Search results for: flight safety.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 965

Search results for: flight safety.

935 A Method to Compute Efficient 3D Helicopters Flight Trajectories Based on a Motion Polymorph-Primitives Algorithm

Authors: Konstanca Nikolajevic, Nicolas Belanger, David Duvivier, Rabie Ben Atitallah, Abdelhakim Artiba

Abstract:

Finding the optimal 3D path of an aerial vehicle under flight mechanics constraints is a major challenge, especially when the algorithm has to produce real time results in flight. Kinematics models and Pythagorian Hodograph curves have been widely used in mobile robotics to solve this problematic. The level of difficulty is mainly driven by the number of constraints to be saturated at the same time while minimizing the total length of the path. In this paper, we suggest a pragmatic algorithm capable of saturating at the same time most of dimensioning helicopter 3D trajectories’ constraints like: curvature, curvature derivative, torsion, torsion derivative, climb angle, climb angle derivative, positions. The trajectories generation algorithm is able to generate versatile complex 3D motion primitives feasible by a helicopter with parameterization of the curvature and the climb angle. An upper ”motion primitives’ concatenation” algorithm is presented based. In this article we introduce a new way of designing three-dimensional trajectories based on what we call the ”Dubins gliding symmetry conjecture”. This extremely performing algorithm will be soon integrated to a real-time decisional system dealing with inflight safety issues.

Keywords: Aerial robots, Motion primitives, Robotics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2140
934 Airplane Stability during Climb/Descend Phase Using a Flight Dynamics Simulation

Authors: Niloufar Ghoreishi, Ali Nekouzadeh

Abstract:

The stability of the flight during maneuvering and in response to probable perturbations is one of the most essential features of an aircraft that should be analyzed and designed for. In this study, we derived the non-linear governing equations of aircraft dynamics during the climb/descend phase and simulated a model aircraft. The corresponding force and moment dimensionless coefficients of the model and their variations with elevator angle and other relevant aerodynamic parameters were measured experimentally. The short-period mode and phugoid mode response were simulated by solving the governing equations numerically and then compared with the desired stability parameters for the particular level, category, and class of the aircraft model. To meet the target stability, a controller was designed and used. This resulted in significant improvement in the stability parameters of the flight.

Keywords: Flight stability, phugoid mode, short period mode, climb phase, damping coefficient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 128
933 Applied Actuator Fault Accommodation in Flight Control Systems Using Fault Reconstruction Based FDD and SMC Reconfiguration

Authors: A. Ghodbane, M. Saad, J.-F. Boland, C. Thibeault

Abstract:

Historically, actuators’ redundancy was used to deal with faults occurring suddenly in flight systems. This technique was generally expensive, time consuming and involves increased weight and space in the system. Therefore, nowadays, the on-line fault diagnosis of actuators and accommodation plays a major role in the design of avionic systems. These approaches, known as Fault Tolerant Flight Control systems (FTFCs) are able to adapt to such sudden faults while keeping avionics systems lighter and less expensive. In this paper, a (FTFC) system based on the Geometric Approach and a Reconfigurable Flight Control (RFC) are presented. The Geometric approach is used for cosmic ray fault reconstruction, while Sliding Mode Control (SMC) based on Lyapunov stability theory is designed for the reconfiguration of the controller in order to compensate the fault effect. Matlab®/Simulink® simulations are performed to illustrate the effectiveness and robustness of the proposed flight control system against actuators’ faulty signal caused by cosmic rays. The results demonstrate the successful real-time implementation of the proposed FTFC system on a non-linear 6 DOF aircraft model.

Keywords: Actuators’ faults, Fault detection and diagnosis, Fault tolerant flight control, Sliding mode control, Geometric approach for fault reconstruction, Lyapunov stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2537
932 Analysis of the Benefits of Motion Simulators in 5th Generation Fighter Pilots' Training

Authors: Ali Mithad Emre

Abstract:

In military aviation, the use of flight simulators has proliferated recently in order to train fifth generation fighter pilots. With these simulators, pilots can carry out real-time flights resulting in seeing their faults and can perform emergency drills prior to real flights. Since we cannot risk losing the aircraft and the pilot himself/herself in the flight training process, flight simulators are of great importance to adapt the fighter pilots competently to real flights aboard the fifth generation aircraft. The real flights are impossible to simulate thoroughly on the ground. To some extent, the fixed-based simulators may assist the pilot to steer aircraft technically and visually but flight simulators can’t trick the pilot’s vestibular, sensory, and perceptual systems without motion platforms. This paper discusses the benefits of motion simulators for fifth generation fighter pilots’ training in preference to the fixed-based counterparts by analyzing their pros and cons.

