, and good agreements are observed.

Keywords: Stress analysis, free vibration, plate buckling, nonuniform in-plane edge shear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 690
1545 Lagrangian Geometrical Model of the Rheonomic Mechanical Systems

Authors: Camelia Frigioiu, Katica (Stevanovic) Hedrih, Iulian Gabriel Birsan

Abstract:

In this paper we study the rheonomic mechanical systems from the point of view of Lagrange geometry, by means of its canonical semispray. We present an example of the constraint motion of a material point, in the rheonomic case.

Keywords: Lagrange's equations, mechanical system, non-linear connection, rheonomic Lagrange space.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1631
1544 Stability of Concrete Moment Resisting Frames in View of Current Codes Requirements

Authors: Mahmoud A. Mahmoud, Ashraf Osman

Abstract:

In this study, the different approaches currently followed by design codes to assess the stability of buildings utilizing concrete moment resisting frames structural system are evaluated. For such purpose, a parametric study was performed. It involved analyzing group of concrete moment resisting frames having different slenderness ratios (height/width ratios), designed for different lateral loads to vertical loads ratios and constructed using ordinary reinforced concrete and high strength concrete for stability check and overall buckling using code approaches and computer buckling analysis. The objectives were to examine the influence of such parameters that directly linked to frames’ lateral stiffness on the buildings’ stability and evaluates the code approach in view of buckling analysis results. Based on this study, it was concluded that, the most susceptible buildings to instability and magnification of second order effects are buildings having high aspect ratios (height/width ratio), having low lateral to vertical loads ratio and utilizing construction materials of high strength. In addition, the study showed that the instability limits imposed by codes are mainly mathematical to ensure reliable analysis not a physical ones and that they are in general conservative. Also, it has been shown that the upper limit set by one of the codes that second order moment for structural elements should be limited to 1.4 the first order moment is not justified, instead, the overall story check is more reliable.

Keywords: Buckling, lateral stability, p-delta, second order.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2248
1543 The Effect of Shear Wall Positions on the Seismic Response of Frame-Wall Structures

Authors: Anas M. Fares

Abstract:

The configuration of shear walls in plan of building will affect the seismic design of structure. The position of these walls will change the stiffness of each floor in the structure, the diaphragm center of mass displacement, and the drift of floor. Structural engineers preferred to distribute the walls in buildings to make the center of mass almost close enough to the center of rigidity, but to make this condition satisfied, they have many choices: construct the walls on the perimeter, or use intermediate walls, or use walls as core. In this paper and by using ETABS, each case is studied and compared to other cases according to three parameters: lateral stiffness, diaphragm displacement, and drift. It is found that the core walls are the best choice for the position of the walls in the buildings to resist earthquake loads.

Keywords: Lateral loads, lateral displacement, reinforced concrete, shear wall, seismic, ASCE7-16 code, ACI code, stiffness, drift.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1088
1542 Fatigue Life Prediction on Steel Beam Bridges under Variable Amplitude Loading

Authors: M. F. V. Montezuma, E. P. Deus, M. C. Carvalho

Abstract:

Steel bridges are normally subjected to random loads with different traffic frequencies. They are structures with dynamic behavior and are subject to fatigue failure process, where the nucleation of a crack, growth and failure can occur. After locating and determining the size of an existing fault, it is important to predict the crack propagation and the convenient time for repair. Therefore, fracture mechanics and fatigue concepts are essential to the right approach to the problem. To study the fatigue crack growth, a computational code was developed by using the root mean square (RMS) and the cycle-by-cycle models. One observes the variable amplitude loading influence on the life structural prediction. Different loads histories and initial crack length were considered as input variables. Thus, it was evaluated the dispersion of results of the expected structural life choosing different initial parameters.

