Search results for: laser particle counting
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1022

Search results for: laser particle counting

752 Interactive Compromise Approach with Particle Swarm Optimization for Environmental/Economic Power Dispatch

Authors: Ming-Tang Tsai, Chih-Wei Yen

Abstract:

In this paper, an Interactive Compromise Approach with Particle Swarm Optimization(ICA-PSO) is presented to solve the Economic Emission Dispatch(EED) problem. The cost function and emission function are modeled as the nonsmooth functions, respectively. The bi-objective including both the minimization of cost and emission is formulated in this paper. ICA-PSO is proposed to solve EED problem for finding a better compromise solution. The solution methodology can offer a global or near-global solution for decision-making requirements. The effectiveness and efficiency of ICA-PSO are demonstrated by a sample test system. Test results can be shown that the proposed method provide a practical and flexible framework for power dispatch.

Keywords: Interactive Compromise Approach, Emission Control, Economic Dispatch, Particle Swarm Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1403
751 Optical Induction of 2D and 3D Photonic Lattices in Photorefractive Materials based on Talbot effect

Authors: A. Badalyan, R. Hovsepyan, V. Mekhitaryan, P. Mantashyan, R. Drampyan

Abstract:

In this paper we report the technique of optical induction of 2 and 3-dimensional (2D and 3D) photonic lattices in photorefractive materials based on diffraction grating self replication -Talbot effect. 1D and 2D different rotational symmery diffraction masks with the periods of few tens micrometers and 532 nm cw laser beam were used in the experiments to form an intensity modulated light beam profile. A few hundred micrometric scale replications of mask generated intensity structures along the beam propagation axis were observed. Up to 20 high contrast replications were detected for 1D annular mask with 30

Keywords: Diffraction gratings, laser, photonic lattice, Talbot effect.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1819
750 Design of Optimal Proportional Integral Derivative Attitude Controller for an Uncoupled Flexible Satellite Using Particle Swarm Optimization

Authors: Martha C. Orazulume, Jibril D. Jiya

Abstract:

Flexible satellites are equipped with various appendages which vibrate under the influence of any excitation and make the attitude of the satellite to be unstable. Therefore, the system must be able to adjust to balance the effect of these appendages in order to point accurately and satisfactorily which is one of the most important problems in satellite design. Proportional Integral Derivative (PID) Controller is simple to design and computationally efficient to implement which is used to stabilize the effect of these flexible appendages. However, manual turning of the PID is time consuming, waste energy and money. Particle Swarm Optimization (PSO) is used to tune the parameters of PID Controller. Simulation results obtained show that PSO tuned PID Controller is able to re-orient the spacecraft attitude as well as dampen the effect of mechanical resonance and yields better performance when compared with manually tuned PID Controller.

Keywords: Attitude control, flexible satellite, particle swarm optimization, PID controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1233
749 Simulation Studies of Solid-Particle and Liquid-Drop Erosion of NiAl Alloy

Authors: Rong Liu, Kuiying Chen, Ju Chen, Jingrong Zhao, Ming Liang

Abstract:

This article presents modeling studies of NiAl alloy under solid-particle erosion and liquid-drop erosion. In the solid-particle erosion simulation, attention is paid to the oxide scale thickness variation on the alloy in high-temperature erosion environments. The erosion damage is assumed to be deformation wear and cutting wear mechanisms, incorporating the influence of the oxide scale on the eroded surface; thus the instantaneous oxide thickness is the result of synergetic effect of erosion and oxidation. For liquid-drop erosion, special interest is in investigating the effects of drop velocity and drop size on the damage of the target surface. The models of impact stress wave, mean depth of penetration, and maximum depth of erosion rate (Max DER) are employed to develop various maps for NiAl alloy, including target thickness vs. drop size (diameter), rate of mean depth of penetration (MDRP) vs. drop impact velocity, and damage threshold velocity (DTV) vs. drop size.

Keywords: Liquid-drop erosion, NiAl alloy, oxide scale thickness, solid-particle erosion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2608
748 Analytical and Numerical Approaches in Coagulation of Particles

Authors: Bilal Barakeh

Abstract:

In this paper we discuss the effect of unbounded particle interaction operator on particle growth and we study how this can address the choice of appropriate time steps of the numerical simulation. We provide also rigorous mathematical proofs showing that large particles become dominating with increasing time while small particles contribute negligibly. Second, we discuss the efficiency of the algorithm by performing numerical simulations tests and by comparing the simulated solutions with some known analytic solutions to the Smoluchowski equation.

