Search results for: liquid fuels
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 747

Search results for: liquid fuels

567 Effect of Nanobentonite Particles on Geotechnical Properties of Kerman Clay

Authors: A. Ghasemipanah, R. Ziaie Moayed, H. Niroumand

Abstract:

Improving the geotechnical properties of soil has always been one of the issues in geotechnical engineering. Traditional materials have been used to improve and stabilize soils to date, each with its own advantages and disadvantages. Although the soil stabilization by adding materials such as cement, lime, bitumen, etc. is one of the effective methods to improve the geotechnical properties of soil, but nanoparticles are one of the newest additives which can improve the loose soils. This research is intended to study the effect of adding nanobentonite on soil engineering properties, especially the unconfined compression strength and maximum dry unit weight, using clayey soil with low liquid limit (CL) from Kerman (Iran). Nanobentonite was mixed with soil in three different percentages (i.e. 3, 5, 7% by weight of the parent soil) with different curing time (1, 7 and 28 days). The unconfined compression strength, liquid and plastic limits and plasticity index of treated specimens were measured by unconfined compression and Atterberg limits test. It was found that increase in nanobentonite content resulted in increase in the unconfined compression strength, liquid and plastic limits of the clayey soil and reduce in plasticity index.

Keywords: Nanobentonite particles, clayey soil, unconfined compression stress, soil improvement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 618
566 High Aspect Ratio SiO2 Capillary Based On Silicon Etching and Thermal Oxidation Process for Optical Modulator

Authors: N. V. Toan, S. Sangu, T. Saitoh, N. Inomata, T. Ono

Abstract:

This paper presents the design and fabrication of an optical window for an optical modulator toward image sensing applications. An optical window consists of micrometer-order SiO2 capillaries (porous solid) that can modulate transmission light intensity by moving the liquid in and out of porous solid. A high optical transmittance of the optical window can be achieved due to refractive index matching when the liquid is penetrated into the porous solid. Otherwise, its light transmittance is lower because of light reflection and scattering by air holes and capillary walls. Silicon capillaries fabricated by deep reactive ion etching (DRIE) process are completely oxidized to form the SiO2 capillaries. Therefore, high aspect ratio SiO2 capillaries can be achieved based on silicon capillaries formed by DRIE technique. Large compressive stress of the oxide causes bending of the capillary structure, which is reduced by optimizing the design of device structure. The large stress of the optical window can be released via thin supporting beams. A 7.2 mm x 9.6 mm optical window area toward a fully integrated with the image sensor format is successfully fabricated and its optical transmittance is evaluated with and without inserting liquids (ethanol and matching oil). The achieved modulation range is approximately 20% to 35% with and without liquid penetration in visible region (wavelength range from 450 nm to 650 nm).

Keywords: Thermal oxidation process, SiO2 capillaries, optical window, light transmittance, image sensor, liquid penetration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2224
565 Response Surface Modeling of Lactic Acid Extraction by Emulsion Liquid Membrane: Box-Behnken Experimental Design

Authors: A. Thakur, P. S. Panesar, M. S. Saini

Abstract:

Extraction of lactic acid by emulsion liquid membrane technology (ELM) using n-trioctyl amine (TOA) in n-heptane as carrier within the organic membrane along with sodium carbonate as acceptor phase was optimized by using response surface methodology (RSM). A three level Box-Behnken design was employed for experimental design, analysis of the results and to depict the combined effect of five independent variables, vizlactic acid concentration in aqueous phase (cl), sodium carbonate concentration in stripping phase (cs), carrier concentration in membrane phase (ψ), treat ratio, and batch extraction time (τ)  with equal volume of organic and external aqueous phase on lactic acid extraction efficiency. The maximum lactic acid extraction efficiency (ηext) of 98.21%from aqueous phase in a batch reactor using ELM was found at the optimized values for test variables, cl, cs, ψ, and τ as 0.06 [M], 0.18 [M], 4.72 (%,v/v), 1.98 (v/v) and 13.36 min respectively. 