Keywords: Fatigue crack propagation, life prediction, variable loadings, steel bridges.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 460
1541 Failure Mechanism in Fixed-Ended Reinforced Concrete Deep Beams under Cyclic Load

Authors: A. Aarabzadeh, R. Hizaji

Abstract:

Reinforced Concrete (RC) deep beams are a special type of beams due to their geometry, boundary conditions, and behavior compared to ordinary shallow beams. For example, assumption of a linear strain-stress distribution in the cross section is not valid. Little study has been dedicated to fixed-end RC deep beams. Also, most experimental studies are carried out on simply supported deep beams. Regarding recent tendency for application of deep beams, possibility of using fixed-ended deep beams has been widely increased in structures. Therefore, it seems necessary to investigate the aforementioned structural element in more details. In addition to experimental investigation of a concrete deep beam under cyclic load, different failure mechanisms of fixed-ended deep beams under this type of loading have been evaluated in the present study. The results show that failure mechanisms of deep beams under cyclic loads are quite different from monotonic loads.

Keywords: Deep beam, cyclic load, reinforced concrete, fixed-ended.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1079
1540 Conceptual Synthesis of Multi-Source Renewable Energy Based Microgrid

Authors: Bakari M. M. Mwinyiwiwa, Mighanda J. Manyahi, Nicodemu Gregory, Alex L. Kyaruzi

Abstract:

Microgrids are increasingly being considered to provide electricity for the expanding energy demand in the grid distribution network and grid isolated areas. However, the technical challenges associated with the operation and controls are immense. Management of dynamic power balances, power flow, and network voltage profiles imposes unique challenges in the context of microgrids. Stability of the microgrid during both grid-connected and islanded mode is considered as the major challenge during its operation. Traditional control methods have been employed are based on the assumption of linear loads. For instance the concept of PQ, voltage and frequency control through decoupled PQ are some of very useful when considering linear loads, but they fall short when considering nonlinear loads. The deficiency of traditional control methods of microgrid suggests that more research in the control of microgrids should be done. This research aims at introducing the dq technique concept into decoupled PQ for dynamic load demand control in inverter interfaced DG system operating as isolated LV microgrid. Decoupled PQ in exact mathematical formulation in dq frame is expected to accommodate all variations of the line parameters (resistance and inductance) and to relinquish forced relationship between the DG variables such as power, voltage and frequency in LV microgrids and allow for individual parameter control (frequency and line voltages). This concept is expected to address and achieve accurate control, improve microgrid stability and power quality at all load conditions.

Keywords: Decoupled PQ, microgrid, multisource, renewable energy, dq control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2497
1539 Modelling of Factors Affecting Bond Strength of Fibre Reinforced Polymer Externally Bonded to Timber and Concrete

Authors: Abbas Vahedian, Rijun Shrestha, Keith Crews

Abstract:

In recent years, fibre reinforced polymers as applications of strengthening materials have received significant attention by civil engineers and environmentalists because of their excellent characteristics. Currently, these composites have become a mainstream technology for strengthening of infrastructures such as steel, concrete and more recently, timber and masonry structures. However, debonding is identified as the main problem which limit the full utilisation of the FRP material. In this paper, a preliminary analysis of factors affecting bond strength of FRP-to-concrete and timber bonded interface has been conducted. A novel theoretical method through regression analysis has been established to evaluate these factors. Results of proposed model are then assessed with results of pull-out tests and satisfactory comparisons are achieved between measured failure loads (R2 = 0.83, P < 0.0001) and the predicted loads (R2 = 0.78, P < 0.0001).

Keywords: Debonding, FRP, pull-out test, stepwise regression analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 760
1538 Mechanical Characteristics of Spaghetti Enriched with Whole Soy Flour

Authors: Nasehi, B., Mortazavi, S. A., Razavi, S.

Abstract:

The influence of full-fat soy flour (FFSF) and extrusion conditions on the mechanical characteristics of dry spaghetti were evaluated. Process was performed with screw speed of 10-40rpm and water circulating temperature of 35-70°C. Data analysis using mixture design showed that this enrichment resulted in significant differences in mechanical strength.