Keywords: Centrifuge, g-loc, military, pilot, sickness, simulator, VMS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1630
931 PID Parameter Optimization of an UAV Longitudinal Flight Control System

Authors: Kamran Turkoglu, Ugur Ozdemir, Melike Nikbay, Elbrous M. Jafarov

Abstract:

In this paper, an automatic control system design based on Integral Squared Error (ISE) parameter optimization technique has been implemented on longitudinal flight dynamics of an UAV. It has been aimed to minimize the error function between the reference signal and the output of the plant. In the following parts, objective function has been defined with respect to error dynamics. An unconstrained optimization problem has been solved analytically by using necessary and sufficient conditions of optimality, optimum PID parameters have been obtained and implemented in control system dynamics.

Keywords: Optimum Design, KKT Conditions, UAV, Longitudinal Flight Dynamics, ISE Parameter Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3695
930 Food Safety Culture Paramount Than Traditional Food Safety System and Food Safety Culture in South African Food Industries

Authors: Oluwatosin A. Ijabadeniyi

Abstract:

The fact that traditional food safety system in the absence of food safety culture is inadequate has recently become a cause of concern for food safety professionals and other stakeholders. Focusing on implementation of traditional food safety system i.e HACCP prerequisite program and HACCP without the presence of food safety culture in the food industry has led to the processing, marketing and distribution of contaminated foods. The results of this are regular out breaks of food borne illnesses and recalls of foods from retail outlets with serious consequences to the consumers and manufacturers alike. This article will consider the importance of food safety culture, the cases of outbreaks and recalls that occurred when companies did not make food safety culture a priority. Most importantly, the food safety cultures of some food industries in South Africa were assessed from responses to questionnaires from food safety/food industry professionals in Durban South Africa. The article was concluded by recommending that both food industry employees and employers alike take food safety culture seriously.

Keywords: Good Manufacturing Practices (GMPs), food borne illnesses, food safety culture, food safety system, HACCP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3160
929 Flight Control of TUAV with Coaxial Rotor and Ducted Fan Configuration by NARMA-L2 Controllers for Enhanced Situational Awareness

Authors: Igor Astrov, Andrus Pedai, Boris Gordon

Abstract:

This paper focuses on a critical component of the situational awareness (SA), the control of autonomous vertical flight for tactical unmanned aerial vehicle (TUAV). With the SA strategy, we proposed a two stage flight control procedure using two autonomous control subsystems to address the dynamics variation and performance requirement difference in initial and final stages of flight trajectory for an unmanned helicopter model with coaxial rotor and ducted fan configuration. This control strategy for chosen model of TUAV has been verified by simulation of hovering maneuvers using software package Simulink and demonstrated good performance for fast stabilization of engines in hovering, consequently, fast SA with economy in energy can be asserted during search-and-rescue operations.

Keywords: Coaxial rotors, ducted fan, NARMA-L2 neurocontroller, situational awareness, tactical unmanned aerial vehicle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2255
928 Threats and Preventive Methods to Avoid Bird Strikes at the Deblin Military Airfield, Poland

Authors: J. Cwiklak, M. Grzegorzewski, M. Adamski

Abstract:

The paper presents results of the project conducted in Poland devoted to study on bird strikes at military airfields. The main aim of this project was to develop methods of aircraft protection against threats from birds. The studies were carried out using two methods. One by transect and the other one by selected sector scanning. During the research, it was recorded, that 104 species of birds in the number about of 36000 were observed. The most frequent ones were starling Sturnus vulgaris (31.0%), jackdaw Corvus monedula (18.3%), rook Corvus frugilegus (15.9 %), lapwing Vanellus vanellus (6.2%). Moreover, it was found, that starlings constituted the most serious threat. It resulted from their relatively high attendance at the runway (about 300 individuals). Possible repellent techniques concerning of the Deblin military airfield were discussed. The analysis of the birds’ concentration depending on the altitude, part of the day, year, part of the airfield constituted a base to work out critical flight phase and appropriate procedures to prevent bird strikes.