Keywords: Emulsion liquid membrane, extraction, lactic acid, n-trioctylamine, response surface methodology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2284
564 Preservation of Molecular Ozone in a Clathrate Hydrate : Three-Phase (Gas + Liquid + Hydrate) Equilibrium Measurements for O3 + O2 + CO2 + H2O Systems

Authors: Kazutoshi Shishido, Sanehiro Muromachi, Ryo Ohmura

Abstract:

This paper reports the three-phase (gas + liquid + hydrate) equilibrium pressure versus temperature data for a (O3 + O2 + CO2 + H2O) system for developing the hydrate-based technology to preserve ozone, a chemically unstable substance, for various industrial, medical and consumer uses. These data cover the temperature range from 272 K to 277 K, corresponding to pressures from 1.6 MPa to 3.1 MPa, for each of the three different (O3 + O2)-to-CO2 or O2-to-CO2 molar ratios in the gas phase, which are approximately 4 : 6, 5 : 5, respectively. The mole fraction of ozone in the gas phase was ~0.03 , which are the densest ozone fraction to artificially form O3 containing hydrate ever reported in the literature. Based on these data, the formation of hydrate containing high-concentration ozone, as high as 1 mass %, will be expected.

Keywords: Clathrate hydrate, Ozone, Molecule storage, Sterilization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1456
563 Functional Sample of the Portable Device for Fast Analysis of Explosives

Authors: A. Bumbová, J. Kellner, Z. Večeřa, V. Kahle, J. Navrátil

Abstract:

The construction of original functional sample of the portable device for fast analysis of energetic materials has been described in the paper. The portable device consisting of two parts – an original miniaturized microcolumn liquid chromatograph and a unique chemiluminescence detector – has been proposed and realized. In a very short time, this portable device is capable of identifying selectively most of military nitramine- and nitroesterbased explosives as well as inorganic nitrates occurring in trace concentrations in water or in soil. The total time required for the identification of extracts is shorter than 8 minutes.

Keywords: Chemiluminescence, microcolumn liquid chromatograph, nitramines, nitroesters, portable device.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1454
562 Combustion and Emission of a Compression Ignition Engine Fueled with Diesel and Hydrogen-Methane Mixture

Authors: J. H. Zhou, C. S. Cheung, C. W. Leung

Abstract:

The present study conducted experimental investigation on combustion and emission characteristics of compression ignition engine using diesel as pilot fuel and methane, hydrogen and methane/hydrogen mixture as gaseous fuels at 1800 rev min-1. The effect of gaseous fuel on peak cylinder pressure and heat release is modest at low to medium loads. At high load, the high combustion temperature and high quantity of pilot fuel contribute to better combustion efficiency for all kinds of gaseous fuels and increases the peak cylinder pressure. Enrichment of hydrogen in methane gradually increases the peak cylinder pressure. The brake thermal efficiency increases with higher hydrogen fraction at lower loads. Hydrogen addition in methane contributed to a proportional reduction of CO/CO2/HC emission without penalty of NOx. For particulate emission, methane and hydrogen, could both suppress the particle emission. 30% hydrogen fraction in methane is observed to be best in reducing the particulate emission.

Keywords: Combustion characteristics, diesel engine, emissions, methane/hydrogen mixture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3643
561 Thermodynamic Study of Hot Potassium Carbonate Solution Using Aspen Plus

Authors: O. Eisa, M. Shuhaimi

Abstract:

This paper presents a study on the thermodynamics and transport properties of hot potassium carbonate aqueous system (HPC) using electrolyte non-random two liquid, (ELECNRTL) model. The operation conditions are varied to determine the system liquid phase stability range at the standard and critical conditions. A case study involving 30 wt% K2CO3, H2O standard system at pressure of 1 bar and temperature range from 280.15 to 366.15 K has been studied. The estimated solubility index, viscosity, water activity, and density which obtained from the simulation showed a good agreement with the experimental work. Furthermore, the saturation temperature of the solution has been estimated.

Keywords: Viscosity, Saturation index, Activity coefficient, Density.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5327
560 Application of an in vitro Alveolus Model in Evaluating the Alveolar Response to Pressure- Induced Injury

Authors: Divya D. Nalayanda, William B. Fulton, Tza-Huei Wang, Fizan Abdullah

Abstract:

In an effort to understand the preliminary effects of aerodynamic stress on alveolar epithelial cells, we developed a multifluidic cell culture platform capable of supporting alveolar cultures at an air-liquid interface under constant air flow and exposure to varying pressure stimuli on the apical side while providing nourishment on the basolateral plane. Our current study involved utilizing the platform to study the effect of basement membrane coating and addition of dexamethasone on cellular response to pressure in A549 and H441 alveolar epithelial cells.

