Search results for: high-performance concrete; hydric properties
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3410

Search results for: high-performance concrete; hydric properties

3380 Improving Concrete Properties with Fibers Addition

Authors: E. Mello, C. Ribellato, E. Mohamedelhassan

Abstract:

This study investigated the improvement in concrete properties with addition of cellulose, steel, carbon and PET fibers. Each fiber was added at four percentages to the fresh concrete, which was moist-cured for 28-days and then tested for compressive, flexural and tensile strengths. Changes in strength and increases in cost were analyzed. Results showed that addition of cellulose caused a decrease between 9.8% and 16.4% in compressive strength. This range may be acceptable as cellulose fibers can significantly increase the concrete resistance to fire, and freezing and thawing cycles. Addition of steel fibers to concreteincreased the compressive strength by up to 20%. Increases 121.5% and 80.7% were reported in tensile and flexural strengths respectively. Carbon fibers increased flexural and tensile strengths by up to 11% and 45%, respectively. Concrete strength properties decreased after the addition of PET fibers. Results showed that improvement in strength after addition of steel and carbon fibers may justify the extra cost of fibers.

Keywords: Concrete, compressive strength, fibers, flexural strength, tensile strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11401
3379 Recycling of Aggregates from Construction Demolition Wastes in Concrete: Study of Physical and Mechanical Properties

Authors: M. Saidi, F. Ait-Medjber, B. Safi, M. Samar

Abstract:

This work is focused on the study of valuation of recycled concrete aggregates, by measuring certain properties of concrete in the fresh and hardened state. In this study, rheological tests and physic-mechanical characterization on concretes and mortars were conducted with recycled concrete whose geometric properties were identified aggregates. Mortars were elaborated with recycled fine aggregate (0/5mm) and concretes were manufactured using recycled coarse aggregates (5/12.5 mm and 12.5/20 mm). First, a study of the mortars was conducted to determine the effectiveness of polycarboxylate superplasticizer on the workability of these and their action deflocculating of the recycled sand. The rheological behavior of mortars based on fine aggregate recycled was characterized. The results confirm that the mortars composed of different fractions of recycled sand (0 /5) have a better mechanical properties (compressive and flexural strength) compared to normal mortar. Also, the mechanical strengths of concretes made with recycled aggregates (5/12.5 mm and 12.5/20 mm), are comparable to those of conventional concrete with conventional aggregates, provided that the implementation can be improved by the addition of a superplasticizer.

Keywords: Demolition wastes, recycled coarse aggregate, concrete, workability, mechanical strength, porosity/water absorption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3341
3378 Using Waste Marbles in Self Compacting Lightweight Concrete

Authors: Z. Funda Türkmenoğlu, Mehmet Türkmenoglu, Demet Yavuz,

Abstract:

In this study, the effects of waste marbles as aggregate material on workability and hardened concrete characteristics of self compacting lightweight concrete are investigated. For this purpose, self compacting light weight concrete are produced by waste marble aggregates are replaced with fine aggregate at 5%, 7.5%, and 10% ratios. Fresh concrete properties, slump flow, T50 time, V funnel, compressive strength and ultrasonic pulse velocity of self compacting lightweight concrete are determined. It is concluded from the test results that using waste marbles as aggregate material by replacement with fine aggregate slightly affects fresh and hardened concrete characteristics of self compacting lightweight concretes.

Keywords: Hardened concrete characteristics, self compacting lightweight concrete, waste marble, workability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1275
3377 Study on Compressive Strength and Setting Times of Fly Ash Concrete after Slump Recovery Using Superplasticizer

Authors: Chaiyakrit Raoupatham, Ram Hari Dhakal, Chalermchai Wanichlamlert

Abstract:

Fresh concrete has one of dynamic properties known as slump. Slump of concrete is design to compatible with placing method. Due to hydration reaction of cement, the slump of concrete is loss through time. Therefore, delayed concrete probably get reject because slump is unacceptable. In order to recover the slump of delayed concrete the second dose of superplasticizer (naphthalene based type F) is added into the system, the slump recovery can be done as long as the concrete is not setting. By adding superplasticizer as solution for recover unusable slump loss concrete may affects other concrete properties. Therefore, this paper was observed setting times and compressive strength of concrete after being re-dose with chemical admixture type F (superplasticizer, naphthalene based) for slump recovery. The concrete used in this study was fly ash concrete with fly ash replacement of 0%, 30% and 50% respectively. Concrete mix designed for test specimen was prepared with paste content (ratio of volume of cement to volume of void in the aggregate) of 1.2 and 1.3, water-to-binder ratio (w/b) range of 0.3 to 0.58, initial dose of superplasticizer (SP) range from 0.5 to 1.6%. The setting times of concrete were tested both before and after re-dosed with different amount of second dose and time of dosing. The research was concluded that addition of second dose of superplasticizer would increase both initial and final setting times accordingly to dosage of addition. As for fly ash concrete, the prolongation effect was higher as the replacement of fly ash increase. The prolongation effect can reach up to maximum about 4 hours. In case of compressive strength, the re-dosed concrete has strength fluctuation within acceptable range of ±10%.