Keywords: Airport, bird strikes, flight safety, preventive methods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1224
927 An Experimental Helicopter Wind Envelope for Ship Operations

Authors: R. Bardera Mora

Abstract:

Launch and recovery helicopter wind envelope for a ship type was determined as the first step to the helicopter qualification program. Flight deck velocities data were obtained by means of a two components laser Doppler anemometer testing a 1/50th model in the wind tunnel stream. Full-scale flight deck measurements were obtained on board the ship using a sonic anemometer. Wind tunnel and full-scale measurements were compared, showing good agreement and finally, a preliminary launch and recovery helicopter wind envelope for this specific ship was built.

Keywords: Flight deck flow, relative wind, ship airwake, wind envelope

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3193
926 Gesture Recognition by Data Fusion of Time-of-Flight and Color Cameras

Authors: Piercarlo Dondi, Luca Lombardi, Marco Porta

Abstract:

In the last years numerous applications of Human- Computer Interaction have exploited the capabilities of Time-of- Flight cameras for achieving more and more comfortable and precise interactions. In particular, gesture recognition is one of the most active fields. This work presents a new method for interacting with a virtual object in a 3D space. Our approach is based on the fusion of depth data, supplied by a ToF camera, with color information, supplied by a HD webcam. The hand detection procedure does not require any learning phase and is able to concurrently manage gestures of two hands. The system is robust to the presence in the scene of other objects or people, thanks to the use of the Kalman filter for maintaining the tracking of the hands.

Keywords: Gesture recognition, human-computer interaction, Time-of-Flight camera.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1891
925 Advantages of Neural Network Based Air Data Estimation for Unmanned Aerial Vehicles

Authors: Angelo Lerro, Manuela Battipede, Piero Gili, Alberto Brandl

Abstract:

Redundancy requirements for UAV (Unmanned Aerial Vehicle) are hardly faced due to the generally restricted amount of available space and allowable weight for the aircraft systems, limiting their exploitation. Essential equipment as the Air Data, Attitude and Heading Reference Systems (ADAHRS) require several external probes to measure significant data as the Angle of Attack or the Sideslip Angle. Previous research focused on the analysis of a patented technology named Smart-ADAHRS (Smart Air Data, Attitude and Heading Reference System) as an alternative method to obtain reliable and accurate estimates of the aerodynamic angles. This solution is based on an innovative sensor fusion algorithm implementing soft computing techniques and it allows to obtain a simplified inertial and air data system reducing external devices. In fact, only one external source of dynamic and static pressures is needed. This paper focuses on the benefits which would be gained by the implementation of this system in UAV applications. A simplification of the entire ADAHRS architecture will bring to reduce the overall cost together with improved safety performance. Smart-ADAHRS has currently reached Technology Readiness Level (TRL) 6. Real flight tests took place on ultralight aircraft equipped with a suitable Flight Test Instrumentation (FTI). The output of the algorithm using the flight test measurements demonstrates the capability for this fusion algorithm to embed in a single device multiple physical and virtual sensors. Any source of dynamic and static pressure can be integrated with this system gaining a significant improvement in terms of versatility.

Keywords: Neural network, aerodynamic angles, virtual sensor, unmanned aerial vehicle, air data system, flight test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 982
924 A Study on the Leadership Behavior, Safety Culture, and Safety Performance of the Healthcare Industry

Authors: Cheng-Chia Yang , Yi-Shun Wang , Sue-Ting Chang, Suh-Er Guo, Mei-Fen Huang

Abstract:

Object: Review recent publications of patient safety culture to investigate the relationship between leadership behavior, safety culture, and safety performance in the healthcare industry. Method: This study is a cross-sectional study, 350 questionnaires were mailed to hospital workers with 195 valid responses obtained, and a 55.7% valid response rate. Confirmatory factor analysis (CFA) was carried out to test the factor structure and determine if the composite reliability was significant with a factor loading of >0.5, resulting in an acceptable model fit. Results: Through the analysis of One-way ANOVA, the results showed that physicians significantly have more negative patient safety culture perceptions and safety performance perceptions than non- physicians. Conclusions: The path analysis results show that leadership behavior affects safety culture and safety performance in the health care industry. Safety performance was affected and improved with contingency leadership and a positive patient safety organization culture. The study suggests improving safety performance by providing a well-managed system that includes: consideration of leadership, hospital worker training courses, and a solid safety reporting system.