Keywords: Aerodynamic stress, Air-liquid interface, Alveolar, Dexamethasone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1445
559 Study of Some Innovant Reactors without on- Site Refueling with Triso and Cermet Fuel

Authors: A.Chetaine, A. Benchrif, H. Amsil, V. Kuznetsov, Y. Shimazu

Abstract:

The evaluation of unit cell neutronic parameters and lifetime for some innovant reactors without on sit-refuling will be held in this work. the behavior of some small and medium reactors without on site refueling with triso and cermet fuel. For the FBNR long life except we propose to change the enrichment of the Cermet MFE to 9%. For the AFPR reactor we can see that the use of the Cermet MFE can extend the life of this reactor but to maintain the same life period for AFPR-SC we most use burnup poison to have the same slope for Kinf (Burnup). PFPWR50 cell behaves almost in same way using both fuels Cermet and TRISO. So we can conclude that PFPWR50 reactor, with CERMET Fuel, is kept among the long cycle reactors and with the new configuration we avoid subcriticality at the beginning of cycle. The evaluation of unit cell neutronic parameters reveals a good agreement with the goal of BWR-PB concept. It is found out that the Triso fuel assembly lifetime can be extended for a reasonably long period without being refueled, approximately up to 48GWd/t burnup. Using coated particles fuels with the Cermet composition can be more extended the fuel assembly life time, approximately 52 GWd/t.

Keywords: Cermet., Trisot, without on site refueling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1331
558 Phase Behaviors and Fuel Properties of Bio-Oil-Diesel-Alcohol Blends

Authors: P. Weerachanchai, C. Tangsathitkulchai, M. Tangsathitkulchai

Abstract:

Attempt was made to improve certain characteristics of bio-oil derived from palm kernel pyrolysis by blending it with diesel fuel and alcohols. Two types of alcohol, ethanol or butanol, was used as cosolvent to stabilize the phase of ternary systems. Phase behaviors and basic fuel properties of palm kernel bio-oildiesel- alcohol systems were investigated in this study. Alcohol types showed a significant influence on the phase characteristics with palm kernel bio-oil-diesel-butanol system giving larger soluble area than that of palm kernel bio-oil-diesel-ethanol system. For fuel properties, blended fuels showed superior properties including lower values of density (~860 kg/m3 at 25°C), viscosity (~4.12 mm2/s at 40°C), carbon residue (1.02-2.53 wt%), ash (0.018-0.034 wt%) and pour point (<-25 to -7 °C), increased pH (~ 6.4) and giving reasonable heating values of 32.5-41.2 MJ/kg. To enable the prediction of some properties of fuel mixtures, the measured fuel properties including heating value, density, ash content and pH were fitted by Kay-s mixing rule, whereas the viscosities of blended fuels at different temperatures were correlated by the modified Grunberg-Nissan equation and Andrade equation.

Keywords: Bio-oil, fuel blend, fuel properties, phase behaviour.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3782
557 Adjustment and Scale-Up Strategy of Pilot Liquid Fermentation Process of Azotobacter sp.

Authors: G. Quiroga-Cubides, A. Díaz, M. Gómez

Abstract:

The genus Azotobacter has been widely used as bio-fertilizer due to its significant effects on the stimulation and promotion of plant growth in various agricultural species of commercial interest. In order to obtain significantly viable cellular concentration, a scale-up strategy for a liquid fermentation process (SmF) with two strains of A. chroococcum (named Ac1 and Ac10) was validated and adjusted at laboratory and pilot scale. A batch fermentation process under previously defined conditions was carried out on a biorreactor Infors®, model Minifors of 3.5 L, which served as a baseline for this research. For the purpose of increasing process efficiency, the effect of the reduction of stirring speed was evaluated in combination with a fed-batch-type fermentation laboratory scale. To reproduce the efficiency parameters obtained, a scale-up strategy with geometric and fluid dynamic behavior similarities was evaluated. According to the analysis of variance, this scale-up strategy did not have significant effect on cellular concentration and in laboratory and pilot fermentations (Tukey, p > 0.05). Regarding air consumption, fermentation process at pilot scale showed a reduction of 23% versus the baseline. The percentage of reduction related to energy consumption reduction under laboratory and pilot scale conditions was 96.9% compared with baseline.