Keywords: Compressive strength, Fly ash concrete, Second dose of superplasticizer, Slump recovery, Setting times.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1890
3376 Modelling of Composite Steel and Concrete Beam with the Lightweight Concrete Slab

Authors: V. Přivřelová

Abstract:

Well-designed composite steel and concrete structures highlight the good material properties and lower the deficiencies of steel and concrete, in particular they make use of high tensile strength of steel and high stiffness of concrete. The most common composite steel and concrete structure is a simply supported beam, which concrete slab transferring the slab load to a beam is connected to the steel cross-section. The aim of this paper is to find the most adequate numerical model of a simply supported composite beam with the cross-sectional and material parameters based on the results of a processed parametric study and numerical analysis. The paper also evaluates the suitability of using compact concrete with the lightweight aggregates for composite steel and concrete beams. The most adequate numerical model will be used in the resent future to compare the results of laboratory tests.

Keywords: Composite beams, high-performance concrete, highstrength steel, lightweight concrete slab, modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2475
3375 The Effects of Aggregate Sizes and Fiber Volume Fraction on Bending Toughness and Direct Tension of Steel Fiber Reinforced Concrete

Authors: Hyun-Woo Cho, Jae-Heum Moon, Jang-Hwa Lee

Abstract:

In order to supplement the brittle property of concrete, fibers are added into concrete mixtures. Compared to general concrete, various characteristics such as tensile strength, bending strength, bending toughness, and resistance to crack are superior, and even when cracks occur, improvements on toughness as well as resistance to shock are excellent due to the growth of fracture energy. Increased function of steel fiber reinforced concrete can be differentiated depending on the fiber dispersion, and sand percentage can be an important influence on the fiber dispersion. Therefore, in this research, experiments were planned on sand percentage in order to apprehend the influence of sand percentage on the bending properties and direct tension of SFRC and basic experiments were conducted on bending and direct tension in order to recognize the properties of bending properties and direct tension following the size of the aggregates and sand percentage.

Keywords: Steel Fiber Reinforced Concrete, Bending Toughness, Direct tension.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1615
3374 Effects of Paste Content on Flow Characteristics of SCC Containing Local Natural Pozzolan

Authors: Muhammad Nouman Haral, Abdulaziz I. Al-Negheimesh, Galal Fares, Mohammad Iqbal Khan, Abdulrahman M. Alhozaimy

Abstract:

Natural pozzolan (NP) is one of the potential prehistoric alternative binders in the construction industry. It has been investigated as cement replacement in ordinary concrete by several researchers for many purposes. Various supplementary cementitious materials (SCMs) such as fly ash, limestone dust and silica fume are widely used in the production of SCC; however, limited studies to address the effect of NP on the properties of SCC are documented. The current research is composed of different SCC paste and concrete mixtures containing different replacement levels of local NP as an alternative SCM. The effect of volume of paste containing different amounts of local NP related to W/B ratio and cement content on SCC fresh properties was assessed. The variations in the fresh properties of SCC paste and concrete represented by slump flow (flowability) and the flow rate were determined and discussed. The results indicated that the flow properties of SCC paste and concrete mixtures, at their optimized superplasticizer dosages, were affected by the binder content of local NP and the total volume fraction of SCC paste.

Keywords: Binder, fresh properties, natural pozzolan, paste, SCC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2739
3373 Analysis of Flexural Behavior of Wood-Concrete Beams

Authors: M. Li, V. D. Thi, M. Khelifa, M. El Ganaoui

Abstract:

This study presents an overview of the work carried out by the use of wood waste as coarse aggregate in mortar. The paper describes experimental and numerical investigations carried on pervious concrete made of wood chips and also sheds lights on the mechanical properties of this new product. The properties of pervious wood-concrete such as strength, elastic modulus, and failure modes are compared and evaluated. The characterization procedure of the mechanical properties of wood waste ash are presented and discussed. The numerical and tested load–deflection response results are compared. It was observed that the numerical results are in good agreement with the experimental results.

Keywords: Wood waste ash, characterization, mechanical properties, finite element analysis, flexural behavior, bending tests.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1324
3372 Comparison of Physical and Chemical Properties of Micro-Silica and Locally Produced Metakaolin and Effect on the Properties of Concrete

Authors: S. U. Khan, T. Ayub, N. Shafiq

Abstract:

The properties of locally produced metakaolin (MK) as cement replacing material and the comparison of reactivity with commercially available micro-silica have been investigated. Compressive strength, splitting tensile strength, and load-deflection behaviour under bending are the properties that have been studied. The amorphous phase of MK with micro-silica was compared through X-ray diffraction (XRD) pattern. Further, interfacial transition zone of concrete with micro-silica and MK was observed through Field Emission Scanning Electron Microscopy (FESEM). Three mixes of concrete were prepared. One of the mix is without cement replacement as control mix, and the remaining two mixes are 10% cement replacement with micro-silica and MK. It has been found that MK, due to its irregular structure and amorphous phase, has high reactivity with portlandite in concrete. The compressive strength at early age is higher with MK as compared to micro-silica. MK concrete showed higher splitting tensile strength and higher load carrying capacity as compared to control and micro-silica concrete at all ages respectively.