Keywords: Leadership Behavior, Patient Safety, Safety Culture, Safety Performance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3910
923 Parameter Estimation using Maximum Likelihood Method from Flight Data at High Angles of Attack

Authors: Rakesh Kumar, A. K. Ghosh

Abstract:

The paper presents the modeling of nonlinear longitudinal aerodynamics using flight data of Hansa-3 aircraft at high angles of attack near stall. The Kirchhoff-s quasi-steady stall model has been used to incorporate nonlinear aerodynamic effects in the aerodynamic model used to estimate the parameters, thereby, making the aerodynamic model nonlinear. The Maximum Likelihood method has been applied to the flight data (at high angles of attack) for the estimation of parameters (aerodynamic and stall characteristics) using the nonlinear aerodynamic model. To improve the accuracy level of the estimates, an approach of fixing the strong parameters has also been presented.

Keywords: Maximum Likelihood, nonlinear, parameters, stall.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2170
922 Indicators as Early Warning Signal Performance to Solve Underlying Safety Problem before They Emerge as Accident Risks

Authors: Benson Chizubem

Abstract:

Because of the severe hazards that substantially impact workers' lives and assets lost, the oil and gas industry has established a goal of establishing zero occurrences or accidents in operations. Using leading indicators to measure and assess an organization's safety performance is a proactive approach to safety management. Also, it will provide early warning signals to solve inherent safety issues before they lead to an accident in the study industry. The analysis of these indicators' performance was based on a questionnaire-based methodology. A total number of 1000 questionnaires were disseminated to the workers, of which 327 were returned to the researcher team. The data collected were analysed to evaluate their safety perceptions on indicators performance. Data analysis identified safety training, safety system, safety supervision, safety rules and procedures, safety auditing, strategies and policies, management commitment, safety meeting and safety behaviour, as potential leading indicators that are capable of measuring organizational safety performance and as capable of providing early warning signals of weak safety area in an operational environment. The findings of this study have provided safety researchers and industrial safety practitioners with helpful information on the improvement of the existing safety monitoring process in the oil and gas industry, both locally and globally, as proactive actions.

Keywords: Early warning, safety, accident risks, oil and gas industry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 279
921 LQR and SMC Stabilization of a New Unmanned Aerial Vehicle

Authors: Kaan T. Oner, Ertugrul Cetinsoy, Efe Sirimoglu, Cevdet Hancer, Taylan Ayken, Mustafa Unel

Abstract:

We present our ongoing work on the development of a new quadrotor aerial vehicle which has a tilt-wing mechanism. The vehicle is capable of take-off/landing in vertical flight mode (VTOL) and flying over long distances in horizontal flight mode. Full dynamic model of the vehicle is derived using Newton-Euler formulation. Linear and nonlinear controllers for the stabilization of attitude of the vehicle and control of its altitude have been designed and implemented via simulations. In particular, an LQR controller has been shown to be quite effective in the vertical flight mode for all possible yaw angles. A sliding mode controller (SMC) with recursive nature has also been proposed to stabilize the vehicle-s attitude and altitude. Simulation results show that proposed controllers provide satisfactory performance in achieving desired maneuvers.

Keywords: UAV, VTOL, dynamic model, stabilization, LQR, SMC

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2048
920 Application of the Piloting Law Based on Adaptive Differentiators via Second Order Sliding Mode for a Fixed Wing Aircraft

Authors: Zaouche Mohammed, Amini Mohammed, Foughali Khaled, Hamissi Aicha, Aktouf Mohand Arezki, Boureghda Ilyes

Abstract:

In this paper, we present a piloting law based on the adaptive differentiators via high order sliding mode controller, by using an aircraft in virtual simulated environment. To deal with the design of an autopilot controller, we propose a framework based on Software in the Loop (SIL) methodology and we use MicrosoftTM Flight Simulator (FS-2004) as the environment for plane simulation. The aircraft dynamic model is nonlinear, Multi-Input Multi-Output (MIMO) and tightly coupled. The nonlinearity resides in the dynamic equations and also in the aerodynamic coefficients' variability. In our case, two (02) aircrafts are used in the flight tests, the Zlin-142 and MQ-1 Predator. For both aircrafts and in a very low altitude flight, we send the piloting control inputs to the aircraft which has stalled due to a command disconnection. Then, we present the aircraft’s dynamic behavior analysis while reestablishing the command transmission. Finally, a comparative study between the two aircraft’s dynamic behaviors is presented.