Keywords: Azotobacter chroococcum, scale-up, liquid fermentation, fed-batch process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1262
556 Semisolid Structure and Parameters for A360 Aluminum Alloy Prepared by Mechanical Stirring

Authors: MM.Kaykha, A. Kamarei, M. Safari, V. Arbabi

Abstract:

Semisolid metal processing uses solid–liquid slurries containing fine and globular solid particles uniformly distributed in a liquid matrix, which can be handled as a solid and flow like a liquid. In the recent years, many methods have been introduced for the production of semisolid slurries since it is scientifically sound and industrially viable with such preferred microstructures called thixotropic microstructures as feedstock materials. One such process that needs very low equipment investment and running costs is the cooling slope. In this research by using a mechanical stirrer slurry maker constructed by the authors, the effects of mechanical stirring parameters such as: stirring time, stirring temperature and stirring Speed on micro-structure and mechanical properties of A360 aluminum alloy in semi-solid forming, are investigated. It is determined that mold temperature and holding time of part in temperature of 580ºC have a great effect on micro-structure and mechanical properties(stirring temperature of 585ºC, stirring time of 20 minutes and stirring speed of 425 RPM). By optimizing the forming parameters, dendrite microstructure changes to globular and mechanical properties improves. This is because of breaking and globularzing dendrites of primary α-AL.

Keywords: Semi-Solid Forming, Mechanical properties, Shear Rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2142
555 Simulation of Multiphase Flows Using a Modified Upwind-Splitting Scheme

Authors: David J. Robbins, R. Stewart Cant, Lynn F. Gladden

Abstract:

A robust AUSM+ upwind discretisation scheme has been developed to simulate multiphase flow using consistent spatial discretisation schemes and a modified low-Mach number diffusion term. The impact of the selection of an interfacial pressure model has also been investigated. Three representative test cases have been simulated to evaluate the accuracy of the commonly-used stiffenedgas equation of state with respect to the IAPWS-IF97 equation of state for water. The algorithm demonstrates a combination of robustness and accuracy over a range of flow conditions, with the stiffened-gas equation tending to overestimate liquid temperature and density profiles.

Keywords: Multiphase flow, AUSM+ scheme, liquid EOS, low Mach number models

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2000
554 Environmental Efficiency of Electric Power Industry of the United States: A Data Envelopment Analysis Approach

Authors: Alexander Y. Vaninsky

Abstract:

Importance of environmental efficiency of electric power industry stems from high demand for energy combined with global warming concerns. It is especially essential for the world largest economies like that of the United States. The paper introduces a Data Envelopment Analysis (DEA) model of environmental efficiency using indicators of fossil fuels utilization, emissions rate, and electric power losses. Using DEA is advantageous in this situation over other approaches due to its nonparametric nature. The paper analyzes data for the period of 1990 - 2006 by comparing actual yearly levels in each dimension with the best values of partial indicators for the period. As positive factors of efficiency, tendency to the decline in emissions rates starting 2000, and in electric power losses starting 2004 may be mentioned together with increasing trend of fuel utilization starting 1999. As a result, dynamics of environmental efficiency is positive starting 2002. The main concern is the decline in fossil fuels utilization in 2006. This negative change should be reversed to comply with ecological and economic requirements.

Keywords: Environmental efficiency, electric power industry, DEA, United States.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1843
553 Experimental Investigation of Phase Distributions of Two-phase Air-silicone Oil Flow in a Vertical Pipe

Authors: M. Abdulkadir, V. Hernandez-Perez, S. Sharaf, I. S. Lowndes, B. J. Azzopardi

Abstract:

This paper reports the results of an experimental study conducted to characterise the gas-liquid multiphase flows experienced within a vertical riser transporting a range of gas-liquid flow rates. The scale experiments were performed using an air/silicone oil mixture within a 6 m long riser. The superficial air velocities studied ranged from 0.047 to 2.836 m/ s, whilst maintaining a liquid superficial velocity at 0.047 m/ s. Measurements of the mean cross-sectional and time average radial void fraction were obtained using a wire mesh sensor (WMS). The data were recorded at an acquisition frequency of 1000 Hz over an interval of 60 seconds. For the range of flow conditions studied, the average void fraction was observed to vary between 0.1 and 0.9. An analysis of the data collected concluded that the observed void fraction was strongly affected by the superficial gas velocity, whereby the higher the superficial gas velocity, the higher was the observed average void fraction. The average void fraction distributions observed were in good agreement with the results obtained by other researchers. When the air-silicone oil flows were fully developed reasonably symmetric profiles were observed, with the shape of the symmetry profile being strongly dependent on the superficial gas velocity.