Keywords: Metakaolin, compressive strength, splitting tensile strength, load deflection, interfacial transition zone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1532
3371 Effect of Different Moisture States of Surface-Treated Recycled Concrete Aggregate on Properties of Fresh and Hardened Concrete

Authors: Sallehan Ismail, Mahyuddin Ramli

Abstract:

This study examined the properties of fresh and hardened concretes as influenced by the moisture state of the coarse recycled concrete aggregates (RCA) after surface treatment. Surface treatment was performed by immersing the coarse RCA in a calcium metasilicate (CM) solution. The treated coarse RCA was maintained in three controlled moisture states, namely, air-dried, oven-dried, and saturated surface-dried (SSD), prior to its use in a concrete mix. The physical properties of coarse RCA were evaluated after surface treatment during the first phase of the experiment to determine the density and the water absorption characteristics of the RCA. The second phase involved the evaluation of the slump, slump loss, density, and compressive strength of the concretes that were prepared with different proportions of natural and treated coarse RCA. Controlling the moisture state of the coarse RCA after surface treatment was found to significantly influence the properties of the fresh and hardened concretes. 

Keywords: Moisture state, recycled concrete aggregate, surface treatment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3199
3370 Influence of Surface-Treated Coarse Recycled Concrete Aggregate on Compressive Strength of Concrete

Authors: Sallehan Ismail, Mahyuddin Ramli

Abstract:

This paper reports on the influence of surface-treated coarse recycled concrete aggregate (RCA) on developing the compressive strength of concrete. The coarse RCA was initially treated by separately impregnating it in calcium metasilicate (CM) or wollastonite and nanosilica (NS) prepared at various concentrations. The effects of both treatment materials on concrete properties (e.g., slump, density and compressive strength) were evaluated. Scanning electron microscopy (SEM) analysis was performed to examine the microstructure of the resulting concrete. Results show that the effective use of treated coarse RCA significantly enhances the compressive strength of concrete. This result is supported by the SEM analysis, which indicates the formation of a dense interface between the treated coarse RCA and the cement matrix. Coarse RCA impregnated in CM solution results in better concrete strength than NS, and the optimum concentration of CM solution recommended for treated coarse RCA is 10%.

Keywords: Calcium metasilicate, compressive strength, nanosilica, recycled concrete aggregate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2810
3369 Structural Behavior of Lightweight Concrete Made With Scoria Aggregates and Mineral Admixtures

Authors: M. Shannag, A. Charif, S. Naser, F. Faisal, A. Karim

Abstract:

Structural lightweight concrete is used primarily to reduce the dead-load weight in concrete members such as floors in high-rise buildings and bridge decks. With given materials, it is generally desired to have the highest possible strength/unit weight ratio with the lowest cost of concrete. The work presented herein is part of an ongoing research project that investigates the properties of concrete mixes containing locally available Scoria lightweight aggregates and mineral admixtures. Properties considered included: workability, unit weight, compressive strength, and splitting tensile strength. Test results indicated that developing structural lightweight concretes (SLWC) using locally available Scoria lightweight aggregates and specific blends of silica fume and fly ash seems to be feasible. The stress-strain diagrams plotted for the structural LWC mixes developed in this investigation were comparable to a typical stress-strain diagram for normal weight concrete with relatively larger strain capacity at failure in case of LWC.

Keywords: Lightweight Concrete, Scoria, Stress, Strain, Silica fume, Fly Ash.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3531
3368 Development of Mechanical Properties of Self Compacting Concrete Contain Rice Husk Ash

Authors: M. A. Ahmadi, O. Alidoust, I. Sadrinejad, M. Nayeri

Abstract:

Self-compacting concrete (SCC), a new kind of high performance concrete (HPC) have been first developed in Japan in 1986. The development of SCC has made casting of dense reinforcement and mass concrete convenient, has minimized noise. Fresh self-compacting concrete (SCC) flows into formwork and around obstructions under its own weight to fill it completely and self-compact (without any need for vibration), without any segregation and blocking. The elimination of the need for compaction leads to better quality concrete and substantial improvement of working conditions. SCC mixes generally have a much higher content of fine fillers, including cement, and produce excessively high compressive strength concrete, which restricts its field of application to special concrete only. To use SCC mixes in general concrete construction practice, requires low cost materials to make inexpensive concrete. Rice husk ash (RHA) has been used as a highly reactive pozzolanic material to improve the microstructure of the interfacial transition zone (ITZ) between the cement paste and the aggregate in self compacting concrete. Mechanical experiments of RHA blended Portland cement concretes revealed that in addition to the pozzolanic reactivity of RHA (chemical aspect), the particle grading (physical aspect) of cement and RHA mixtures also exerted significant influences on the blending efficiency. The scope of this research was to determine the usefulness of Rice husk ash (RHA) in the development of economical self compacting concrete (SCC). The cost of materials will be decreased by reducing the cement content by using waste material like rice husk ash instead of. This paper presents a study on the development of Mechanical properties up to 180 days of self compacting and ordinary concretes with rice-husk ash (RHA), from a rice paddy milling industry in Rasht (Iran). Two different replacement percentages of cement by RHA, 10%, and 20%, and two different water/cementicious material ratios (0.40 and 0.35), were used for both of self compacting and normal concrete specimens. The results are compared with those of the self compacting concrete without RHA, with compressive, flexural strength and modulus of elasticity. It is concluded that RHA provides a positive effect on the Mechanical properties at age after 60 days. Base of the result self compacting concrete specimens have higher value than normal concrete specimens in all test except modulus of elasticity. Also specimens with 20% replacement of cement by RHA have the best performance.

Keywords: Self compacting concrete (SCC), Rice husk ash(RHA), Mechanical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3630
3367 An Experimental Investigation of Bond Properties of Reinforcements Embedded in Geopolymer Concrete

Authors: Jee-Sang Kim, Jong Ho Park

Abstract:

Geopolymer concretes are new class of construction materials that have emerged as an alternative to Ordinary Portland cement concrete. Considerable researches have been carried out on material development of geopolymer concrete; however, a few studies have been reported on the structural use of them. This paper presents the bond behaviors of reinforcement embedded in fly ash based geopolymer concrete. The development lengths of reinforcement for various compressive strengths of concrete, 20, 30 and 40 MPa, and reinforcement diameters, 10, 16 and 25 mm, are investigated. Total 27 specimens were manufactured and pull-out test according to EN 10080 was applied to measure bond strength and slips between concrete and reinforcements. The average bond strengths decreased from 23.06MPa to 17.26 MPa, as the diameters of reinforcements increased from 10mm to 25mm. The compressive strength levels of geopolymer concrete showed no significant influence on bond strengths in this study. Also, the bond-slip relations between geopolymer concrete and reinforcement are derived using non-linear regression analysis for various experimental conditions.

Keywords: Bond-slip relation, bond strength, geopolymer concrete, pull-out test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3405
3366 Mix Proportioning and Strength Prediction of High Performance Concrete Including Waste Using Artificial Neural Network

Authors: D. G. Badagha, C. D. Modhera, S. A. Vasanwala

Abstract:

There is a great challenge for civil engineering field to contribute in environment prevention by finding out alternatives of cement and natural aggregates. There is a problem of global warming due to cement utilization in concrete, so it is necessary to give sustainable solution to produce concrete containing waste. It is very difficult to produce designated grade of concrete containing different ingredient and water cement ratio including waste to achieve desired fresh and harden properties of concrete as per requirement and specifications. To achieve the desired grade of concrete, a number of trials have to be taken, and then after evaluating the different parameters at long time performance, the concrete can be finalized to use for different purposes. This research work is carried out to solve the problem of time, cost and serviceability in the field of construction. In this research work, artificial neural network introduced to fix proportion of concrete ingredient with 50% waste replacement for M20, M25, M30, M35, M40, M45, M50, M55 and M60 grades of concrete. By using the neural network, mix design of high performance concrete was finalized, and the main basic mechanical properties were predicted at 3 days, 7 days and 28 days. The predicted strength was compared with the actual experimental mix design and concrete cube strength after 3 days, 7 days and 28 days. This experimentally and neural network based mix design can be used practically in field to give cost effective, time saving, feasible and sustainable high performance concrete for different types of structures.

Keywords: Artificial neural network, ANN, high performance concrete, rebound hammer, strength prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1155
3365 Laboratory Investigations on Mechanical Properties of High Volume Fly Ash Concrete and Composite Sections

Authors: Aravindkumar B. Harwalkar, S. S. Awanti

Abstract:

Use of fly ash as a supplementary cementing material in large volumes can bring both technological and economic benefits for concrete industry. In this investigation mix proportions for high volume fly ash concrete were determined at cement replacement levels of 50%, 55%, 60% and 65% with low calcium fly ash. Flexural and compressive strengths of different mixes were measured at ages of 7, 28 and 90 days. Flexural strength of composite section prepared from pavement quality and lean high volume fly ash concrete was determined at the age of 28 days. High volume fly ash concrete mixes exhibited higher rate of strength gain and age factors than corresponding reference concrete mixes. The optimum cement replacement level for pavement quality concrete was found to be 60%. The consideration of bond between pavement quality and lean of high volume fly ash concrete will be beneficial in design of rigid pavements.