Keywords: Pasta, Mixture design, Enrichment, Texture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2606
1537 Design Application Procedures of 15 Storied 3D Reinforced Concrete Shear Wall-Frame Structure

Authors: H. Nikzad, S. Yoshitomi

Abstract:

This paper presents the design application and reinforcement detailing of 15 storied reinforced concrete shear wall-frame structure based on linear static analysis. Databases are generated for section sizes based on automated structural optimization method utilizing Active-set Algorithm in MATLAB platform. The design constraints of allowable section sizes, capacity criteria and seismic provisions for static loads, combination of gravity and lateral loads are checked and determined based on ASCE 7-10 documents and ACI 318-14 design provision. The result of this study illustrates the efficiency of proposed method, and is expected to provide a useful reference in designing of RC shear wall-frame structures.

Keywords: Structural optimization, linear static analysis, ETABS, MATLAB, RC shear wall-frame structures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 897
1536 Design of a 5-Joint Mechanical Arm with User-Friendly Control Program

Authors: Amon Tunwannarux, Supanunt Tunwannarux

Abstract:

This paper describes the design concepts and implementation of a 5-Joint mechanical arm for a rescue robot named CEO Mission II. The multi-joint arm is a five degree of freedom mechanical arm with a four bar linkage, which can be stretched to 125 cm. long. It is controlled by a teleoperator via the user-friendly control and monitoring GUI program. With Inverse Kinematics principle, we developed the method to control the servo angles of all arm joints to get the desired tip position. By clicking the determined tip position or dragging the tip of the mechanical arm on the computer screen to the desired target point, the robot will compute and move its multi-joint arm to the pose as seen on the GUI screen. The angles of each joint are calculated and sent to all joint servos simultaneously in order to move the mechanical arm to the desired pose at once. The operator can also use a joystick to control the movement of this mechanical arm and the locomotion of the robot. Many sensors are installed at the tip of this mechanical arm for surveillance from the high level and getting the vital signs of victims easier and faster in the urban search and rescue tasks. It works very effectively and easy to control. This mechanical arm and its software were developed as a part of the CEO Mission II Rescue Robot that won the First Runner Up award and the Best Technique award from the Thailand Rescue Robot Championship 2006. It is a low cost, simple, but functioning 5-Jiont mechanical arm which is built from scratch, and controlled via wireless LAN 802.11b/g. This 5-Jiont mechanical arm hardware concept and its software can also be used as the basic mechatronics to many real applications.

Keywords: Multi-joint, mechanical arm, inverse kinematics, rescue robot, GUI control program.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1780
1535 Effect of T6 and Re-Aging Heat Treatment on Mechanical Properties of 7055 Aluminum Alloy

Authors: M. Esmailian, M. Shakouri, A. Mottahedi, S. G. Shabestari

Abstract:

Heat treatable aluminum alloys such as 7075 and 7055, because of high strength and low density, are used widely in aircraft industry. For best mechanical properties, T6 heat treatment has recommended for this regards, but this temper treatment is sensitive to corrosion induced and Stress Corrosion Cracking (SCC) damage. For improving this property, the over-aging treatment (T7) applies to this alloy, but it decreases the mechanical properties up to 30 percent. Hence, to increase the mechanical properties, without any remarkable decrease in SCC resistant, Retrogression and Re-Aging (RRA) heat treatment is used. This treatment performs in a relatively short time. In this paper, the RRA heat treatment was applied to 7055 aluminum alloy and then effect of RRA time on the mechanical properties of 7055 has been investigated. The results show that the 40-minute time is suitable time for retrogression of 7055 aluminum alloy and ultimate strength increases up to 625MPa.

Keywords: 7055 Aluminum alloy, Mechanical properties, SCC resistance, Heat Treatment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3019
1534 Internal Loading Distribution in Statically Loaded Ball Bearings Subjected to a Centric Thrust Load: Alternative Approach

Authors: Mário C. Ricci

Abstract:

An alternative iterative computational procedure is proposed for internal normal ball loads calculation in statically loaded single-row, angular-contact ball bearings, subjected to a known thrust load, which is applied in the inner ring at the geometric bearing center line. An accurate method for curvature radii at contacts with inner and outer raceways in the direction of the motion is used. Numerical aspects of the iterative procedure are discussed. Numerical examples results for a 218 angular-contact ball bearing have been compared with those from the literature. Twenty figures are presented showing the geometrical features, the behavior of the convergence variables and the following parameters as functions of the thrust load: normal ball loads, contact angle, distance between curvature centers, and normal ball and axial deflections.

