
 

 

 
Abstract—Optimal human performance is a key goal in the 

professional setting of military pilots, which is a highly challenging 
atmosphere. The aviation environment requires substantial cognitive 
effort and is rich in potential stressors. Therefore, it is important to 
analyze variables such as mental workload to ensure safe conditions. 
Pilot mental workload could be measured using several tools, but 
most of them are very subjective. This paper details research 
conducted with military pilots using psychophysiological methods 
such as electroencephalography (EEG) and heart rate (HR) 
monitoring. The data were measured in a simulator as well as under 
real flight conditions. All of the pilots were exposed to highly 
demanding flight tasks and showed big individual response 
differences. On that basis, the individual pattern for each pilot was 
created counting different EEG features and heart rate variations. 
Later on, it was possible to distinguish the most difficult flight tasks 
for each pilot that should be more extensively trained. For training 
purposes, an application was developed for the instructors to decide 
which of the specific tasks to focus on during follow-up training. 
This complex system can help instructors detect the mentally 
demanding parts of the flight and enhance the training of military 
pilots to achieve optimal performance.  
 

Keywords—Cognitive effort, human performance, military 
pilots, psychophysiological methods. 

I. INTRODUCTION 

ILITARY pilots are experiencing a high cognitive load 
on an everyday basis due to the environment requiring 

them to adapt to a variety of very different conditions. It is a 
demanding workspace requiring the pilot to hold a lot of 
information in their working memory while still seeking other 
information to perform important decision-making processes 
and to pay attention to secondary tasks, such as answering a 
radio call. During a real flight, there are also stressors like 
noise, vibrations, light, and pressure changes that can lead to 
the depletion of mental resources. It is no wonder that the 
human factor plays a crucial role in aviation accidents, as 80-
85% are caused by human error [19]. Automation technology 
has helped compensate for human limitations in terms of 
information processing, but the final decision is still in the 
hands of the operator who has to interface with the system to 
achieve optimal human-machine performance. It is not 
surprising that this kind of demand produces challenging tasks 
and mental workload for pilots. 

The enhancement of a pilot’s performance primarily 
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depends upon thorough training which is able to cover all of 
the probable circumstances involved. The effective training of 
technical skills is a must, but within the context of the work of 
professional pilots, there are even bigger challenges. In this 
stage of training, the need is to focus on the mental health of 
the pilots and their abilities to perform at peak performance 
level. For this purpose, the quantification of mental workload 
is crucial.  

Mental workload is a complex construct and can be 
measured by a variety of metrics. The methods to measure the 
mental workload of the pilot are many, but it has usually been 
based on subjective questionnaires [8]. This type of evaluation 
is too subjective, and there is often a problem with distorted 
answers due to the pilots’ fears of being excluded from flying 
duty. Combining such data with psychophysiological data 
provides more objective results, and recent technological 
progress offers a nonintrusive way of collecting data in real 
time during all kinds of tasks of both simulated and real flight 
and do not interfere with the primary task of piloting. The 
accuracy of detecting their mental workload can be up to 90% 
if we include physiological data in the testing [18]. 

There are several psychophysiological methods used in the 
context of assessing human factor behavior. Primarily, they 
are focused on the measurement of the activity of the 
autonomous nervous system. The most commonly used and 
easy-to-apply method is HR monitoring [7], [12], [20], [21]. 
Increased HR can indicate increments of task difficulty, so the 
cardiovascular response  is usually used to evaluate the mental 
workload in aviation under different flight conditions, both 
real and simulated [3], [10]. However, different variables, 
including muscle activity and anxiety, have to be taken into 
account in an evaluation during piloting. 

The activity of the central nervous system can be seen by 
the cortical brain waves over the scalp that are measured by 
EEG. It’s one of the most reliable contemporary methods, 
although it’s mostly used under laboratory conditions given 
the usual environmental constraints. There are only a few in-
flight studies [7], [16], [22] which have mainly captured data 
without muscle activity. The analysis of EEG waveforms is 
very complex, and most of the studies show that activity in the 
beta frequency band (, 13–30 Hz) should indicate arousal, 
anxiety, alertness, and signs of acute stress [4], [23]. Alpha (, 
8-13 Hz) bands occur during relaxation and low attention 
levels and when anxiety is suppressed [11], [15]. Alpha 
activity decreases during complex and cognitively demanding 
tasks. Theta waves (θ, 4–8 Hz) are indicators of deep 
relaxation states and drowsiness, and they mainly occur during 
sleep states. Delta band activity is a tricky wave range, 
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because it is usually influenced by muscular activity. If 
artifacts are carefully eliminated, it might indicate alertness or 
a reaction to ground tasks [9], but it may also indicate fatigue 
or a hypnagogic state [14]. Finally, in recent studies, research 
has also focused on gamma band activities (γ, 30–70 Hz) that 
are probably related to vigilance level, memory, situational 
awareness, and other important cognitive tasks [17] that are 
mainly present during flight.  