Keywords: Keywords—Composite section, Compressive strength, Flexural strength, Fly ash.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1912
3364 Utilization of Demolished Concrete Waste for New Construction

Authors: Asif Husain, Majid Matouq Assas

Abstract:

In recent years demolished concrete waste handling and management is the new primary challenging issue faced by the countries all over the world. It is very challenging and hectic problem that has to be tackled in an indigenous manner, it is desirable to completely recycle demolished concrete waste in order to protect natural resources and reduce environmental pollution. In this research paper an experimental study is carried out to investigate the feasibility and recycling of demolished waste concrete for new construction. The present investigation to be focused on recycling demolished waste materials in order to reduce construction cost and resolving housing problems faced by the low income communities of the world. The crushed demolished concrete wastes is segregated by sieving to obtain required sizes of aggregate, several tests were conducted to determine the aggregate properties before recycling it into new concrete. This research shows that the recycled aggregate that are obtained from site make good quality concrete. The compressive strength test results of partial replacement and full recycled aggregate concrete and are found to be higher than the compressive strength of normal concrete with new aggregate.

Keywords: Demolished, concrete waste, recycle, new concrete, fresh coarse aggregate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5768
3363 Effects of Adding Fibre on Strength and Permeability of Recycled Aggregate Concrete Containing Treated Coarse RCA

Authors: Sallehan Ismail, Mahyuddin Ramli

Abstract:

This paper presents the experiment results of investigating the effects of adding various types and proportions of fibre on mechanical strength and permeability characteristics of recycled aggregate concrete (RAC), which was produced with treated coarse recycled concrete aggregate (RCA). Two types of synthetic fibres (i.e., barchip and polypropylene fibre) with various volume fractions were added to the RAC, which was calculated by the weight of the cement. The hardened RAC properties such as compressive strength, flexural strength, ultrasonic pulse velocity, water absorption and total porosity at the curing ages of 7 and 28 days were evaluated and compared with the properties of the control specimens. Results indicate that the treated coarse RCA enhances the mechanical strength and permeability properties of RAC and adding barchip fibre further optimises the results. Adding 1.2% barchip fibre has the best effect on the mechanical strength performance of the RAC.

Keywords: Barchip fibre, polypropylene fibre, recycled aggregate concrete.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2615
3362 Predictive Models for Compressive Strength of High Performance Fly Ash Cement Concrete for Pavements

Authors: S. M. Gupta, Vanita Aggarwal, Som Nath Sachdeva

Abstract:

The work reported through this paper is an experimental work conducted on High Performance Concrete (HPC) with super plasticizer with the aim to develop some models suitable for prediction of compressive strength of HPC mixes. In this study, the effect of varying proportions of fly ash (0% to 50% @ 10% increment) on compressive strength of high performance concrete has been evaluated. The mix designs studied were M30, M40 and M50 to compare the effect of fly ash addition on the properties of these concrete mixes. In all eighteen concrete mixes that have been designed, three were conventional concretes for three grades under discussion and fifteen were HPC with fly ash with varying percentages of fly ash. The concrete mix designing has been done in accordance with Indian standard recommended guidelines. All the concrete mixes have been studied in terms of compressive strength at 7 days, 28 days, 90 days, and 365 days. All the materials used have been kept same throughout the study to get a perfect comparison of values of results. The models for compressive strength prediction have been developed using Linear Regression method (LR), Artificial Neural Network (ANN) and Leave-One-Out Validation (LOOV) methods.

Keywords: ANN, concrete mixes, compressive strength, fly ash, high performance concrete, linear regression, strength prediction models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2030
3361 Improving Carbon Sequestration in Concrete: A Literature Review

Authors: Adedokun D. A., Ndambuki J. M., Salim R. W.

Abstract:

Due to urbanization, trees and plants which covered a great land mass of the earth and are an excellent carbon dioxide (CO2) absorber through photosynthesis are being replaced by several concrete based structures. It is therefore important to have these cement based structures absorb the large volume of carbon dioxide which the trees would have removed from the atmosphere during their useful lifespan. Hence the need for these cement based structures to be designed to serve other useful purposes in addition to shelter. This paper reviews the properties of Sodium carbonate and sugar as admixtures in concrete with respect to improving carbon sequestration in concrete.