Keywords: Ball, Bearing, Static, Load, Iterative, Numerical, Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1426
1533 Conversion of Mechanical Water Pump to Electric Water Pump for a CI Engine

Authors: K. Arunachalam, P. Mannar Jawahar

Abstract:

Presently, engine cooling pump is driven by toothed belt. Therefore, the pump speed is dependent on engine speed which varies their output. At normal engine operating conditions (Higher RPM and low load, Higher RPM and high load), mechanical water pumps in existing engines are inevitably oversized and so the use of an electric water pump together with state-of-the-art thermal management of the combustion engine has measurable advantages. Demand-driven cooling, particularly in the cold-start phase, saves fuel (approx 3 percent) and leads to a corresponding reduction in emissions. The lack of dependence on a mechanical drive also results in considerable flexibility in component packaging within the engine compartment. This paper describes the testing and comparison of existing mechanical water pump with that of the electric water pump. When the existing mechanical water pump is replaced with the new electric water pump the percentage gain in system efficiency is also discussed.

Keywords: Cooling system, Electric water pump, Mechanical water pump.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5569
1532 Improvement on a CNC Gantry Machine Structure Design for Higher Machining Speed Capability

Authors: Ahmed A. D. Sarhan, S. R. Besharaty, Javad Akbaria, M. Hamdi

Abstract:

The capability of CNC gantry milling machines in manufacturing long components has caused the expanded use of such machines. On the other hand, the machines’ gantry rigidity can reduce under severe loads or vibration during operation. Indeed, the quality of machining is dependent on the machine’s dynamic behavior throughout the operating process. For this reason, these types of machines have always been used widely and are not efficient. Therefore, they can usually be employed for rough machining and may not produce adequate surface finishing. In this paper, a CNC gantry milling machine with the potential to produce good surface finish has been designed and analyzed. The lowest natural frequency of this machine is 202 Hz corresponding to 12000 rpm at all motion amplitudes with a full range of suitable frequency responses. Meanwhile, the maximum deformation under dead loads for the gantry machine is 0.565*m, indicating that this machine tool is capable of producing higher product quality.

Keywords: Finite element, frequency response, gantry design, gantry machine, static and dynamic analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5981
1531 Mechanical Properties of Die-Cast Nonflammable Mg Alloy

Authors: Myoung-Gon Yoon, Jung-Ho Moon, Tae Kwon Ha

Abstract:

Tensile specimens of nonflammable AZ91D Mg alloy were fabricated in this study via cold chamber die-casting process. Dimensions of tensile specimens were 25mm in length, 4mm in width, and 0.8 or 3.0mm in thickness. Microstructure observation was conducted before and after tensile tests at room temperature. In the die casting process, various injection distances from 150 to 260mm were employed to obtain optimum process conditions. Distribution of Al12Mg17 phase was the key factor to determine the mechanical properties of die-cast Mg alloy. Specimens with 3mm of thickness showed superior mechanical properties to those with 0.8mm of thickness. Closed networking of Al12Mg17 phase along grain boundary was found to be detrimental to mechanical properties of die-cast Mg alloy.

Keywords: Non-flammable magnesium alloy, AZ91D, die-casting, microstructure, mechanical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2531
1530 Instability Analysis of Laminated Composite Beams Subjected to Parametric Axial Load

Authors: Alireza Fereidooni, Kamran Behdinan, Zouheir Fawaz

Abstract:

The integral form of equations of motion of composite beams subjected to varying time loads are discretized using a developed finite element model. The model consists of a straight five node twenty-two degrees of freedom beam element. The stability analysis of the beams is studied by solving the matrix form characteristic equations of the system. The principle of virtual work and the first order shear deformation theory are employed to analyze the beams with large deformation and small strains. The regions of dynamic instability of the beam are determined by solving the obtained Mathieu form of differential equations. The effects of nonconservative loads, shear stiffness, and damping parameters on stability and response of the beams are examined. Several numerical calculations are presented to compare the results with data reported by other researchers.