Keywords: Stochastic processes, coagulation of particles, numerical scheme.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1457
747 Study of a Fabry-Perot Resonator

Authors: F. Hadjaj, A. Belghachi, A. Halmaoui, M. Belhadj, H. Mazouz

Abstract:

A laser is essentially an optical oscillator consisting of a resonant cavity, an amplifying medium and a pumping source. In semiconductor diode lasers, the cavity is created by the boundary between the cleaved face of the semiconductor crystal and air, and has reflective properties as a result of the differing refractive indices of the two media. For a GaAs-air interface a reflectance of 0.3 is typical and therefore the length of the semiconductor junction forms the resonant cavity. To prevent light being emitted in unwanted directions from the junction, sides perpendicular to the required direction are roughened. The objective of this work is to simulate the optical resonator Fabry-Perot and explore its main characteristics, such as FSR, finesse, linewidth, transmission and so on, that describe the performance of resonator.

Keywords: Fabry-Perot Resonator, laser diode.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8888
746 Research on the Strategy of Orbital Avoidance for Optical Remote Sensing Satellite

Authors: Zheng Dian Xun, Cheng Bo, Lin Hetong

Abstract:

This paper focuses on the orbit avoidance strategy of the optical remote sensing satellite. The optical remote sensing satellite, moving along the Sun-synchronous orbit, is equipped with laser warning equipment to alert CCD camera from laser attacks. This paper explores the strategy of satellite avoidance to protect the CCD camera and also the satellite. The satellite could evasive to several target points in the orbital coordinates of virtual satellite. The so-called virtual satellite is a passive vehicle which superposes the satellite at the initial stage of avoidance. The target points share the consistent cycle time and the same semi-major axis with the virtual satellite, which ensures the properties of the satellite’s Sun-synchronous orbit remain unchanged. Moreover, to further strengthen the avoidance capability of satellite, it can perform multi-target-points avoid maneuvers. On occasions of fulfilling the satellite orbit tasks, the orbit can be restored back to virtual satellite through orbit maneuvers. There into, the avoid maneuvers adopts pulse guidance. In addition, the fuel consumption is optimized. The avoidance strategy discussed in this article is applicable to optical remote sensing satellite when it is encountered with hostile attack of space-based laser anti-satellite.

Keywords: Optical remote sensing satellite, satellite avoidance, virtual satellite, avoid target-point, avoid maneuver.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1453
745 Hybrid Algorithm for Hammerstein System Identification Using Genetic Algorithm and Particle Swarm Optimization

Authors: Tomohiro Hachino, Kenji Shimoda, Hitoshi Takata

Abstract:

This paper presents a method of model selection and identification of Hammerstein systems by hybridization of the genetic algorithm (GA) and particle swarm optimization (PSO). An unknown nonlinear static part to be estimated is approximately represented by an automatic choosing function (ACF) model. The weighting parameters of the ACF and the system parameters of the linear dynamic part are estimated by the linear least-squares method. On the other hand, the adjusting parameters of the ACF model structure are properly selected by the hybrid algorithm of the GA and PSO, where the Akaike information criterion is utilized as the evaluation value function. Simulation results are shown to demonstrate the effectiveness of the proposed hybrid algorithm.

Keywords: Hammerstein system, identification, automatic choosing function model, genetic algorithm, particle swarm optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1454
744 Solid Particle Erosion of Heat Treated TNB-V4 at Ambient and Elevated Temperatures

Authors: Muhammad Naveed, Richard Stechow, Sebastian Bolz, Katharina Hobusch, Sabine Weiß

Abstract:

Solid particle erosion has been identified as a critical wear phenomenon which takes place during operation of aeroengines in dusty environment. The present work discusses the erosion behavior of Ti-44.5Al-6.25Nb-0.8Mo-0.1B alloy (TNB-V4) which finds its application in low pressure gas turbines and can be used for high pressure compressors too. Prior to the erosion tests, the alloy was heat treated to improve the mechanical properties. Afterwards, specimens were eroded at impact angles of 30° and 90° at room and high temperatures (100 °C-400 °C). Volume loss and erosion behavior are studied through gravimetric analysis, whereas erosion mechanisms are characterized through scanning electron microscopy. The results indicate a clear difference in the erosion mechanism for different impact angles. The influence of the test temperature on the erosion behavior of the alloy is also discussed in the present contribution.