Other methods used in the context of aviation are 
electrooculogram (EOG) – it is a modern eye-tracking system 
which returns information about eye movements, pupil 
dilatation, and eye blinking. Other good indicators of mental 
workload are electrodermal activiy (EDA) and biochemistry. 

Based on our previous research [13], we focused later 
research and data analysis only on HR monitoring and EEG, 
which proved to be the most reliable and nonintrusive methods 
to assess the mental workload of military pilots under both 
real and simulated conditions. 

II. SUBJECTS 

The subjects in this study were five military pilots flying the 
Mi-2 and Mi-171 helicopters in their first stages of training. 
All of them were men aged 25-31 years who voluntarily 
participated in this research. The subjects underwent a regular 
full physical examination. They were all in good health, with 
no cardiac disease, vision defects, or brain damage. They were 
flight status ready, non-smokers and right-hand dominant. 
None of them had any history of mental illness or took any 
medication. None of them had ever suffered any chronic 
disease. Their family situation and social network was stable. 
They were all assigned a standalone identifier, so the 
anonymity of the pilots was ensured. 

III. METHODS 

Electroencephalogram: To measure electroencephalogram 
signals, we used bipolar EEG with a Multicap electrode cap 
from GVB geliMed. This cap normally contains 19 electrodes 
according to the international 10/20 system. Based on previous 
findings, we extracted the least relevant electrodes to reduce 
manipulation time and to increase the efficacy of 
measurement. Electrodes from this cap are replaceable, flatter, 
and more suitable for measurement under a helmet. The final 
number of electrodes used was eight, including the two 
reference electrodes M1 and M2 (see Table I). Occipital 
electrodes (O1, O2) proved to be effective in the 
differentiation of mental workload. Then this was continued in 
a topographic line using the central electrodes (C3, C4) and 
frontal electrodes (F3, F4), which cover the most important 
parts of the cerebral cortex. Placement of the electrodes in all 
frontal parts (Fp1, Fp2) was not possible due to the higher 
concentration of muscle artifacts and the restrictions of 
wearing a pilot’s helmet. All of the recordings were made by 
the Somte PSG ambulatory digital device, along with Somte 
software which provides comprehensive analyses of the 
physiological data. 

Heart rate monitoring: The heart rate was recorded by the 

Polar V800 advanced sports GPS watch. Based on the simple 
data needed in this research, we moved from the classic but 
bulky ECG device to this easy-to-use, compact watch. Heart 
rate was measured by two electrodes placed on the sternum of 
the subjects. Besides heart rate, it also captured heart rate 
variability and provided for wireless online data collection.  
 

TABLE I 
SELECTED ELECTRODES 

EEG Channel Electrode Reference electrode  

1 C3 C3 – M2 

2 C4 C4 – M1 

3 F3 F3 – M2 

4 F4 F4 – M1 

5 O1 O1 – M2 

6 O2 O2 – M1 

 
Questionnaires: To compare subjective ratings and 

objective psychophysiological data, we created a post-flight 
questionnaire. It contains questions about the mental workload 
perceived during training flight and about task difficulty. To 
cover most of the variables, the questionnaire also included 
questions about the current mental and physical health of the 
pilots, their social support, and relationships at work. 

Another questionnaire was created for instructors to 
evaluate each of the flight tasks according to difficulty and the 
performance of the pilot. Difficulty was rated on a scale from 
1-10, where 10 was the most difficult task such as take-off or 
landing and the performance of the pilot was rated A (without 
mistakes), B (some mistakes but still satisfactory) and C 
(unsatisfactory). 

To eliminate personality variables in the testing, we 
included a personality questionnaire NEO-PI-R [6], which 
contains the main scales of personality traits, such as 
neuroticism, extraversion, agreeableness, conscientiousness, 
and openness to experience. Another set of 30 subscales 
provided more detail in completing the remainder of the 
personality profile. This method provided information on 
general personality characteristics and their specific 
personality traits. 