Keywords: Finite element beam model, Composite Beams, stability analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2178
1529 Fatigue Analysis of Spread Mooring Line

Authors: Chanhoe Kang, Changhyun Lee, Seock-Hee Jun, Yeong-Tae Oh

Abstract:

Offshore floating structure under the various environmental conditions maintains a fixed position by mooring system. Environmental conditions, vessel motions and mooring loads are applied to mooring lines as the dynamic tension. Because global responses of mooring system in deep water are specified as wave frequency and low frequency response, they should be calculated from the time-domain analysis due to non-linear dynamic characteristics. To take into account all mooring loads, environmental conditions, added mass and damping terms at each time step, a lot of computation time and capacities are required. Thus, under the premise that reliable fatigue damage could be derived through reasonable analysis method, it is necessary to reduce the analysis cases through the sensitivity studies and appropriate assumptions. In this paper, effects in fatigue are studied for spread mooring system connected with oil FPSO which is positioned in deep water of West Africa offshore. The target FPSO with two Mbbls storage has 16 spread mooring lines (4 bundles x 4 lines). The various sensitivity studies are performed for environmental loads, type of responses, vessel offsets, mooring position, loading conditions and riser behavior. Each parameter applied to the sensitivity studies is investigated from the effects of fatigue damage through fatigue analysis. Based on the sensitivity studies, the following results are presented: Wave loads are more dominant in terms of fatigue than other environment conditions. Wave frequency response causes the higher fatigue damage than low frequency response. The larger vessel offset increases the mean tension and so it results in the increased fatigue damage. The external line of each bundle shows the highest fatigue damage by the governed vessel pitch motion due to swell wave conditions. Among three kinds of loading conditions, ballast condition has the highest fatigue damage due to higher tension. The riser damping occurred by riser behavior tends to reduce the fatigue damage. The various analysis results obtained from these sensitivity studies can be used for a simplified fatigue analysis of spread mooring line as the reference.

Keywords: Mooring system, fatigue analysis, time domain, non-linear dynamic characteristics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2504
1528 Influence of Maximum Fatigue Load on Probabilistic Aspect of Fatigue Crack Propagation Life at Specified Grown Crack in Magnesium Alloys

Authors: Seon Soon Choi

Abstract:

The principal purpose of this paper is to find the influence of maximum fatigue load on the probabilistic aspect of fatigue crack propagation life at a specified grown crack in magnesium alloys. The experiments of fatigue crack propagation are carried out in laboratory air under different conditions of the maximum fatigue loads to obtain the fatigue crack propagation data for the statistical analysis. In order to analyze the probabilistic aspect of fatigue crack propagation life, the goodness-of fit test for probability distribution of the fatigue crack propagation life at a specified grown crack is implemented through Anderson-Darling test. The good probability distribution of the fatigue crack propagation life is also verified under the conditions of the maximum fatigue loads.

Keywords: Fatigue crack propagation life, magnesium alloys, maximum fatigue load, probability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 924
1527 Dynamic Analysis of Transmission Line Towers

Authors: Srikanth L., Neelima Satyam D.

Abstract:

The transmission line towers are one of the important life line structures in the distribution of power from the source to the various places for several purposes. The predominant external loads which act on these towers are wind and earthquake loads. In this present study tower is analyzed using Indian Standards IS: 875:1987(Wind Load), IS: 802:1995(Structural steel), IS:1893:2002 (Earthquake) and dynamic analysis of tower has been performed considering ground motion of 2001 Bhuj Earthquake (India). The dynamic analysis was performed considering a tower system consisting two towers spaced 800m apart and 35m height each. This analysis has been performed using numerical time stepping finite difference method which is central difference method were employed by a developed MATLAB program to get the normalized ground motion parameters includes acceleration, frequency, velocity which are important in designing the tower. The tower is analyzed using response spectrum analysis.