Keywords: Carbon sequestration, Sodium carbonate, Sugar, concrete, Carbon dioxide.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2712
3360 Studies on the Blended Concrete Prepared with Tannery Effluent

Authors: K. Nirmalkumar

Abstract:

There is a acute water problem especially in the dry season in and around Perundurai (Erode district, Tamil Nadu, India) where there are more number of tannery units. Hence an attempt was made to use the waste water from tannery industry for construction purpose. The mechanical properties such as compressive strength, tensile strength, flexural strength etc were studied by casting various concrete specimens in form of cube, cylinders and beams etc and were found to be satisfactory. Hence some special properties such as chloride attack, sulphate attack and chemical attack are considered and comparatively studied with the conventional potable water. In this experimental study the results of specimens prepared by using treated and untreated tannery effluent were compared with the concrete specimens prepared by using potable water. It was observed that the concrete had some reduction in strength while subjected to chloride attack, sulphate attack and chemical attack. So admixtures were selected and optimized in suitable proportion to counter act the adverse effects and the results were found to be satisfactory.

Keywords: Calcium nitrite, concrete, fly ash.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1956
3359 Tension Stiffening Parameter in Composite Concrete Reinforced with Inoxydable Steel: Laboratory and Finite Element Analysis

Authors: S. Alih, A. Khelil

Abstract:

In the present work, behavior of inoxydable steel as reinforcement bar in composite concrete is being investigated. The bar-concrete adherence in reinforced concrete (RC) beam is studied and focus is made on the tension stiffening parameter. This study highlighted an approach to observe this interaction behavior in bending test instead of direct tension as per reported in many references. The approach resembles actual loading condition of the structural RC beam. The tension stiffening properties are then applied to numerical finite element analysis (FEA) to verify their correlation with laboratory results. Comparison with laboratory shows a good correlation between the two. The experimental settings is able to determine tension stiffening parameters in RC beam and the modeling strategies made in ABAQUS can closely represent the actual condition. Tension stiffening model used can represent the interaction properties between inoxydable steel and concrete.

Keywords: Inoxydable steel, Finite element modeling, Reinforced concrete beam, Tension-stiffening.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4253
3358 Effect of Water- Cement Ratio (w/c) on Mechanical Properties of Self-Compacting Concrete (Case Study)

Authors: Hamed Ahmadi Moghadam, Omolbanin Arasteh Khoshbin

Abstract:

Nowadays, the performance required for concrete structures is more complicated and diversified. Self-compacting concrete is a fluid mixture suitable for placing in structures with congested reinforcement without vibration. Self-compacting concrete development must ensure a good balance between deformability and stability. Also, compatibility is affected by the characteristics of materials and the mix proportions; it becomes necessary to evolve a procedure for mix design of SCC. This paper presents an experimental procedure for the design of self-compacting concrete mixes with different water-cement ratios (w/c) and other constant ratios by local materials. The test results for acceptance characteristics of self-compacting concrete such as slump flow, V-funnel and L-Box are presented. Further, compressive strength, tensile strength and modulus of elasticity of specimens were also determined and results are included here

Keywords: Self-Compacting Concrete, Mix Design, Compressive Strength, Tensile Strength, Modulus of Elasticity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5535
3357 A Study on Behaviour of Normal Strength Concrete and High Strength Concrete Subjected to Elevated Temperatures

Authors: C. B. K.Rao, Rooban Kumar

Abstract:

Cement concrete is a complex mixture of different materials. Behaviour of concrete depends on its mix proportions and constituents when it is subjected to elevated temperatures. Principal effects due to elevated temperatures are loss in compressive strength, loss in weight or mass, change in colour and spall of concrete. The experimental results of normal concrete and high strength concrete subjected elevated temperatures at 200°C, 400°C, 600°C, and 800°C and different cooling regimes viz. air cooling, water quenching on different grade of concrete are reported in this paper.

Keywords: High strength concrete, Normal strength concrete, Elevated Temperature, Loss of mass.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3728
3356 Influence of Metakaolin on the Performance of Mortars and Concretes

Authors: M. Si-Ahmed, A. Belakrouf, S. Kenai

Abstract:

The use of additions in cement in manufacturing, mortar and concrete offers economic and ecological advantages. Cements with additions such as limestone, slag and natural pouzzolana are produced in cement factories in Algeria. Several studies analyzed the effect of these additions on the physical and mechanical properties as well as the durability of concrete. However, few studies were conducted on the effect of local metakaolin on mechanical properties and durability of concrete. The main purpose of this paper is to analyze the performance of mortar and concrete with local metakaolin. The preparation of the metakaolin was carried out by calcination of kaolin at a temperature of 850 °C for a period of 3 hours. The experimental results have shown that the rates of substitutions of 10 and 15% metakaolin increases the compressive strength and flexural strength at both early age and long term. The durability and the permeability were also improved by reducing the coefficient of sorptivity.