Keywords: Adaptive differentiators, Microsoft Flight Simulator, MQ-1 predator, second order sliding modes, Zlin-142.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1179
919 Fiction and Reality in Animation: Taking Final Flight of the Osiris as an Example

Authors: Syong-Yang Chung, Xin-An Chen

Abstract:

This study aims to explore the less well-known animation “Final Flight of the Osiris”, consisting of an initial exploration of the film color, storyline, and the simulacrum meanings of the roles, which leads to a further exploration of the light-shadow contrast and the psychological images presented by the screen colors and the characters. The research is based on literature review, and all data was compiled for the analysis of the visual vocabulary evolution of the characters. In terms of the structure, the relational study of the animation and the historical background of that time came first, including The Wachowskis’ and Andy Jones’ impact towards the cinematographic version and the animation version of “The Matrix”. Through literature review, the film color, the meaning and the relevant points were clarified. It was found in this research that “Final Flight of the Osiris” separates the realistic and virtual spaces by the changing the color tones; the "self" of the audience gradually dissolves into the "virtual" in the simulacra world, and the "Animatrix" has become a virtual field for the audience to understand itself about "existence" and "self".

Keywords: The Matrix, The Final Flight of Osiris, Wachowski sisters, simulacrum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 811
918 Applications of Social Marketing in Road Safety of Georgia

Authors: Charita Jashi

Abstract:

The aim of the paper is to explore the role of social marketing in changing the behavior of consumers on road safety, identify critical aspects and priority needs which impede the implementation of road safety program in Georgia. Given the goals of the study, a quantitative method was used to carry out interviews for primary data collection. This research identified the awareness level of road safety, legislation base, and marketing interventions to change behavior of drivers and pedestrians. During several years the non-governmental sector together with the local authorities and media have been very intensively working on the road safety issue in Georgia, but only seat-belts campaign should be considered rather successful. Despite achievements in this field, efficiency of road safety programs far from fulfillment and needs strong empowering.

Keywords: Road safety, social marketing interventions, behavior change, well-being.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1061
917 The Influence of Variable Geometrical Modifications of the Trailing Edge of Supercritical Airfoil on the Characteristics of Aerodynamics

Authors: P. Lauk, K. E. Seegel, T. Tähemaa

Abstract:

The fuel consumption of modern, high wing loading, commercial aircraft in the first stage of flight is high because the usable flight level is lower and the weather conditions (jet stream) have great impact on aircraft performance. To reduce the fuel consumption, it is necessary to raise during first stage of flight the L/D ratio value within Cl 0.55-0.65. Different variable geometrical wing trailing edge modifications of SC(2)-410 airfoil were compared at M 0.78 using the CFD software STAR-CCM+ simulation based Reynolds-averaged Navier-Stokes (RANS) equations. The numerical results obtained show that by increasing the width of the airfoil by 4% and by modifying the trailing edge airfoil, it is possible to decrease airfoil drag at Cl 0.70 for up to 26.6% and at the same time to increase commercial aircraft L/D ratio for up to 5.0%. Fuel consumption can be reduced in proportion to the increase in L/D ratio.

Keywords: L/D ratio, miniflaps, mini-TED, supercritical airfoil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 952
916 Improving the Safety Performance of Workers by Assessing the Impact of Safety Culture on Workers’ Safety Behaviour in Nigeria Oil and Gas Industry: A Pilot Study in the Niger Delta Region

Authors: Efua Ehiaguina, Haruna Moda

Abstract:

Interest in the development of appropriate safety culture in the oil and gas industry has taken centre stage among stakeholders in the industry. Human behaviour has been identified as a major contributor to occupational accidents, where abnormal activities associated with safety management are taken as normal behaviour. Poor safety culture is one of the major factors that influence employee’s safety behaviour at work, which may consequently result in injuries and accidents and strengthening such a culture can improve workers safety performance. Nigeria oil and gas industry has contributed to the growth and development of the country in diverse ways. However, in terms of safety and health of workers, this industry is a dangerous place to work as workers are often exposed to occupational safety and health hazard. To ascertain the impact of employees’ safety and how it impacts health and safety compliance within the local industry, online safety culture survey targeting frontline workers within the industry was administered covering major subjects that include; perception of management commitment and style of leadership; safety communication method and its resultant impact on employees’ behaviour; employee safety commitment and training needs. The preliminary result revealed that 54% of the participants feel that there is a lack of motivation from the management to work safely. In addition, 55% of participants revealed that employers place more emphasis on work delivery over employee’s safety on the installation. It is expected that the study outcome will provide measures aimed at strengthening and sustaining safety culture in the Nigerian oil and gas industry.

Keywords: Oil and gas safety, safety behaviour, safety culture, safety compliance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1204
915 The Enhancement of Training of Military Pilots Using Psychophysiological Methods

Authors: G. Kloudova, M. Stehlik

Abstract:

Optimal human performance is a key goal in the professional setting of military pilots, which is a highly challenging atmosphere. The aviation environment requires substantial cognitive effort and is rich in potential stressors. Therefore, it is important to analyze variables such as mental workload to ensure safe conditions. Pilot mental workload could be measured using several tools, but most of them are very subjective. This paper details research conducted with military pilots using psychophysiological methods such as electroencephalography (EEG) and heart rate (HR) monitoring. The data were measured in a simulator as well as under real flight conditions. All of the pilots were exposed to highly demanding flight tasks and showed big individual response differences. On that basis, the individual pattern for each pilot was created counting different EEG features and heart rate variations. Later on, it was possible to distinguish the most difficult flight tasks for each pilot that should be more extensively trained. For training purposes, an application was developed for the instructors to decide which of the specific tasks to focus on during follow-up training. This complex system can help instructors detect the mentally demanding parts of the flight and enhance the training of military pilots to achieve optimal performance.

Keywords: Cognitive effort, human performance, military pilots, psychophysiological methods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1124
914 Statistical Analysis of Failure Cases in Aerospace

Authors: J. H. Lv, W. Z. Wang, S.W. Liu

Abstract:

The major concern in the aviation industry is the flight safety. Although great effort has been put onto the development of material and system reliability, the failure cases of fatal accidents still occur nowadays. Due to the complexity of the aviation system, and the interaction among the failure components, the failure analysis of the related equipment is a little difficult. This study focuses on surveying the failure cases in aviation, which are extracted from failure analysis journals, including Engineering Failure Analysis and Case studies in Engineering Failure Analysis, in order to obtain the failure sensitive factors or failure sensitive parts. The analytical results show that, among the failure cases, fatigue failure is the largest in number of occurrence. The most failed components are the disk, blade, landing gear, bearing, and fastener. The frequently failed materials consist of steel, aluminum alloy, superalloy, and titanium alloy. Therefore, in order to assure the safety in aviation, more attention should be paid to the fatigue failures.

Keywords: Aviation industry, failure analysis, failure component, fatigue.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1739
913 A Case Study on the Efficacy of Technical Laboratory Safety in Polytechnic

Authors: Zulhisyam Salleh, Erita M. Mazlan, Saiful A. Mazlan, Norzainariah A. Hassan, Fizatul A. Patakor

Abstract:

Technical laboratories are typically considered as highly hazardous places in the polytechnic institution when addressing the problems of high incidences and fatality rates. In conjunction with several topics covered in the technical curricular, safety and health precaution should be highlighted in order to connect to few key ideas of being safe. Therefore the assessment of safety awareness in terms of safety and health about hazardous and risks at laboratories is needed and has to be incorporated with technical education and other training programmes. The purpose of this study was to determine the efficacy of technical laboratory safety in one of the polytechnics in northern region. The study examined three related issues that were; the availability of safety material and equipment, safety practice adopted by technical teachers and administrator-s safety attitudes in enforcing safety to the students. A model of efficacy technical laboratory was developed to test the linear relationship between existing safety material and equipment, teachers- safety practice and administrators- attitude in enforcing safety and to identify which of technical laboratory safety issues was the most pertinent factor to realize safety in technical laboratory. This was done by analyzing survey-based data sets particularly those obtained from samples of 210 students in the polytechnic. The Pearson Correlation was used to measure the association between the variables and to test the research hypotheses. The result of the study has found that there was a significant correlation between existing safety material and equipment, safety practice adopted by teacher and administrator-s attitude. There was also a significant relationship between technical laboratory safety and safety practice adopted by teacher and between technical laboratory safety and administrator attitude. Hence, safety practice adopted by teacher and administrator attitude is vital in realizing technical laboratory safety.