Keywords: WMS, phase distribution, silicone-oil, riser

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2223
552 Equivalent Circuit Modelling of Active Reflectarray Antenna

Authors: M. Y. Ismail, M. Inam

Abstract:

This paper presents equivalent circuit modeling of active planar reflectors which can be used for the detailed analysis and characterization of reflector performance in terms of lumped components. Equivalent circuit representation has been proposed for PIN diodes and liquid crystal based active planar reflectors designed within X-band frequency range. A very close agreement has been demonstrated between equivalent circuit results, 3D EM simulated results as well as measured scattering parameter results. In the case of measured results, a maximum discrepancy of 1.05dB was observed in the reflection loss performance, which can be attributed to the losses occurred during measurement process.

Keywords: Equivalent circuit modelling, planar reflectors, reflectarray antenna, PIN diode, liquid crystal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1031
551 The Impact of Alumina Cement on Properties of Portland Cement Slurries and Mortars

Authors: Krzysztof Zieliński, Dariusz Kierzek

Abstract:

The addition of a small amount of alumina cement to Portland cement results in immediate setting, a rapid increase in the compressive strength and a clear increase of the adhesion to concrete substrate. This phenomenon is used, among others, for the production of liquid floor self-levelling compounds. Alumina cement is several times more expensive than Portland cement and is a component having a significant impact on prices of products manufactured with its use. For the production of liquid floor self-levelling compounds, low-alumina cement containing approximately 40% Al2O3 is normally used. The aim of the study was to determine the impact of Portland cement with the addition of alumina cement on the basic physical and mechanical properties of cement slurries and mortars. CEM I 42.5R and three types of alumina cement containing 40%, 50% and 70% of Al2O3 were used for the tests. Mixes containing 4%, 6%, 8%, 10% and 12% of different varieties of alumina cement were prepared; for which, the time of initial and final setting, compressive and flexural strength and adhesion to concrete substrate were determined. The analysis of the obtained test results showed that a similar immediate setting effect and clearly better adhesion strength can be obtained using the addition of 6% of high-alumina cement than 12% of low-alumina cement. As the prices of these cements are similar, this can give significant financial savings in the production of liquid floor self-levelling compounds.

Keywords: Alumina cement, immediate setting, compression strength, adhesion to substrate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 578
550 Void-Free Bonding of Si/Ti/Ni Power Integrated Circuit Chips with Direct Bonding Copper Alumina Substrates through Ag3Sn Intermetallic Interlayer

Authors: Kuan-Yu Chiu, Yin-Hsuan Chen, Tung-Han Chuang

Abstract:

Ti/Ni/Ag/Sn-metallized Si chips were bonded to Ni/Pd/Au-surface finished DBC (Direct Bonding Copper) alumina substrate through the formation of an Ag3Sn intermetallic interlayer by solid–liquid interdiffusion bonding method. The results indicated that the holes and gaps at the bonding interface could be effectively prevented. The intermetallic phases at the bonding interface between the Si/Ti/Ni/Ag/Sn wafer and the DBC substrate were identified as Ag3Sn, Ni3Sn4, and Ni3Sn2. The average bonding strength was about 19.75 MPa, and the maximum bonding strength reached 35.24 MPa.

Keywords: BGBM, Backside Grinding and Backside Metallization, SLID bonding, Solid–liquid Interdiffusion Bonding, Si/Ti/Ni/Sn, Si/Ti/Ni/Ag/Sn, intermetallic compound.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 282
549 CFD Simulations to Validate Two and Three Phase Up-flow in Bubble Columns

Authors: Shyam Kumar, Nannuri Srinivasulu, Ashok Khanna

Abstract:

Bubble columns have a variety of applications in absorption, bio-reactions, catalytic slurry reactions, and coal liquefaction; because they are simple to operate, provide good heat and mass transfer, having less operational cost. The use of Computational Fluid Dynamics (CFD) for bubble column becomes important, since it can describe the fluid hydrodynamics on both local and global scale. Euler- Euler two-phase fluid model has been used to simulate two-phase (air and water) transient up-flow in bubble column (15cm diameter) using FLUENT6.3. These simulations and experiments were operated over a range of superficial gas velocities in the bubbly flow and churn turbulent regime (1 to16 cm/s) at ambient conditions. Liquid velocity was varied from 0 to 16cm/s. The turbulence in the liquid phase is described using the standard k-ε model. The interactions between the two phases are described through drag coefficient formulations (Schiller Neumann). The objectives are to validate CFD simulations with experimental data, and to obtain grid-independent numerical solutions. Quantitatively good agreements are obtained between experimental data for hold-up and simulation values. Axial liquid velocity profiles and gas holdup profiles were also obtained for the simulation.