IV. STUDY PROTOCOL 

Data were collected at LOM PRAHA’s Flight Training 
Center (CLV) in Pardubice, Czech Republic. This training 
facility offers complex services for both fixed wing and rotary 
wing aircraft pilots. In this study, we only measured helicopter 
pilots in their first stages of training using Mi-2 and Mi-17 
helicopters during all airborne training and also during one 
simulator training session.  

Participants came to the briefing room in the morning and 
started the day with a daily squadron meeting about the flight 
plan and weather conditions. Later, they went to a separate 
room where the researchers applied the above-mentioned 
devices, such as the heart rate monitor and the EEG. Pilots 
were instructed before the testing to be well rested, in good 
health, and free of any prohibited substances. First, the 
electrodes of the heart rate monitor that are attached to a strap 
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were placed on the pilot’s sternum. Later, the Polar watch was 
put on the subject’s wrist, and the researchers waited for the 
devices to be connected. Subjects were then informed about 
the function of the watches and the signs that flash if it turns 
off or if there is some other problem. They were asked to 
report such an issue to testing personnel to avoid data 
destruction. To secure optimal testing conditions for the heart 
rate measurement, we captured the data 1.5-2 hours after 
eating and without any medication. It was not possible to meet 
all the requirements for the standard procedure according to 
Bayevsky [2], since the research was conducted in a real flight 
environment. After connecting the devices, we began to 
measure the resting heart rate while the subject was sitting 
quietly without any distractions for five minutes. 

Next, the electrodes of the EEG were placed on the scalp of 
the measured pilot using eight electrodes incorporated in the 
EEG cap. The connection was potentiated by a special 
conductive gel which is applied in the electrodes with a blunt 
needle. After checking the right impedance, it was necessary 
to make a calibration of the EEG. The subject sat for two 
minutes with eyes open and two minutes with eyes closed to 
ensure there were changes during the closed-eyes phase and to 
have the resting phase data available for later comparison. 

Once all the used devices were correctly set up, the pilot 
was picked up by his instructor and taken by car to the 
helicopter. During the flight, there was a psychologist or his 
assistant present to ensure the devices were properly 
functioning and to record data for the whole flight, including 
the flying conditions and the reactions of the pilot. There were 
different flight tasks depending on the stage of training. These 
ranged from simple take-offs to more difficult ones, such as 
autorotation and group flying. On average, the training flight 
lasted about one hour and navigation flights up to two or two 
and a half hour. In total, all of the pilots flew at least 10 
measured training flights. After landing, both the pilot tested 
and the researcher went back to the examination room where 
all of the devices were removed. Then the pilot sat down to a 
computer and filled out the post-flight questionnaire. 
Meanwhile, the researchers downloaded and saved all of the 
data. After finishing the questionnaire, which took about 10-
15 minutes, the pilot could leave the room and continue with 
his duties. The final part of the research was done by the 
instructor who filled out an evaluation of the pilot after the 
training based on his notes and recordings of the flight. 

V. RESULTS 

The aim of this study was to find out if psychophysiological 
methods are useful for improving the training of military 
helicopter pilots. For that purpose, pilots were measured 
during actual flight to observe their level of mental workload 
during specific flight tasks. Based on previous research, it was 
decided to create an individual model for each pilot to better 

target the training and to ensure greater effectiveness. 
First, the data from the heart rate monitor were analyzed. It 