Keywords: Polytechnic, Safety attitudes, Safety practices, Technical laboratory

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2381
912 A Comparative Study of International Tourists- Safety Needs and Thai Tourist Polices- Perception towards International Tourists- Safety Needs

Authors: Pimmada Wichasin, Nuntiya Doungphummes

Abstract:

While service quality is acceptably most valued in the tourism industry, the issue of safety and security plays a key role in sustaining the industry success. Such an issue has been part of Thailand-s tourism development and promotion for several years. Evidently, the Tourist Police Department was set up for this purpose. Its main responsibility is to deal with international tourists- safety and confidence in travelling within Thai territory. However, to strengthen the tourism safety of the country, it is important to better understand international tourists- safety concerns about Thailand. This article seeks to compare international tourists- safety needs and Thai tourist polices- perception towards the tourists- safety concern to determine what measure should be taken to assure the tourist of Thailand-s secure environment. Through the employment of quantitative and qualitative methodological approaches, the tourism safety need of international tourists from Europe, North America and Asia was excavated, how Thai tourist polices and local polices perceived the international tourist-s safety concern was investigated, and opinion and experiences about how the police deal with international tourists- problems in eight touristic areas were also explored. A comparative result reveals a certain degrees of differences in international tourists- safety needs and Thai polices- perception towards their needs. The tourism safety prevention and protection measure and practice are also suggested.

Keywords: Tourism risk, Tourism safety, Travel safety need, Travelling in Thailand

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3774
911 Understanding Student Pilot Mental Workload in Recreational Aircraft Training

Authors: Ron Bishop, Jim Mitchell, Talitha Best

Abstract:

The increase in air travel worldwide has resulted in a pilot shortage. To increase student pilot capacity and lower costs, flight schools have increased the use of recreational aircraft (RA) with technological advanced cockpits in flight schools. The impact of RA based training compared to general aviation (GA) aircraft training on student mental workload is not well understood. This research investigated student pilot (N = 17) awareness of mental workload between technologically advanced cockpit equipped RA training with analogue gauge equipped GA training. The results showed a significantly higher rating of mental workload across subscales of mental and physical demand on the NASA-TLX in recreational aviation aircraft training compared to GA aircraft. Similarly, thematic content analysis of follow-up questions identified that mental workload of the student pilots flying the RA was perceived to be more than the GA aircraft.

Keywords: Glass cockpit, flight training, mental workload, student pilot.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 802
910 Modeling of a UAV Longitudinal Dynamics through System Identification Technique

Authors: Asadullah I. Qazi, Mansoor Ahsan, Zahir Ashraf, Uzair Ahmad

Abstract:

System identification of an Unmanned Aerial Vehicle (UAV), to acquire its mathematical model, is a significant step in the process of aircraft flight automation. The need for reliable mathematical model is an established requirement for autopilot design, flight simulator development, aircraft performance appraisal, analysis of aircraft modifications, preflight testing of prototype aircraft and investigation of fatigue life and stress distribution etc.  This research is aimed at system identification of a fixed wing UAV by means of specifically designed flight experiment. The purposely designed flight maneuvers were performed on the UAV and aircraft states were recorded during these flights. Acquired data were preprocessed for noise filtering and bias removal followed by parameter estimation of longitudinal dynamics transfer functions using MATLAB system identification toolbox. Black box identification based transfer function models, in response to elevator and throttle inputs, were estimated using least square error   technique. The identification results show a high confidence level and goodness of fit between the estimated model and actual aircraft response.

