Application of the Piloting Law Based on Adaptive Differentiators via Second Order Sliding Mode for a Fixed Wing Aircraft
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33156
Application of the Piloting Law Based on Adaptive Differentiators via Second Order Sliding Mode for a Fixed Wing Aircraft

Authors: Zaouche Mohammed, Amini Mohammed, Foughali Khaled, Hamissi Aicha, Aktouf Mohand Arezki, Boureghda Ilyes

Abstract:

In this paper, we present a piloting law based on the adaptive differentiators via high order sliding mode controller, by using an aircraft in virtual simulated environment. To deal with the design of an autopilot controller, we propose a framework based on Software in the Loop (SIL) methodology and we use MicrosoftTM Flight Simulator (FS-2004) as the environment for plane simulation. The aircraft dynamic model is nonlinear, Multi-Input Multi-Output (MIMO) and tightly coupled. The nonlinearity resides in the dynamic equations and also in the aerodynamic coefficients' variability. In our case, two (02) aircrafts are used in the flight tests, the Zlin-142 and MQ-1 Predator. For both aircrafts and in a very low altitude flight, we send the piloting control inputs to the aircraft which has stalled due to a command disconnection. Then, we present the aircraft’s dynamic behavior analysis while reestablishing the command transmission. Finally, a comparative study between the two aircraft’s dynamic behaviors is presented.

Keywords: Adaptive differentiators, Microsoft Flight Simulator, MQ-1 predator, second order sliding modes, Zlin-142.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1124885

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1230

References:


[1] O. Harkegard, “Flight Control Design Using Backstepping”, Linkopings universitet, Linkoping, Sweden, 2001.
[2] J.J.E. Slotine, “Applied nonlinear control”, Practice-Hall. 1991.
[3] J.J.E. Slotine, “Adaptive Sliding Controller Synthesis for Nonlinear Systems”, International Journal of Control, 1986.
[4] J L., Junkins, K. Subbarao, A. Verma, “Structured Adaptive Control for Poorly Modeled Nonlinear Dynamical Systems”. Computer Modeling in Engineering & Sciences, Vol. 1, No. 4, pp. 99-118. 2000
[5] V. Chiroi, L. Munteanu, I. Ursu, “On Chaos Control in Uncertain Nonlinear System”. Computer Modeling in Engineering & Sciences, Vol. 72, No. 3, pp. 229-246, 2011.
[6] A. Levant, “Higher-order sliding modes, differentiation and output feedback control”. International journal of control, Vol. 76, NOS 9/10, 924-941, 2003.
[7] A. Levant, “Robust exact differentiation via sliding mode technique”. Automatica, Vol.34, No.3, pp.379-384, 1989.
[8] A. Levant, “Quasi continuous high order sliding mode controllers”, IEEE Transactions on Automatic Control, Vol. N° 11, November 2005.
[9] A. Sabanovic, L. M. Fridman, S. Spurgeon, “Variable structure systems: from principles to implementation”, The Institution of Engineering and Technology, 2004.
[10] B. Bandyopadhyay, S. Janardhanan, “Discrete-time Sliding Mode Control: A Multirate Output Feedback Approach”.Springer, 2006.
[11] B. Bandy opadhyay, F. Deepak, K. Kyung-Soo, “Sliding Mode Control Using Novel Sliding Surfaces”, Springer. 2009.
[12] D. Allerton, “Principles of flight simulation”, John Wiley and Sons, chap.3, 2009.
[13] G. Bartolini, L. Fridman,A. Pisano, E. Usai, “Modern Sliding Mode Control Theory: New Perspectives and Applications”, Springer, chap. 4,2008.
[14] H. Yigeng, “Robust High Order Sliding Mode Control of Permanent Magnet Synchronous Motors”, Recent Advances in Robust Control - Theory and Applications in Robotics and Electromechanics, InTech., 2011.
[15] P. Perruquetti, J. Barbot, “Sliding mode control in engineering”, Marcel Dekker, 2000.
[16] J. L. Boiffier, “The dynamics of flight: the equations”, Willey, pp. 92, 1998.
[17] P. Lopez, S. N. Nouri, «Théorie élémentaire et pratique de la commande par les régimes glissants», Springer, chap.2, 2000.
[18] R. Louali, “Real-time characterization of Microsoft Flight Simulator 2004 for integration into Hardware In the Loop architecture”, 19th Mediterranean Conference on Control and Automation, Greece, 2004.
[19] J. Salgado, «Contribution à la commande d'un robot sous marin autonome de type torpille», Thèse de Doctorat, Université de Montpellier, 2004.
[20] V. I. Utkin, “Sliding Mode in Control Optimization”, Springer-Verlag, Berlin, 1992.
[21] B S. Yuri, Y B. Shkolnikov, D J. Mark, “An second order smooth sliding mode control”, Asian journal of control. Vol. 5, No. 4, pp. 498-504, December 2003.
[22] W. Perruquetti, J. P. Barbot, “Sliding mode control in engineering”, Marcel Dekker, 2002.
[23] M. Zaouche, «Identification et commande robust d’un engin aérodynamique Volant à 03 axes», Thèse doctorat, Ecole Militaire Polytechnique, Algiers, 2015.
[24] Airwrench tool, website: www.mudpond.org/AirWrench_main.htm, GWBeckwith, 2015.
[25] P. Dowson, FSUIPC.dll, website: www.schiratti.com/dowson.html, 2015.