Keywords: Metakaolin, calcination, compressive strength, durability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2804
3355 Influence of Recycled Concrete Aggregate Content on the Rebar/Concrete Bond Properties through Pull-Out Tests and Acoustic Emission Measurements

Authors: L. Chiriatti, H. Hafid, H. R. Mercado-Mendoza, K. L. Apedo, C. Fond, F. Feugeas

Abstract:

Substituting natural aggregate with recycled aggregate coming from concrete demolition represents a promising alternative to face the issues of both the depletion of natural resources and the congestion of waste storage facilities. However, the crushing process of concrete demolition waste, currently in use to produce recycled concrete aggregate, does not allow the complete separation of natural aggregate from a variable amount of adhered mortar. Given the physicochemical characteristics of the latter, the introduction of recycled concrete aggregate into a concrete mix modifies, to a certain extent, both fresh and hardened concrete properties. As a consequence, the behavior of recycled reinforced concrete members could likely be influenced by the specificities of recycled concrete aggregates. Beyond the mechanical properties of concrete, and as a result of the composite character of reinforced concrete, the bond characteristics at the rebar/concrete interface have to be taken into account in an attempt to describe accurately the mechanical response of recycled reinforced concrete members. Hence, a comparative experimental campaign, including 16 pull-out tests, was carried out. Four concrete mixes with different recycled concrete aggregate content were tested. The main mechanical properties (compressive strength, tensile strength, Young’s modulus) of each concrete mix were measured through standard procedures. A single 14-mm-diameter ribbed rebar, representative of the diameters commonly used in the domain of civil engineering, was embedded into a 200-mm-side concrete cube. The resulting concrete cover is intended to ensure a pull-out type failure (i.e. exceedance of the rebar/concrete interface shear strength). A pull-out test carried out on the 100% recycled concrete specimen was enriched with exploratory acoustic emission measurements. Acoustic event location was performed by means of eight piezoelectric transducers distributed over the whole surface of the specimen. The resulting map was compared to existing data related to natural aggregate concrete. Damage distribution around the reinforcement and main features of the characteristic bond stress/free-end slip curve appeared to be similar to previous results obtained through comparable studies carried out on natural aggregate concrete. This seems to show that the usual bond mechanism sequence (‘chemical adhesion’, mechanical interlocking and friction) remains unchanged despite the addition of recycled concrete aggregate. However, the results also suggest that bond efficiency seems somewhat improved through the use of recycled concrete aggregate. This observation appears to be counter-intuitive with regard to the diminution of the main concrete mechanical properties with the recycled concrete aggregate content. As a consequence, the impact of recycled concrete aggregate content on bond characteristics seemingly represents an important factor which should be taken into account and likely to be further explored in order to determine flexural parameters such as deflection or crack distribution.

Keywords: Acoustic emission monitoring, high-bond steel rebar, pull-out test, recycled aggregate concrete.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 938
3354 Design Approach to Incorporate Unique Performance Characteristics of Special Concrete

Authors: Devendra Kumar Pandey, Debabrata Chakraborty

Abstract:

The advancement in various concrete ingredients like plasticizers, additives and fibers, etc. has enabled concrete technologists to develop many viable varieties of special concretes in recent decades. Such various varieties of concrete have significant enhancement in green as well as hardened properties of concrete. A prudent selection of appropriate type of concrete can resolve many design and application issues in construction projects. This paper focuses on usage of self-compacting concrete, high early strength concrete, structural lightweight concrete, fiber reinforced concrete, high performance concrete and ultra-high strength concrete in the structures. The modified properties of strength at various ages, flowability, porosity, equilibrium density, flexural strength, elasticity, permeability etc. need to be carefully studied and incorporated into the design of the structures. The paper demonstrates various mixture combinations and the concrete properties that can be leveraged. The selection of such products based on the end use of structures has been proposed in order to efficiently utilize the modified characteristics of these concrete varieties. The study involves mapping the characteristics with benefits and savings for the structure from design perspective. Self-compacting concrete in the structure is characterized by high shuttering loads, better finish, and feasibility of closer reinforcement spacing. The structural design procedures can be modified to specify higher formwork strength, height of vertical members, cover reduction and increased ductility. The transverse reinforcement can be spaced at closer intervals compared to regular structural concrete. It allows structural lightweight concrete structures to be designed for reduced dead load, increased insulation properties. Member dimensions and steel requirement can be reduced proportionate to about 25 to 35 percent reduction in the dead load due to self-weight of concrete. Steel fiber reinforced concrete can be used to design grade slabs without primary reinforcement because of 70 to 100 percent higher tensile strength. The design procedures incorporate reduction in thickness and joint spacing. High performance concrete employs increase in the life of the structures by improvement in paste characteristics and durability by incorporating supplementary cementitious materials. Often, these are also designed for slower heat generation in the initial phase of hydration. The structural designer can incorporate the slow development of strength in the design and specify 56 or 90 days strength requirement. For designing high rise building structures, creep and elasticity properties of such concrete also need to be considered. Lastly, certain structures require a performance under loading conditions much earlier than final maturity of concrete. High early strength concrete has been designed to cater to a variety of usages at various ages as early as 8 to 12 hours. Therefore, an understanding of concrete performance specifications for special concrete is a definite door towards a superior structural design approach.