was necessary to convert the data into the same format at a 
sampling frequency of 5Hz. In some of the recordings, there 
were technical problems, so there were finally 25 recordings 
made from five subjects. Heart rate and EEG data were 
organized according to the number of the flight (#001-…), 
date (YY-MM-DD), and pilot (A-E). Later, the data from the 
heart rate monitor were processed and displayed in a graph 
where it was possible to compare them with flight conditions 
(see Fig. 1). To see if there were significant heart rate 
differences between the resting phase and during flight, the 
means of these two situations were compared. The average 
heart rate of the resting phase was compared to the heart rate 
during flight using a t-test that showed significant differences 
for p>0.01. Also, data from the EEG were put into the same 
format and timeline. First, it was necessary to remove 
artifacts, mostly eye movements and muscle activity. This 
elimination was made off-line before data averaging using an 
automated method and later proofed manually. The automatic 
method was based on an algorithm searching for outliers in the 
recordings. This was made by the Grubb test [1] at a level of 
significance where p<0.05. These segments can be expected to 
have a high probability of artifacts, are not used in further 
analysis, and do not have any effect on the final classification 
model. Artifact rejection is a key part in the EEG analysis to 
clear all the data that will later be compared. To better read the 
signal, the EEG data were shown in a spectrogram where the 
blue color represents the minimum and the red color the 
maximum in the measured power band. On the vertical axis, 
frequency is shown. On the horizontal axis, the color scale is 
represented by the module of a complex spectral function. The 
basis for calculating the complex spectrum of each segment is 
the discrete Fourier transformation (DFT). In the artifact parts 
where too much muscle activity occurs, either the electrode 
fell off or there were other technical problems which are 
marked in the spectrogram as vertical lines. The artifact parts 
correlate with increasing heart rate, so it is obvious that there 
are mainly muscle type artifacts. During flight, the artifacts 
mostly occurred at frequencies of 4Hz, 7Hz, 12.5Hz, 25Hz, 
38Hz, 42Hz, and 50Hz. So, later on, we focused on parameters 
excluding these frequencies. For further analysis two 
frequency bands were used, one in the beta waveband (16-
22Hz) and another one in the gamma waveband (28-35Hz). A 
spectrogram with a spectral analysis for the EEG signal that 
was measured between two electrodes, e.g. C3-M2 (see Fig. 
2), is shown below. At a higher resolution, it is possible to see 
the critical parts simply by visual analysis. But, for the 
purpose of higher quantification, a statistical analysis was 
made to prove there was a significant difference between the 
resting phase and real flight.  
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Fig. 1 Heart rate of Pilot A during specific flight situations 
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Fig. 2 EEG spectral analysis for Pilot D during specific flight situations 
 

The statistical analysis was made using all of the parameters 
of EEG and HR. Each parameter was later compared between 
the resting phase and periods of demanding flight situations 
from all of the recordings. First, the Shapiro-Wilk normality 
test was used and later the t-test to compare the two phases. 
The results of this test are presented in Fig. 3, which shows 
that the most significant features were: C4-M1 LOG BETA, 
C4-M1 LOG GAMMA, O1-M2 LOG GAMMA, and the HR 
MEAN. This means that for future analysis these are the best 

parameters for the detection of mental workload. Still, the 
accuracy of classification was not very high, so it was decided 
to design a more individualized model based either on types of 
flight situations or individuals (pilots). The model based on 
flight situations was too large, since there were 17 situations 
and for each of them there were 2-3 features. For example, it 
was possible to characterize take-off by C3-M2_STD, 
HR_MEAN and O1-M2_GAMMA, but this would have been 
too complicated to use in practice. The individual model for 
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every pilot was based on a self-learning model, which was 
shown to be more effective and deterministic. For each pilot, a 
model was created which enabled to differentiate the resting 
phase from the demanding in-flight phase. 

 

 

Fig. 3 Statistical analysis of the counted features 
 

This model is based on a decision tree [5] which was 
created by a CART (classification and regression tree) 
algorithm. The decision trees used for this model were binary, 
so in each non-leaf node the data were divided into two sets. 
The final decision trees were calculated from all available 
features, with the resting phase given as class 0 and all 
difficult flight situations where an increased mental workload 
was expected as class 1. All the data from each subject were 
divided into 10 parts and a final decision tree was compiled 
using a 10 fold-cross-validation. This final model may be used 
for the classification and detection of mental workload in new 
recordings. This system of modeling was used in past 
recordings, so it was possible to make a classification model 
of the level of mental workload for each pilot. Every 
individual had his own classification features based on EEG 
and heart rate monitoring recordings. It is a self-learning 
model, so with every new recording, the classification 
becomes more and more accurate. The minimum number of 
recordings needed for this model to be effective was estimated 
to be five recordings. However, even with just one or two 
recordings, it is already possible to classify the most mentally 
demanding parts of the flight. For future recordings, an easy-
to-use application was created for the instructors to evaluate 
the flight regarding the presence of mental workload. 
However, it is necessary to train the personnel how to apply 
the devices so that the recordings can be evaluated. First, the 
recorded data has to be downloaded from the devices. Next, 
the data has to be properly formatted, and then it is uploaded 
to the application. The application automatically rejects 
artifacts and shows a graph of the most mentally demanding 

parts of the flight. Based on these results, the instructor, or 
even pilot himself, can see which part of the flight was the 
most difficult and would be appropriate to replicate and focus 
on during future training flight conditions. 