Keywords: Bubble column, Computational fluid dynamics, Gas holdup profile, k-ε model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2667
548 Study of Equilibrium and Mass Transfer of Co- Extraction of Different Mineral Acids with Iron(III) from Aqueous Solution by Tri-n-Butyl Phosphate Using Liquid Membrane

Authors: Diptendu Das, Vikas Kumar Rahi, V. A. Juvekar, R. Bhattacharya

Abstract:

Extraction of Fe(III) from aqueous solution using Trin- butyl Phosphate (TBP) as carrier needs a highly acidic medium (>6N) as it favours formation of chelating complex FeCl3.TBP. Similarly, stripping of Iron(III) from loaded organic solvents requires neutral pH or alkaline medium to dissociate the same complex. It is observed that TBP co-extracts acids along with metal, which causes reversal of driving force of extraction and iron(III) is re-extracted back from the strip phase into the feed phase during Liquid Emulsion Membrane (LEM) pertraction. Therefore, rate of extraction of different mineral acids (HCl, HNO3, H2SO4) using TBP with and without presence of metal Fe(III) was examined. It is revealed that in presence of metal acid extraction is enhanced. Determination of mass transfer coefficient of both acid and metal extraction was performed by using Bulk Liquid Membrane (BLM). The average mass transfer coefficient was obtained by fitting the derived model equation with experimentally obtained data. The mass transfer coefficient of the mineral acid extraction is in the order of kHNO3 = 3.3x10-6m/s > kHCl = 6.05x10-7m/s > kH2SO4 = 1.85x10-7m/s. The distribution equilibria of the above mentioned acids between aqueous feed solution and a solution of tri-n-butyl-phosphate (TBP) in organic solvents have been investigated. The stoichiometry of acid extraction reveals the formation of TBP.2HCl, HNO3.2TBP, and TBP.H2SO4 complexes. Moreover, extraction of Iron(III) by TBP in HCl aqueous solution forms complex FeCl3.TBP.2HCl while in HNO3 medium forms complex 3FeCl3.TBP.2HNO3

Keywords: Bulk Liquid Membrane (BLM) Transport, Iron(III) extraction, Tri-n-butyl Phosphate, Mass Transfer coefficient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2530
547 An Environmental Impact Tool to Assess National Energy Scenarios

Authors: R. Taviv, A.C. Brent, H. Fortuin

Abstract:

The Long-range Energy and Alternatives Planning (LEAP) energy planning system has been developed for South Africa, for the 2005 base year and a limited number of plausible future scenarios that may have significant implications (negative or positive) in terms of environmental impacts. The system quantifies the national energy demand for the domestic, commercial, transport, industry and agriculture sectors, the supply of electricity and liquid fuels, and the resulting emissions. The South African National Energy Research Institute (SANERI) identified the need to develop an environmental assessment tool, based on the LEAP energy planning system, to provide decision-makers and stakeholders with the necessary understanding of the environmental impacts associated with different energy scenarios. A comprehensive analysis of indicators that are used internationally and in South Africa was done and the available data was accessed to select a reasonable number of indicators that could be utilized in energy planning. A consultative process was followed to determine the needs of different stakeholders on the required indicators and also the most suitable form of reporting. This paper demonstrates the application of Energy Environmental Sustainability Indicators (EESIs) as part of the developed tool, which assists with the identification of the environmental consequences of energy generation and use scenarios and thereby promotes sustainability, since environmental considerations can then be integrated into the preparation and adoption of policies, plans, programs and projects. Recommendations are made to refine the tool further for South Africa.

Keywords: Energy modeling, LEAP, environmental impact, environmental indicators, energy sector emissions, sustainable development, South Africa

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1567
546 Computational Fluid Dynamics Modeling of Downward Bubbly Flows

Authors: Mahmood Reza Rahimi, Hajir Karimi

Abstract:

Downward turbulent bubbly flows in pipes were modeled using computational fluid dynamics tools. The Hydrodynamics, phase distribution and turbulent structure of twophase air-water flow in a 57.15 mm diameter and 3.06 m length vertical pipe was modeled by using the 3-D Eulerian-Eulerian multiphase flow approach. Void fraction, liquid velocity and turbulent fluctuations profiles were calculated and compared against experimental data. CFD results are in good agreement with experimental data.