Keywords: High performance concrete, special concrete, structural design, structural lightweight concrete.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 864
3353 Influence of Metakaolin and Cements Types on Compressive Strength and Transport Properties of Self-Consolidating Concrete

Authors: Kianoosh Samimi, Farhad Estakhr, Mahdi Mahdikhani, Faramaz Moodi

Abstract:

The self-consolidating concrete (SCC) performance over ordinary concrete is generally related to the ingredients used. The metakaolin can modify various properties of concrete, due to high pozzolanic reactions and also makes a denser microstructure. The objective of this paper is to examine the influence of three types of Portland cement and metakaolin on compressive strength and transport properties of SCC at early ages and up to 90 days. Six concrete mixtures were prepared with three types of different cements and substitution of 15% metakaolin. The results show that the highest value of compressive strength was achieved for Portland Slag Cement (PSC) and without any metakaolin at age of 90 days. Conversely, the lowest level of compressive strength at all ages of conservation was obtained for Pozzolanic Portland Cement (PPC) and containing 15% metakaolin. As can be seen in the results, compressive strength in SCC containing Portland cement type II with metakaolin is higher compared to that relative to SCC without metakaolin from 28 days of age. On the other hand, the samples containing PSC and PPC with metakaolin had a lower compressive strength than the plain samples. Therefore, it can be concluded that metakaolin has a negative effect on the compressive strength of SCC containing PSC and PPC. In addition, results show that metakaolin has enhanced chloride durability of SCCs and reduced capillary water absorption at 28, 90 days.

Keywords: SCC, metakaolin, cement type, compressive strength, chloride diffusion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 842
3352 Influence of Hygro-Chemo-Mechanical Degradation on Performance of Concrete Gravity Dam

Authors: Kalyan Kumar Mandal, Damodar Maity

Abstract:

The degradation of concrete due to various hygrochemo- mechanical actions is inevitable for the structures particularly built to store water. Therefore, it is essential to determine the material properties of dam-like structures due to ageing to predict the behavior of such structures after a certain age. The degraded material properties are calculated by introducing isotropic degradation index. The predicted material properties are used to study the behavior of aged dam at different ages. The dam is modeled by finite elements and displacement and is considered as an unknown variable. The parametric study reveals that the displacement is quite larger for comparatively lower design life of the structure because the degradation of elastic properties depends on the design life of the dam. The stresses in dam cam be unexpectedly large at any age with in the design life. The outcomes of the present study indicate the importance of the consideration ageing effect of concrete exposed to water for the safe design of dam throughout its life time.

Keywords: Hygro-chemo-mechanical, isotropic degradation, finite element method, Koyna earthquake.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1824
3351 Physical, Chemical and Mineralogical Characterization of Construction and Demolition Waste Produced in Greece

Authors: C. Alexandridou, G. N. Angelopoulos, F. A. Coutelieris

Abstract:

Construction industry in Greece consumes annually more than 25 million tons of natural aggregates originating mainly from quarries. At the same time, more than 2 million tons of construction and demolition waste are deposited every year, usually without control, therefore increasing the environmental impact of this sector. A potential alternative for saving natural resources and minimize landfilling, could be the recycling and re-use of Concrete and Demolition Waste (CDW) in concrete production. Moreover, in order to conform to the European legislation, Greece is obliged to recycle non-hazardous construction and demolition waste to a minimum of 70% by 2020. In this paper characterization of recycled materials - commercially and laboratory produced, coarse and fine, Recycled Concrete Aggregates (RCA) - has been performed. Namely, X-Ray Fluorescence and X-ray diffraction (XRD) analysis were used for chemical and mineralogical analysis respectively. Physical properties such as particle density, water absorption, sand equivalent and resistance to fragmentation were also determined. This study, first time made in Greece, aims at outlining the differences between RCA and natural aggregates and evaluating their possible influence in concrete performance. Results indicate that RCA’s chemical composition is enriched in Si, Al, and alkali oxides compared to natural aggregates. X-ray diffraction (XRD) analyses results indicated the presence of calcite, quartz and minor peaks of mica and feldspars. From all the evaluated physical properties of coarse RCA, only water absorption and resistance to fragmentation seem to have a direct influence on the properties of concrete. Low Sand Equivalent and significantly high water absorption values indicate that fine fractions of RCA cannot be used for concrete production unless further processed. Chemical properties of RCA in terms of water soluble ions are similar to those of natural aggregates. Four different concrete mixtures were produced and examined, replacing natural coarse aggregates with RCA by a ratio of 0%, 25%, 50% and 75% respectively. Results indicate that concrete mixtures containing recycled concrete aggregates have a minor deterioration of their properties (3-9% lower compression strength at 28 days) compared to conventional concrete containing the same cement quantity.

Keywords: Chemical and physical characterization, compressive strength, mineralogical analysis, recycled concrete aggregates, waste management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3437