Finally, the post-flight questionnaire was used to evaluate 
the development of the pilot during training. The physical and 
mental state of the pilots was stable through all the phases of 
training with slight deviations that did not influence 
measurement of the physiological data. Also, their social 
support and work relationships were evaluated as good and did 
not change during the course of training. It was determined 
that no extreme situations occurred during the training that 
could have influenced the reliability of data measurements. 
The pilots also evaluated the difficulty of the flight and their 
level of mental workload during specific flight tasks. The 
tendency was very similar in all of the individuals. Initially, 
training was perceived to have a high level of difficulty. 
However, the perceived mental workload fell as the training 
continued. In the middle stage of the training, tension slightly 
increased again. During the final phases, tension fell to a 
moderate level. The evaluation made by the instructors was 
mainly used for the pilots to see their progress in the training. 
For use in our research, it was possible to compare data from 
psychophysiological methods, such as EEG and heart rate 
monitoring, to the performance of the pilot. It was already 
proven in previous research [13] that a highly mentally 
demanding task is handled worse than a task without a 
perceived high mental workload. This was also confirmed in 
this research. This finding supports the theory for the need of 
monitoring mental workload during flight training to enhance 
pilot performance. The results from the personality inventory 
NEO-PI-R did not show any signs of destabilization of the 
mental health of the pilots nor acute tendencies for a radical 
change in the future. The group of pilots tested was largely 
homogenous and indicates a good pilot selection process 
regarding their mental stability.  

VI. CONCLUSION 

Military aviation is one of the key components of modern 
defense forces therefore enhancing and optimizing its 
performance is critical to military success. The technical 
aspects of military aviation are definitely important, but the 
human factor still plays a crucial role in innovation. As stated 
above, human error causes 80-85% of aviation accidents. To 
avoid such tragedies, a military pilot has to be ready to 
perform in extreme conditions while fulfilling all kinds of 
specific flight tasks and stay focused on solving any 
unexpected problems. The training and requirements for a 
military pilot do not differ much whether the pilot flies a 
helicopter or a fighter aircraft. They all need to go through 
specific flight tasks during training to become elite pilots. As 
technological progress in the automation of aircraft increases, 
technical training needs to keep pace by focusing on the 
pilot’s mental resilience. This includes the capability of 
handling stress, reducing fatigue, staying focused, and being 
precise and quick in decision-making processes.  

During flight, it is difficult to determine if the pilot is 
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handling the flight situation calmly or if he’s going through a 
lot of stress. If there is an objective tool that can choose key 
parts of the flight that should be trained on more thoroughly, it 
can help the pilot to gain confidence and to automate 
completion of the learning process. This tool is based on 
physiological data such as EEG and heart rate monitoring. The 
psychological questionnaires supported the hypothesis about 
decreasing tension during training and the need for objective 
measures of mental workload. 

First, it was necessary to process data from the recordings 
and to convert them into same format. Later, the problem with 
artifacts from EEGs regarding muscle activity and other 
interference had to be resolved. For this purpose, an automated 
rejection process of artifacts was created, which was later 
incorporated into the final application. For each pilot, an 
individual model was created based on chosen features 
regarding mean heart rate and frequency band on the EEG 
electrodes. This model is self-learning. So, with every new 
recording, it gets better and better in detecting the mental 
workload of the pilot during flight. This calculated model is 
already incorporated in a hands-on application which trained 
instructors could use on an everyday basis. One complication 
is in the measurement itself which, without proper training, it 
would not be possible to make. For example, the EEG has its 
own specific application methods that are important in the 
avoidance of artifacts, the displacement of the electrode, and 
other signal interference. So far, it is not possible to make this 
measurement without the presence of one of our professionals. 
However, in the future, there is hope to train instructors or the 
pilots themselves to incorporate this new technique in their 
training as a routine procedure. To ensure that the data 
obtained are not influenced by other variables, such as 
physical or mental state, social support, working environment, 
or some unusual personality characteristics, a series of 
questionnaires were included in the testing. All pilots proved 
to be mentally healthy without any significant deviations 
throughout the testing.  

The aim of this study was to find new, innovative ways to 
improve the training of military pilots. Since the focus is now 
turning from the machine towards human-machine interface, it 
was only appropriate to try to use the psychophysiological 
measurements of the pilot and his level of mental workload. 
For this purpose, we created an objective model that could 
help instructors and their pilots to enhance their performance 
and to easily handle their working tasks. Its advantage lies in 
the individually selected features that help to specify the 
indicators of mental workload for each pilot. Small obstacles 
can occur during the application of the devices which still 
requires a well-trained professional. Now, future effort calls 
for an empirical investigation of the efficacy of this presented 
model and of finding possible ways of increasing the 
resilience and mental health of military pilots to lead to 
optimal human performance.  
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