Keywords: CFD, Bubbly flow, Vertical pipe, Population balance modeling, Gas void fraction, Liquid velocity, Normal turbulent stresses.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2419
545 Microfluidic Continuous Approaches to Produce Magnetic Nanoparticles with Homogeneous Size Distribution

Authors: Ane Larrea, Victor Sebastian, Manuel Arruebo, Jesus Santamaria

Abstract:

We present a gas-liquid microfluidic system as a reactor to obtain magnetite nanoparticles with an excellent degree of control regarding their crystalline phase, shape and size. Several types of microflow approaches were selected to prevent nanomaterial aggregation and to promote homogenous size distribution. The selected reactor consists of a mixer stage aided by ultrasound waves and a reaction stage using a N2-liquid segmented flow to prevent magnetite oxidation to non-magnetic phases. A milli-fluidic reactor was developed to increase the production rate where a magnetite throughput close to 450 mg/h in a continuous fashion was obtained.

Keywords: Microfluidics, magnetic nanoparticles, continuous production, nanomaterials.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2921
544 Prediction of Air-Water Two-Phase Frictional Pressure Drop Using Artificial Neural Network

Authors: H. B. Mehta, Vipul M. Patel, Jyotirmay Banerjee

Abstract:

The present paper discusses the prediction of gas-liquid two-phase frictional pressure drop in a 2.12 mm horizontal circular minichannel using Artificial Neural Network (ANN). The experimental results are obtained with air as gas phase and water as liquid phase. The superficial gas velocity is kept in the range of 0.0236 m/s to 0.4722 m/s while the values of 0.0944 m/s, 0.1416 m/s and 0.1889 m/s are considered for superficial liquid velocity. The experimental results are predicted using different Artificial Neural Network (ANN) models. Networks used for prediction are radial basis, generalised regression, linear layer, cascade forward back propagation, feed forward back propagation, feed forward distributed time delay, layer recurrent, and Elman back propagation. Transfer functions used for networks are Linear (PURELIN), Logistic sigmoid (LOGSIG), tangent sigmoid (TANSIG) and Gaussian RBF. Combination of networks and transfer functions give different possible neural network models. These models are compared for Mean Absolute Relative Deviation (MARD) and Mean Relative Deviation (MRD) to identify the best predictive model of ANN.

Keywords: Minichannel, Two-Phase Flow, Frictional Pressure Drop, ANN, MARD, MRD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1363
543 Purity Monitor Studies in Medium Liquid Argon TPC

Authors: I. Badhrees

Abstract:

This paper is an attempt to describe some of the results that had been found through a journey of study in the field of particle physics. This study consists of two parts, one about the measurement of the cross section of the decay of the Z particle in two electrons, and the other deals with the measurement of the cross section of the multi-photon absorption process using a beam of Laser in the Liquid Argon Time Projection Chamber.

The first part of the paper concerns the results based on the analysis of a data sample containing 8120 ee candidates to reconstruct the mass of the Z particle for each event where each event has an ee pair with PT(e) > 20GeV, and η(e) < 2.5. Monte Carlo templates of the reconstructed Z particle were produced as a function of the Z mass scale. The distribution of the reconstructed Z mass in the data was compared to the Monte Carlo templates, where the total cross section is calculated to be equal to 1432pb.

The second part concerns the Liquid Argon Time Projection Chamber, LAr TPC, the results of the interaction of the UV Laser, Nd-YAG with λ= 266mm, with LAr and through the study of the multi-photon ionization process as a part of the R&D at Bern University. The main result of this study was the cross section of the process of the multi-photon ionization process of the LAr, σe = 1.24±0.10stat±0.30sys.10 -56cm4.

Keywords: ATLAS, CERN, KACST, LArTPC, Particle Physics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1656
542 Emission Assessment of Rice Husk Combustion for Power Production

Authors: Thipwimon Chungsangunsit, Shabbir H. Gheewala, Suthum Patumsawad

Abstract:

Rice husk is one of the alternative fuels for Thailand because of its high potential and environmental benefits. Nonetheless, the environmental profile of the electricity production from rice husk must be assessed to ensure reduced environmental damage. A 10 MW pilot plant using rice husk as feedstock is the study site. The environmental impacts from rice husk power plant are evaluated by using the Life Cycle Assessment (LCA) methodology. Energy, material and carbon balances have been determined for tracing the system flow. Carbon closure has been used for describing of the net amount of CO2 released from the system in relation to the amount being recycled between the power plant and the CO2 adsorbed by rice husk. The transportation of rice husk to the power plant has significant on global warming, but not on acidification and photo-oxidant formation. The results showed that the impact potentials from rice husk power plant are lesser than the conventional plants for most of the categories considered; except the photo-oxidant formation potential from CO. The high CO from rice husk power plant may be due to low boiler efficiency and high moisture content in rice husk. The performance of the study site can be enhanced by improving the combustion efficiency.