Keywords: Response Spectra, Dynamic Analysis, Central Difference Method, Transmission Tower.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4000
1526 Topology Optimization of Aircraft Fuselage Structure

Authors: Muniyasamy Kalanchiam, Baskar Mannai

Abstract:

Topology Optimization is a defined as the method of determining optimal distribution of material for the assumed design space with functionality, loads and boundary conditions [1]. Topology optimization can be used to optimize shape for the purposes of weight reduction, minimizing material requirements or selecting cost effective materials [2]. Topology optimization has been implemented through the use of finite element methods for the analysis, and optimization techniques based on the method of moving asymptotes, genetic algorithms, optimality criteria method, level sets and topological derivatives. Case study of Typical “Fuselage design" is considered for this paper to explain the benefits of Topology Optimization in the design cycle. A cylindrical shell is assumed as the design space and aerospace standard pay loads were applied on the fuselage with wing attachments as constraints. Then topological optimization is done using Finite Element (FE) based software. This optimization results in the structural concept design which satisfies all the design constraints using minimum material.

Keywords: Fuselage, Topology optimization, payloads, designoptimization, Finite Element Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4038
1525 Evaluation of Residual Stresses in Human Face as a Function of Growth

Authors: M. A. Askari, M. A. Nazari, P. Perrier, Y. Payan

Abstract:

Growth and remodeling of biological structures have gained lots of attention over the past decades. Determining the response of living tissues to mechanical loads is necessary for a wide range of developing fields such as prosthetics design or computerassisted surgical interventions. It is a well-known fact that biological structures are never stress-free, even when externally unloaded. The exact origin of these residual stresses is not clear, but theoretically, growth is one of the main sources. Extracting body organ’s shapes from medical imaging does not produce any information regarding the existing residual stresses in that organ. The simplest cause of such stresses is gravity since an organ grows under its influence from birth. Ignoring such residual stresses might cause erroneous results in numerical simulations. Accounting for residual stresses due to tissue growth can improve the accuracy of mechanical analysis results. This paper presents an original computational framework based on gradual growth to determine the residual stresses due to growth. To illustrate the method, we apply it to a finite element model of a healthy human face reconstructed from medical images. The distribution of residual stress in facial tissues is computed, which can overcome the effect of gravity and maintain tissues firmness. Our assumption is that tissue wrinkles caused by aging could be a consequence of decreasing residual stress and thus not counteracting gravity. Taking into account these stresses seems therefore extremely important in maxillofacial surgery. It would indeed help surgeons to estimate tissues changes after surgery.

Keywords: Finite element method, growth, residual stress, soft tissue.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1638
1524 Effectiveness Evaluation of a Machine Design Process Based on the Computation of the Specific Output

Authors: Barenten Suciu

Abstract:

In this paper, effectiveness of a machine design process is evaluated on the basis of the specific output calculus. Concretely, a screw-worm gear mechanical transmission is designed by using the classical and the 3D-CAD methods. Strength analysis and drawing of the designed parts is substantially aided by employing the SolidWorks software. Quality of the design process is assessed by manufacturing (printing) the parts, and by computing the efficiency, specific load, as well as the specific output (work) of the mechanical transmission. Influence of the stroke, travelling velocity and load on the mechanical output, is emphasized. Optimal design of the mechanical transmission becomes possible by the appropriate usage of the acquired results.

Keywords: Mechanical transmission, design, screw, worm-gear, efficiency, specific output, 3D-printing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 880
1523 Application of Vortex Tubes for Extracting Sediments Using SHARC Software - A Case Study of the Western Canal in the Dez Diversion Weir

Authors: A. H. Sajedi Pour, N. Hedayat, Z. Yazdi

Abstract:

Sediment loads transfer in hydraulic installations and their consequences for the O&M of modern canal systems is emerging as one of the most important considerations in hydraulic engineering projects apriticularly those which are inteded to feed the irrigation and draiange schemes of large command areas such as the Dez and Mogahn in Iran.. The aim of this paper is to investigate the applicability of the vortex tube as a viable means of extracting sediment loads entering the canal systems in general and the water inatke structures in particulars. The Western conveyance canal of the Dez Diversion weir which feeds the Karkheh Flood Plain in Sothwestern Dezful has been used as the case study using the data from the Dastmashan Hydrometric Station. The SHARC software has been used as an analytical framework to interprete the data. Results show that given the grain size D50 and the canal turbulence the adaption length from the beginning of the canal and after the diversion dam is estimated at 477 m, a point which is suitable for laying the vortex tube.