Keywords: Solid particle erosion, gamma TiAl, TNB-V4, high temperature erosion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1466
743 The Effect of Magnetite Particle Size on Methane Production by Fresh and Degassed Anaerobic Sludge

Authors: E. Al-Essa, R. Bello-Mendoza, D. G. Wareham

Abstract:

Anaerobic batch experiments were conducted to investigate the effect of magnetite-supplementation (7 mM) on methane production from digested sludge undergoing two different microbial growth phases, namely fresh sludge (exponential growth phase) and degassed sludge (endogenous decay phase). Three different particle sizes were assessed: small (50 - 150 nm), medium (168 – 490 nm) and large (800 nm - 4.5 µm) particles. Results show that, in the case of the fresh sludge, magnetite significantly enhanced the methane production rate (up to 32%) and reduced the lag phase (by 15% - 41%) as compared to the control, regardless of the particle size used. However, the cumulative methane produced at the end of the incubation was comparable in all treatment and control bottles. In the case of the degassed sludge, only the medium-sized magnetite particles increased significantly the methane production rate (12% higher) as compared to the control. Small and large particles had little effect on the methane production rate but did result in an extended lag phase which led to significantly lower cumulative methane production at the end of the incubation period. These results suggest that magnetite produces a clear and positive effect on methane production only when an active and balanced microbial community is present in the anaerobic digester. It is concluded that, (i) the effect of magnetite particle size on increasing the methane production rate and reducing lag phase duration is strongly influenced by the initial metabolic state of the microbial consortium, and (ii) the particle size would positively affect the methane production if it is provided within the nanometer size range.

Keywords: Anaerobic digestion, iron oxide (Fe3O4), methanogenesis, nanoparticle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 733
742 Canonical PSO based Nanorobot Control for Blood Vessel Repair

Authors: Pinfa Boonrong, Boonserm Kaewkamnerdpong

Abstract:

As nanotechnology advances, the use of nanotechnology for medical purposes in the field of nanomedicine seems more promising; the rise of nanorobots for medical diagnostics and treatments could be arriving in the near future. This study proposes a swarm intelligence based control mechanism for swarm nanorobots that operate as artificial platelets to search for wounds. The canonical particle swarm optimization algorithm is employed in this study. A simulation in the circulatory system is constructed and used for demonstrating the movement of nanorobots with essential characteristics to examine the performance of proposed control mechanism. The effects of three nanorobot capabilities including their perception range, maximum velocity and respond time are investigated. The results show that canonical particle swarm optimization can be used to control the early version nanorobots with simple behaviors and actions.

Keywords: Artificial platelets, canonical particle swarm optimization, nanomedicine, nanorobot, swarm intelligence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2634
741 Microwave-Assisted Fabrication of Visible-Light Activated BiOBr-Nanoplate Photocatalyst

Authors: Meichen Lee, Michael K. H. Leung

Abstract:

In recent years, visible-light activated photocatalysis has become a major field of intense researches for the higher efficiency of solar energy utilizations. Many attempts have been made on the modification of wide band gap semiconductors, while more and more efforts emphasize on cost-effective synthesis of visible-light activated catalysts. In this work, BiOBr nanoplates with band gap of visible-light range are synthesized through a promising microwave solvothermal method. The treatment time period and temperature dependent BiOBr nanosheets of various particle sizes are investigated through SEM. BiOBr synthesized under the condition of 160°C for 60 mins shows the most uniform particle sizes around 311 nm and the highest surface-to-volume ratio on account of its smallest average particle sizes compared with others. It exhibits the best photocatalytic behavior among all samples in RhB degradation.