Keywords: Environmental impact, Fossil fuels, Life Cycle Assessment (LCA), Renewable energy, Rice husk

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7367
541 Effect of Hydrogen-Diesel Dual Fuel Combustion on the Performance and Emission Characteristics of a Four Stroke-Single Cylinder Diesel Engine

Authors: Madhujit Deb, G. R. K. Sastry, R. S. Panua, Rahul Banerjee, P. K. Bose

Abstract:

The present work attempts to investigate the combustion, performance and emission characteristics of an existing single-cylinder four-stroke compression-ignition engine operated in dual-fuel mode with hydrogen as an alternative fuel. Environmental concerns and limited amount of petroleum fuels have caused interests in the development of alternative fuels like hydrogen for internal combustion (IC) engines. In this experimental investigation, a diesel engine is made to run using hydrogen in dual fuel mode with diesel, where hydrogen is introduced into the intake manifold using an LPGCNG injector and pilot diesel is injected using diesel injectors. A Timed Manifold Injection (TMI) system has been developed to vary the injection strategies. The optimized timing for the injection of hydrogen was 10^0 CA after top dead center (ATDC). From the study it was observed that with increasing hydrogen rate, enhancement in brake thermal efficiency (BTHE) of the engine has been observed with reduction in brake specific energy consumption (BSEC). Furthermore, Soot contents decrease with an increase in indicated specific NOx emissions with the enhancement of hydrogen flow rate.

Keywords: Diesel engine, Hydrogen, BTHE, BSEC, Soot, NOx.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4428
540 Natural Gas Sweetening by Wetted-Wire Column

Authors: Sarah Taheri, Shahram Ghanbari Pakdehi, Arash Rezaei

Abstract:

Natural gas usually includes H2S component which is very toxic, hazardous and corrosive to environment, human being and process equipments, respectively. Therefore, sweetening of the gas (separation of H2S) is inevitable. To achieve this purpose, using packed-bed columns with liquid absorbents such as MEA or DEA is very common. Due to some problems of usual packed columns especially high pressure drop of gas phase, a novel kind of them called wetted-wire column (WWC) has been invented. The column decreases the pressure drop significantly and improves the absorption efficiency. The packings are very thin rods (like wire) and as long as column. The column has 100 wires with a triangular arrangement and counter current flows of gas and liquid phases. The observation showed that at the same conditions, the absorption performance was quite comparable to conventional packed-bed towers and a very low pressure drop.

Keywords: H2S, Natural gas, separation, wetted-wire column (WWC).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1958
539 Effect of Gravity Modulation on Weakly Non-Linear Stability of Stationary Convection in a Dielectric Liquid

Authors: P. G. Siddheshwar, B. R. Revathi

Abstract:

The effect of time-periodic oscillations of the Rayleigh- Benard system on the heat transport in dielectric liquids is investigated by weakly nonlinear analysis. We focus on stationary convection using the slow time scale and arrive at the real Ginzburg- Landau equation. Classical fourth order Runge-kutta method is used to solve the Ginzburg-Landau equation which gives the amplitude of convection and this helps in quantifying the heat transfer in dielectric liquids in terms of the Nusselt number. The effect of electrical Rayleigh number and the amplitude of modulation on heat transport is studied.

Keywords: Dielectric liquid, Nusselt number, amplitude equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2163
538 The Analysis of Two-Phase Jet in Pneumatic Powder Injection into Liquid Alloys

Authors: J. Jezierski, K. Janerka

Abstract:

The results of the two-phase gas-solid jet in pneumatic powder injection process analysis were presented in the paper. The researches were conducted on model set-up with high speed camera jet movement recording. Then the recorded material was analyzed to estimate main particles movement parameters. The values obtained from this direct measurement were compared to those calculated with the use of the well-known formulas for the two-phase flows (pneumatic conveying). Moreover, they were compared to experimental results previously achieved by authors. The analysis led to conclusions which to some extent changed the assumptions used even by authors, regarding the two-phase jet in pneumatic powder injection process. Additionally, the visual analysis of the recorded clips supplied data to make a more complete evaluation of the jet behavior in the lance outlet than before.

Keywords: injection lance, liquid metal, powder injection, slip velocity, two-phase jet

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1585