Keywords: Vortex tube, sediments, western canal, SHARCmodel

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2024
1522 Prediction of Compressive Strength Using Artificial Neural Network

Authors: Vijay Pal Singh, Yogesh Chandra Kotiyal

Abstract:

Structures are a combination of various load carrying members which transfer the loads to the foundation from the superstructure safely. At the design stage, the loading of the structure is defined and appropriate material choices are made based upon their properties, mainly related to strength. The strength of materials kept on reducing with time because of many factors like environmental exposure and deformation caused by unpredictable external loads. Hence, to predict the strength of materials used in structures, various techniques are used. Among these techniques, Non-destructive techniques (NDT) are the one that can be used to predict the strength without damaging the structure. In the present study, the compressive strength of concrete has been predicted using Artificial Neural Network (ANN). The predicted strength was compared with the experimentally obtained actual compressive strength of concrete and equations were developed for different models. A good co-relation has been obtained between the predicted strength by these models and experimental values. Further, the co-relation has been developed using two NDT techniques for prediction of strength by regression analysis. It was found that the percentage error has been reduced between the predicted strength by using combined techniques in place of single techniques.

Keywords: Rebound, ultra-sonic pulse, penetration, ANN, NDT, regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4325
1521 Virtual Mechanical Engineering Education – A Case Study

Authors: S. H. R. Lo

Abstract:

Virtual engineering technology has undergone rapid progress in recent years and is being adopted increasingly by manufacturing companies of many engineering disciplines. There is an increasing demand from industry for qualified virtual engineers. The qualified virtual engineers should have the ability of applying engineering principles and mechanical design methods within the commercial software package environment. It is a challenge to the engineering education in universities which traditionally tends to lack the integration of knowledge and skills required for solving real world problems. In this paper, a case study shows some recent development of a MSc Mechanical Engineering course at Department of Engineering and Technology in MMU, and in particular, two units Simulation of Mechanical Systems(SMS) and Computer Aided Fatigue Analysis(CAFA) that emphasize virtual engineering education and promote integration of knowledge acquisition, skill training and industrial application.

Keywords: Computational modelling and simulation, mechanical engineering education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2385
1520 Wear and Mechanical Properties of Nodular Iron Modified with Copper

Authors: J. Ramos, V. Gil, A. F. Torres

Abstract:

In this research (using induction furnace process) nodular iron with three different percentages of copper (residual, 0.5% and 1,2%) was obtained. Chemical analysis was performed by mass spectrometry and microstructures were characterized by Optical Microscopy (ASTM E3) and Scanning Electron Microscopy (SEM). The study of mechanical behavior was carried out in a mechanical test machine (ASTM E8) and a Pin on disk tribometer (ASTM G99) was used to assess wear resistance. It is observed that the dissolution of copper in crystal lattice increases the pearlite structure improving the wear and hardness behavior, but producing a contrary effect on the energy absorption.

Keywords: Ferritic and perlite structure, mechanical properties, nodular iron, wear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2215
1519 Sintering Properties of Mechanically Alloyed Ti-5Al-2.5Fe

Authors: Ridvan Yamanoglu, Erdinc Efendi, Ismail Daoud

Abstract:

In this study, Ti-5Al-2.5Fe alloy was prepared by powder metallurgy. The elemental titanium, aluminum, and iron powders were mechanically alloyed for 10 h in a vacuum atmosphere. A stainless steel jar and stainless steel balls were used for mechanical alloying. The alloyed powders were then sintered by vacuum hot pressing at 950 °C for a soaking time of 30 minutes. Pure titanium was also sintered at the same conditions for comparison of mechanical properties and microstructural behavior. The samples were investigated by scanning electron microscopy, XRD analysis, and optical microscopy. Results showed that, after mechanical alloying, a homogeneous distribution of the elements was obtained, and desired a-b structure was determined. Ti-5Al-2.5Fe alloy was successfully produced, and the alloy showed enhanced mechanical properties compared to the commercial pure titanium.

Keywords: Ti5Al2.5Fe, mechanical alloying, hot pressing, sintering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1219