Keywords: Microwave solvothermal process, nanoplates, solar energy, visible-light photocatalysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 962
740 Particle Swarm Optimization Based PID Power System Stabilizer for a Synchronous Machine

Authors: Gowrishankar Kasilingam

Abstract:

This paper proposes a swarm intelligence method that yields optimal Proportional-Integral-Derivative (PID) Controller parameters of a power system stabilizer (PSS) in a single machine infinite bus system. The proposed method utilizes the Particle Swarm Optimization (PSO) algorithm approach to generate the optimal tuning parameters. The paper is modeled in the MATLAB Simulink Environment to analyze the performance of a synchronous machine under several load conditions. At the same operating point, the PID-PSS parameters are also tuned by Ziegler-Nichols method. The dynamic performance of proposed controller is compared with the conventional Ziegler-Nichols method of PID tuning controller to demonstrate its advantage. The analysis reveals the effectiveness of the proposed PSO based PID controller.

Keywords: Particle Swarm Optimization, PID Controller, Power System Stabilizer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2977
739 A New Solution for Natural Convection of Darcian Fluid about a Vertical Full Cone Embedded in Porous Media Prescribed Wall Temperature by using a Hybrid Neural Network-Particle Swarm Optimization Method

Authors: M.A.Behrang, M. Ghalambaz, E. Assareh, A.R. Noghrehabadi

Abstract:

Fluid flow and heat transfer of vertical full cone embedded in porous media is studied in this paper. Nonlinear differential equation arising from similarity solution of inverted cone (subjected to wall temperature boundary conditions) embedded in porous medium is solved using a hybrid neural network- particle swarm optimization method. To aim this purpose, a trial solution of the differential equation is defined as sum of two parts. The first part satisfies the initial/ boundary conditions and does contain an adjustable parameter and the second part which is constructed so as not to affect the initial/boundary conditions and involves adjustable parameters (the weights and biases) for a multi-layer perceptron neural network. Particle swarm optimization (PSO) is applied to find adjustable parameters of trial solution (in first and second part). The obtained solution in comparison with the numerical ones represents a remarkable accuracy.

Keywords: Porous Media, Ordinary Differential Equations (ODE), Particle Swarm Optimization (PSO), Neural Network (NN).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1671
738 Developing Manufacturing Process for the Graphene Sensors

Authors: Abdullah Faqihi, John Hedley

Abstract:

Biosensors play a significant role in the healthcare sectors, scientific and technological progress. Developing electrodes that are easy to manufacture and deliver better electrochemical performance is advantageous for diagnostics and biosensing. They can be implemented extensively in various analytical tasks such as drug discovery, food safety, medical diagnostics, process controls, security and defence, in addition to environmental monitoring. Development of biosensors aims to create high-performance electrochemical electrodes for diagnostics and biosensing. A biosensor is a device that inspects the biological and chemical reactions generated by the biological sample. A biosensor carries out biological detection via a linked transducer and transmits the biological response into an electrical signal; stability, selectivity, and sensitivity are the dynamic and static characteristics that affect and dictate the quality and performance of biosensors. In this research, a developed experimental study for laser scribing technique for graphene oxide inside a vacuum chamber for processing of graphene oxide is presented. The processing of graphene oxide (GO) was achieved using the laser scribing technique. The effect of the laser scribing on the reduction of GO was investigated under two conditions: atmosphere and vacuum. GO solvent was coated onto a LightScribe DVD. The laser scribing technique was applied to reduce GO layers to generate rGO. The micro-details for the morphological structures of rGO and GO were visualised using scanning electron microscopy (SEM) and Raman spectroscopy so that they could be examined. The first electrode was a traditional graphene-based electrode model, made under normal atmospheric conditions, whereas the second model was a developed graphene electrode fabricated under a vacuum state using a vacuum chamber. The purpose was to control the vacuum conditions, such as the air pressure and the temperature during the fabrication process. The parameters to be assessed include the layer thickness and the continuous environment. Results presented show high accuracy and repeatability achieving low cost productivity.

Keywords: Laser scribing, LightScribe DVD, graphene oxide, scanning electron microscopy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 597
737 Lean Production to Increase Reproducibility and Work Safety in the Laser Beam Melting Process Chain

Authors: C. Bay, A. Mahr, H. Groneberg, F. Döpper

Abstract:

Additive Manufacturing processes are becoming increasingly established in the industry for the economic production of complex prototypes and functional components. Laser beam melting (LBM), the most frequently used Additive Manufacturing technology for metal parts, has been gaining in industrial importance for several years. The LBM process chain – from material storage to machine set-up and component post-processing – requires many manual operations. These steps often depend on the manufactured component and are therefore not standardized. These operations are often not performed in a standardized manner, but depend on the experience of the machine operator, e.g., levelling of the build plate and adjusting the first powder layer in the LBM machine. This lack of standardization limits the reproducibility of the component quality. When processing metal powders with inhalable and alveolar particle fractions, the machine operator is at high risk due to the high reactivity and the toxic (e.g., carcinogenic) effect of the various metal powders. Faulty execution of the operation or unintentional omission of safety-relevant steps can impair the health of the machine operator. In this paper, all the steps of the LBM process chain are first analysed in terms of their influence on the two aforementioned challenges: reproducibility and work safety. Standardization to avoid errors increases the reproducibility of component quality as well as the adherence to and correct execution of safety-relevant operations. The corresponding lean method 5S will therefore be applied, in order to develop approaches in the form of recommended actions that standardize the work processes. These approaches will then be evaluated in terms of ease of implementation and their potential for improving reproducibility and work safety. The analysis and evaluation showed that sorting tools and spare parts as well as standardizing the workflow are likely to increase reproducibility. Organizing the operational steps and production environment decreases the hazards of material handling and consequently improves work safety.

Keywords: Additive manufacturing, lean production, reproducibility, work safety.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 756
736 Ramp Rate and Constriction Factor Based Dual Objective Economic Load Dispatch Using Particle Swarm Optimization

Authors: Himanshu Shekhar Maharana, S. K .Dash

Abstract:

Economic Load Dispatch (ELD) proves to be a vital optimization process in electric power system for allocating generation amongst various units to compute the cost of generation, the cost of emission involving global warming gases like sulphur dioxide, nitrous oxide and carbon monoxide etc. In this dissertation, we emphasize ramp rate constriction factor based particle swarm optimization (RRCPSO) for analyzing various performance objectives, namely cost of generation, cost of emission, and a dual objective function involving both these objectives through the experimental simulated results. A 6-unit 30 bus IEEE test case system has been utilized for simulating the results involving improved weight factor advanced ramp rate limit constraints for optimizing total cost of generation and emission. This method increases the tendency of particles to venture into the solution space to ameliorate their convergence rates. Earlier works through dispersed PSO (DPSO) and constriction factor based PSO (CPSO) give rise to comparatively higher computational time and less good optimal solution at par with current dissertation. This paper deals with ramp rate and constriction factor based well defined ramp rate PSO to compute various objectives namely cost, emission and total objective etc. and compares the result with DPSO and weight improved PSO (WIPSO) techniques illustrating lesser computational time and better optimal solution. 

Keywords: Economic load dispatch, constriction factor based particle swarm optimization, dispersed particle swarm optimization, weight improved particle swarm optimization, ramp rate and constriction factor based particle swarm optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1209
735 Speckle Characterization in Laser Projector Display

Authors: Meifang Xu, Yunbo Shi, Guoxian Tang, Jun Liu, Xuyuan Chen

Abstract:

Speckle phenomena results from when coherent radiation is reflected from a rough surface. Characterizing the speckle strongly depends on the measurement condition and experimental setup. In this paper we report the experimental results produced with different parameters in the setup. We investigated the factors which affects the speckle contrast, such as, F-number, gamma value and exposure time of the camera, rather than geometric factors like the distance between the projector lens to the screen, the viewing distance, etc. The measurement results show that the speckle contrast decreases by decreasing F-number, by increasing gamma value, and slightly affects by exposure time of the camera and the gain value of the camera.

Keywords: Characterization, laser projector, speckle

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1959
734 Evaluation of Classification Algorithms for Road Environment Detection

Authors: T. Anbu, K. Aravind Kumar

Abstract:

The road environment information is needed accurately for applications such as road maintenance and virtual 3D city modeling. Mobile laser scanning (MLS) produces dense point clouds from huge areas efficiently from which the road and its environment can be modeled in detail. Objects such as buildings, cars and trees are an important part of road environments. Different methods have been developed for detection of above such objects, but still there is a lack of accuracy due to the problems of illumination, environmental changes, and multiple objects with same features. In this work the comparison between different classifiers such as Multiclass SVM, kNN and Multiclass LDA for the road environment detection is analyzed. Finally the classification accuracy for kNN with LBP feature improved the classification accuracy as 93.3% than the other classifiers.