Keywords: Black box modeling, fixed wing aircraft, least square error, longitudinal dynamics, system identification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1078
909 Examining Occupational Health and Safety Inspection and Supervision in Turkey by Comparison to EU Countries

Authors: Nuray Gökçek Karaca

Abstract:

This study aims to examine the application of occupational health and safety supervision in Turkey and EU countries in terms of legal regulations. The results of research reveal that occupational health and safety supervision in EU countries, whatever the understanding of welfare state, is effectively carried out and almost all legal regulations on this subject are consistent with the EU directives. On the other hand, there are serious problems in applications, not legal regulations, of occupational health and safety supervision in Turkey by the side of EU countries. Indeed, Turkey has modern regulations on occupational health and safety supervision whereas there are several problems such as ignoring prevention policy on occupational health and safety supervision, understanding of monotype inspector, problems resulting from this understanding and dispersed structure of occupational health and safety organizations in workplaces. As a result, Turkey needs to carry out effective supervision mechanisms.

Keywords: Legal Rules, Occupational Health and Safety, Inspection, Supervision, Legislation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2330
908 A Vortex Plate Theory of Hovering Animal Flight

Authors: Khaled. M. Faqih

Abstract:

A model of vortex wake is suggested to determine the induced power during animal hovering flight. The wake is modeled by a series of equi-spaced rigid rectangular vortex plates, positioned horizontally and moving vertically downwards with identical speeds; each plate is generated during powering of the functionally wing stroke. The vortex representation of the wake considered in the current theory allows a considerable loss of momentum to occur. The current approach accords well with the nature of the wingbeat since it considers the unsteadiness in the wake as an important fluid dynamical characteristic. Induced power in hovering is calculated as the aerodynamic power required to generate the vortex wake system. Specific mean induced power to mean wing tip velocity ratio is determined by solely the normal spacing parameter (f) for a given wing stroke amplitude. The current theory gives much higher specific induced power estimate than anticipated by classical methods.

Keywords: vortex theory, hovering flight, induced power, Prandlt's tip theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1691
907 Application of the Total Least Squares Estimation Method for an Aircraft Aerodynamic Model Identification

Authors: Zaouche Mohamed, Amini Mohamed, Foughali Khaled, Aitkaid Souhila, Bouchiha Nihad Sarah

Abstract:

The aerodynamic coefficients are important in the evaluation of an aircraft performance and stability-control characteristics. These coefficients also can be used in the automatic flight control systems and mathematical model of flight simulator. The study of the aerodynamic aspect of flying systems is a reserved domain and inaccessible for the developers. Doing tests in a wind tunnel to extract aerodynamic forces and moments requires a specific and expensive means. Besides, the glaring lack of published documentation in this field of study makes the aerodynamic coefficients determination complicated. This work is devoted to the identification of an aerodynamic model, by using an aircraft in virtual simulated environment. We deal with the identification of the system, we present an environment framework based on Software In the Loop (SIL) methodology and we use MicrosoftTM Flight Simulator (FS-2004) as the environment for plane simulation. We propose The Total Least Squares Estimation technique (TLSE) to identify the aerodynamic parameters, which are unknown, variable, classified and used in the expression of the piloting law. In this paper, we define each aerodynamic coefficient as the mean of its numerical values. All other variations are considered as modeling uncertainties that will be compensated by the robustness of the piloting control.

Keywords: Aircraft aerodynamic model, Microsoft flight simulator, MQ-1 Predator, total least squares estimation, piloting the aircraft.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1622
906 Computational Prediction of Complicated Atmospheric Motion for Spinning or non- Spinning Projectiles

Authors: Dimitrios N. Gkritzapis, Elias E. Panagiotopoulos, Dionissios P. Margaris, Dimitrios G. Papanikas

Abstract:

A full six degrees of freedom (6-DOF) flight dynamics model is proposed for the accurate prediction of short and long-range trajectories of high spin and fin-stabilized projectiles via atmospheric flight to final impact point. The projectiles is assumed to be both rigid (non-flexible), and rotationally symmetric about its spin axis launched at low and high pitch angles. The mathematical model is based on the full equations of motion set up in the no-roll body reference frame and is integrated numerically from given initial conditions at the firing site. The projectiles maneuvering motion depends on the most significant force and moment variations, in addition to wind and gravity. The computational flight analysis takes into consideration the Mach number and total angle of attack effects by means of the variable aerodynamic coefficients. For the purposes of the present work, linear interpolation has been applied from the tabulated database of McCoy-s book. The developed computational method gives satisfactory agreement with published data of verified experiments and computational codes on atmospheric projectile trajectory analysis for various initial firing flight conditions.

Keywords: Constant-Variable aerodynamic coefficients, low and high pitch angles, wind.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2383