Keywords: Classifiers, feature extraction, mobile-based laser scanning, object location estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 740
733 Particle Swarm Optimization Based Genetic Algorithm for Two-Stage Transportation Supply Chain

Authors: Siva Prasad Darla, C. D. Naiju, K. Annamalai, S. S. Rajiv Sushanth

Abstract:

Supply chain consists of all stages involved, directly or indirectly, includes all functions involved in fulfilling a customer demand. In two stage transportation supply chain problem, transportation costs are of a significant proportion of final product costs. It is often crucial for successful decisions making approaches in two stage supply chain to explicit account for non-linear transportation costs. In this paper, deterministic demand and finite supply of products was considered. The optimized distribution level and the routing structure from the manufacturing plants to the distribution centres and to the end customers is determined using developed mathematical model and solved by proposed particle swarm optimization based genetic algorithm. Numerical analysis of the case study is carried out to validate the model.

Keywords: Genetic Algorithm, Particle Swarm Optimization, Production, Remanufacturing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1799
732 An Analytical Electron Mobility Model based on Particle Swarm Computation for Siliconbased Devices

Authors: F. Djeffal, N. Lakhdar, T. Bendib

Abstract:

The study of the transport coefficients in electronic devices is currently carried out by analytical and empirical models. This study requires several simplifying assumptions, generally necessary to lead to analytical expressions in order to study the different characteristics of the electronic silicon-based devices. Further progress in the development, design and optimization of Silicon-based devices necessarily requires new theory and modeling tools. In our study, we use the PSO (Particle Swarm Optimization) technique as a computational tool to develop analytical approaches in order to study the transport phenomenon of the electron in crystalline silicon as function of temperature and doping concentration. Good agreement between our results and measured data has been found. The optimized analytical models can also be incorporated into the circuits simulators to study Si-based devices without impact on the computational time and data storage.

Keywords: Particle Swarm, electron mobility, Si-based devices, Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1500
731 Thinned Elliptical Cylindrical Antenna Array Synthesis Using Particle Swarm Optimization

Authors: Rajesh Bera, Durbadal Mandal, Rajib Kar, Sakti P. Ghoshal

Abstract:

This paper describes optimal thinning of an Elliptical  Cylindrical Array (ECA) of uniformly excited isotropic antennas  which can generate directive beam with minimum relative Side Lobe  Level (SLL). The Particle Swarm Optimization (PSO) method, which  represents a new approach for optimization problems in  electromagnetic, is used in the optimization process. The PSO is used  to determine the optimal set of ‘ON-OFF’ elements that provides a  radiation pattern with maximum SLL reduction. Optimization is done  without prefixing the value of First Null Beam Width (FNBW). The  variation of SLL with element spacing of thinned array is also  reported. Simulation results show that the number of array elements  can be reduced by more than 50% of the total number of elements in  the array with a simultaneous reduction in SLL to less than -27dB.

 

Keywords: Thinned array, Particle Swarm Optimization, Elliptical Cylindrical Array, Side Lobe Label.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2622
730 Experimental Study on Capturing of Magnetic Nanoparticles Transported in an Implant Assisted Cylindrical Tube under Magnetic Field

Authors: Anurag Gaur, Nidhi, Shashi Sharma

Abstract:

Targeted drug delivery is a method of delivering medication to a patient in a manner that increases the concentration of the medication in some parts of the body relative to others. Targeted drug delivery seeks to concentrate the medication in the tissues of interest while reducing the relative concentration of the medication in the remaining tissues. This improves efficacy of the while reducing side effects. In the present work, we investigate the effect of magnetic field, flow rate and particle concentration on the capturing of magnetic particles transported in a stent implanted fluidic channel. Iron oxide magnetic nanoparticles (Fe3O4) nanoparticles were synthesized via co-precipitation method. The synthesized Fe3O4 nanoparticles were added in the de-ionized (DI) water to prepare the Fe3O4 magnetic particle suspended fluid. This fluid is transported in a cylindrical tube of diameter 8 mm with help of a peristaltic pump at different flow rate (25-40 ml/min). A ferromagnetic coil of SS 430 has been implanted inside the cylindrical tube to enhance the capturing of magnetic nanoparticles under magnetic field. The capturing of magnetic nanoparticles was observed at different magnetic magnetic field, flow rate and particle concentration. It is observed that capture efficiency increases from 47-67% at magnetic field 2-5kG, respectively at particle concentration 0.6mg/ml and at flow rate 30 ml/min. However, the capture efficiency decreases from 65 to 44% by increasing the flow rate from 25 to 40 ml/min, respectively. Furthermore, it is observed that capture efficiency increases from 51 to 67% by increasing the particle concentration from 0.3 to 0.6 mg/ml, respectively.

Keywords: Capture efficiency, Implant assisted-Magnetic drug targeting (IA-MDT), Magnetic nanoparticles, in vitro study.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1796
729 Treatment of Spin-1/2 Particle in Interaction with a Time-Dependent Magnetic Field by the Fermionic Coherent-State Path-Integral Formalism

Authors: Aouachria Mekki

Abstract:

We consider a spin-1/2 particle interacting with a time-dependent magnetic field using path integral formalism. The propagator is first of all written in the standard form replacing the spin by two fermionic oscillators via the Schwinger model. The propagator is then exactly determined, thanks to a simple transformation, and the transition probability is deduced.

Keywords: Path integral, formalism, Propagator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2421
728 Integration of CMOS Biosensor into a Polymeric Lab-on-a-Chip System

Authors: T. Brettschneider, C. Dorrer, H. Suy, T. Braun, E. Jung, R. Hoofman, M. Bründel, R. Zengerle, F. Lärmer

Abstract:

We present an integration approach of a CMOS biosensor into a polymer based microfluidic environment suitable for mass production. It consists of a wafer-level-package for the silicon die and laser bonding process promoted by an intermediate hot melt foil to attach the sensor package to the microfluidic chip, without the need for dispensing of glues or underfiller. A very good condition of the sensing area was obtained after introducing a protection layer during packaging. A microfluidic flow cell was fabricated and shown to withstand pressures up to Δp = 780 kPa without leakage. The employed biosensors were electrically characterized in a dry environment.

Keywords: CMOS biosensor, laser bonding, silicon polymer integration, wafer level packaging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2983
727 Model-Based Control for Piezoelectric-Actuated Systems Using Inverse Prandtl-Ishlinskii Model and Particle Swarm Optimization

Authors: Jin-Wei Liang, Hung-Yi Chen, Lung Lin

Abstract:

In this paper feedforward controller is designed to eliminate nonlinear hysteresis behaviors of a piezoelectric stack actuator (PSA) driven system. The control design is based on inverse Prandtl-Ishlinskii (P-I) hysteresis model identified using particle swarm optimization (PSO) technique. Based on the identified P-I model, both the inverse P-I hysteresis model and feedforward controller can be determined. Experimental results obtained using the inverse P-I feedforward control are compared with their counterparts using hysteresis estimates obtained from the identified Bouc-Wen model. Effectiveness of the proposed feedforward control scheme is demonstrated. To improve control performance feedback compensation using traditional PID scheme is adopted to integrate with the feedforward controller. 

Keywords: The Bouc-Wen hysteresis model, Particle swarm optimization, Prandtl-Ishlinskii model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2363
726 The Gravitational Impact of the Sun and the Moon on Heavy Mineral Deposits and Dust Particles in Low Gravity Regions of the Earth

Authors: T. B. Karu Jayasundara

Abstract:

The Earth’s gravity is not uniform. The satellite imageries of the Earth’s surface from NASA reveal a number of different gravity anomaly regions all over the globe. When the moon rotates around the earth, its gravity has a major physical influence on a number of regions on the earth. This physical change can be seen by the tides. The tides make sea levels high and low in coastal regions. During high tide, the gravitational force of the Moon pulls the Earth’s gravity so that the total gravitational intensity of Earth is reduced; it is further reduced in the low gravity regions of Earth. This reduction in gravity helps keep the suspended particles such as dust in the atmosphere, sand grains in the sea water for longer. Dramatic differences can be seen from the floating dust in the low gravity regions when compared with other regions. The above phenomena can be demonstrated from experiments. The experiments have to be done in high and low gravity regions of the earth during high and low tide, which will assist in comparing the final results. One of the experiments that can be done is by using a water filled cylinder about 80 cm tall, a few particles, which have the same density and same diameter (about 1 mm) and a stop watch. The selected particles were dropped from the surface of the water in the cylinder and the time taken for the particles to reach the bottom of the cylinder was measured using the stop watch. The times of high and low tide charts can be obtained from the regional government authorities. This concept is demonstrated by the particle drop times taken at high and low tides. The result of the experiment shows that the particle settlement time is less in low tide and high in high tide. The experiment for dust particles in air can be collected on filters, which are cellulose ester membranes and using a vacuum pump. The dust on filters can be used to make slides according to the NOHSC method. Counting the dust particles on the slides can be done using a phase contrast microscope. The results show that the concentration of dust is high at high tide and low in low tide. As a result of the high tides, a high concentration of heavy minerals deposit on placer deposits and dust particles retain in the atmosphere for longer in low gravity regions. These conditions are remarkably exhibited in the lowest low gravity region of the earth, mainly in the regions of India, Sri Lanka and in the middle part of the Indian Ocean. The biggest heavy mineral placer deposits are found in coastal regions of India and Sri Lanka and heavy dust particles are found in the atmosphere of India, particularly in the Delhi region.

Keywords: Dust particles, high and low tides, heavy minerals. low gravity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 575
725 IIR Filter design with Craziness based Particle Swarm Optimization Technique

Authors: Suman Kumar Saha, Rajib Kar, Durbadal Mandal, S. P. Ghoshal

Abstract:

This paper demonstrates the application of craziness based particle swarm optimization (CRPSO) technique for designing the 8th order low pass Infinite Impulse Response (IIR) filter. CRPSO, the much improved version of PSO, is a population based global heuristic search algorithm which finds near optimal solution in terms of a set of filter coefficients. Effectiveness of this algorithm is justified with a comparative study of some well established algorithms, namely, real coded genetic algorithm (RGA) and particle swarm optimization (PSO). Simulation results affirm that the proposed algorithm CRPSO, outperforms over its counterparts not only in terms of quality output i.e. sharpness at cut-off, pass band ripple, stop band ripple, and stop band attenuation but also in convergence speed with assured stability.

Keywords: IIR Filter, RGA, PSO, CRPSO, Evolutionary Optimization Techniques, Low Pass (LP) Filter, Magnitude Response, Pole-Zero Plot, Stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2536
724 Three-Dimensional Simulation of Free Electron Laser with Prebunching and Efficiency Enhancement

Authors: M. Chitsazi, B. Maraghechi, M. H. Rouhani

Abstract:

Three-dimensional simulation of harmonic up generation in free electron laser amplifier operating simultaneously with a cold and relativistic electron beam is presented in steady-state regime where the slippage of the electromagnetic wave with respect to the electron beam is ignored. By using slowly varying envelope approximation and applying the source-dependent expansion to wave equations, electromagnetic fields are represented in terms of the Hermit Gaussian modes which are well suited for the planar wiggler configuration. The electron dynamics is described by the fully threedimensional Lorentz force equation in presence of the realistic planar magnetostatic wiggler and electromagnetic fields. A set of coupled nonlinear first-order differential equations is derived and solved numerically. The fundamental and third harmonic radiation of the beam is considered. In addition to uniform beam, prebunched electron beam has also been studied. For this effect of sinusoidal distribution of entry times for the electron beam on the evolution of radiation is compared with uniform distribution. It is shown that prebunching reduces the saturation length substantially. For efficiency enhancement the wiggler is set to decrease linearly when the radiation of the third harmonic saturates. The optimum starting point of tapering and the slope of radiation in the amplitude of wiggler are found by successive run of the code.

Keywords: Free electron laser, Prebunching, Undulator, Wiggler.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1422
723 Robust Coordinated Design of Multiple Power System Stabilizers Using Particle Swarm Optimization Technique

Authors: Sidhartha Panda, C. Ardil

Abstract:

Power system stabilizers (PSS) are now routinely used in the industry to damp out power system oscillations. In this paper, particle swarm optimization (PSO) technique is applied to coordinately design multiple power system stabilizers (PSS) in a multi-machine power system. The design problem of the proposed controllers is formulated as an optimization problem and PSO is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor speed of the generator is involved; stability performance of the system is improved. The non-linear simulation results are presented for various severe disturbances and small disturbance at different locations as well as for various fault clearing sequences to show the effectiveness and robustness of the proposed controller and their ability to provide efficient damping of low frequency oscillations.

Keywords: Low frequency oscillations, Particle swarm optimization, power system stability, power system stabilizer, multimachine power system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 829