Search results for: density wave
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1543

Search results for: density wave

1393 Ankh Key Broadband Array Antenna for 5G Applications

Authors: Noha M. Rashad, W. Swelam, M. H. Abd ElAzeem

Abstract:

A simple design of array antenna is presented in this paper, supporting millimeter wave applications which can be used in short range wireless communications such as 5G applications. This design enhances the use of V-band, according to IEEE standards, as the antenna works in the 70 GHz band with bandwidth more than 11 GHz and peak gain more than 13 dBi. The design is simulated using different numerical techniques achieving a very good agreement.

Keywords: 5G Technology, array antenna, microstrip, millimeter wave.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 928
1392 A New Analytical Approach for Free Vibration of Membrane from Wave Standpoint

Authors: Mansour Nikkhah-Bahrami, Masih Loghmani, Mostafa Pooyanfar

Abstract:

In this paper, an analytical approach for free vibration analysis of rectangular and circular membranes is presented. The method is based on wave approach. From wave standpoint vibration propagate, reflect and transmit in a structure. Firstly, the propagation and reflection matrices for rectangular and circular membranes are derived. Then, these matrices are combined to provide a concise and systematic approach to free vibration analysis of membranes. Subsequently, the eigenvalue problem for free vibration of membrane is formulated and the equation of membrane natural frequencies is constructed. Finally, the effectiveness of the approach is shown by comparison of the results with existing classical solution.

Keywords: Rectangular and circular membranes, propagation matrix, reflection matrix, vibration analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2111
1391 Numerical Modeling of Wave Run-Up in Shallow Water Flows Using Moving Wet/Dry Interfaces

Authors: Alia Alghosoun, Michael Herty, Mohammed Seaid

Abstract:

We present a new class of numerical techniques to solve shallow water flows over dry areas including run-up. Many recent investigations on wave run-up in coastal areas are based on the well-known shallow water equations. Numerical simulations have also performed to understand the effects of several factors on tsunami wave impact and run-up in the presence of coastal areas. In all these simulations the shallow water equations are solved in entire domain including dry areas and special treatments are used for numerical solution of singularities at these dry regions. In the present study we propose a new method to deal with these difficulties by reformulating the shallow water equations into a new system to be solved only in the wetted domain. The system is obtained by a change in the coordinates leading to a set of equations in a moving domain for which the wet/dry interface is the reconstructed using the wave speed. To solve the new system we present a finite volume method of Lax-Friedrich type along with a modified method of characteristics. The method is well-balanced and accurately resolves dam-break problems over dry areas.

Keywords: Run-up waves, Shallow water equations, finite volume method, wet/dry interface, dam-break problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 646
1390 Reflection of Plane Waves at Free Surface of an Initially Stressed Dissipative Medium

Authors: M. M. Selim

Abstract:

The paper discuses the effect of initial stresses on the reflection coefficients of plane waves in a dissipative medium. Basic governing equations are formulated in context of Biot's incremental deformation theory. These governing equations are solved analytically to obtain the dimensional phase velocities of plane waves propagating in plane of symmetry. Closed-form expressions for the reflection coefficients of P and SV waves- incident at the free surface of an initially stressed dissipative medium are obtained. Numerical computations, using these expressions, are carried out for a particular model. Computations made with the results predicted in presence and absence of the initial stresses and the results have been shown graphically. The study shows that the presence of compressive initial stresses increases the velocity of longitudinal wave (P-wave) but diminishes that of transverse wave (SV-wave). Also the numerical results presented indicate that initial stresses and dissipation might affect the reflection coefficients significantly.

Keywords: Dissipation medium, initial stress, longitudinal waves, reflection coefficients, reflection of plane waves, transverse waves.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1015
1389 Richtmyer-Meshkov Instability and Gas-Particle Interaction of Contoured Shock-Tube Flows: A Numerical Study

Authors: Yi Liu

Abstract:

In this paper, computational fluid dynamics (CFD) is utilized to characterize a prototype biolistic delivery system, the biomedical device based on the contoured-shock-tube design (CST), with the aim at investigating shocks induced flow instabilities within the contoured shock tube. The shock/interface interactions, the growth of perturbation at an interface between two fluids of different density are interrogated. The key features of the gas dynamics and gas-particle interaction are discussed

Keywords: Simulation, Shock wave, Particle, Interface, Supersonic, Richtmyer-Meshkov Instability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1713
1388 Nonlinear Modelling of Sloshing Waves and Solitary Waves in Shallow Basins

Authors: Mohammad R. Jalali, Mohammad M. Jalali

Abstract:

The earliest theories of sloshing waves and solitary waves based on potential theory idealisations and irrotational flow have been extended to be applicable to more realistic domains. To this end, the computational fluid dynamics (CFD) methods are widely used. Three-dimensional CFD methods such as Navier-Stokes solvers with volume of fluid treatment of the free surface and Navier-Stokes solvers with mappings of the free surface inherently impose high computational expense; therefore, considerable effort has gone into developing depth-averaged approaches. Examples of such approaches include Green–Naghdi (GN) equations. In Cartesian system, GN velocity profile depends on horizontal directions, x-direction and y-direction. The effect of vertical direction (z-direction) is also taken into consideration by applying weighting function in approximation. GN theory considers the effect of vertical acceleration and the consequent non-hydrostatic pressure. Moreover, in GN theory, the flow is rotational. The present study illustrates the application of GN equations to propagation of sloshing waves and solitary waves. For this purpose, GN equations solver is verified for the benchmark tests of Gaussian hump sloshing and solitary wave propagation in shallow basins. Analysis of the free surface sloshing of even harmonic components of an initial Gaussian hump demonstrates that the GN model gives predictions in satisfactory agreement with the linear analytical solutions. Discrepancies between the GN predictions and the linear analytical solutions arise from the effect of wave nonlinearities arising from the wave amplitude itself and wave-wave interactions. Numerically predicted solitary wave propagation indicates that the GN model produces simulations in good agreement with the analytical solution of the linearised wave theory. Comparison between the GN model numerical prediction and the result from perturbation analysis confirms that nonlinear interaction between solitary wave and a solid wall is satisfactorilly modelled. Moreover, solitary wave propagation at an angle to the x-axis and the interaction of solitary waves with each other are conducted to validate the developed model.

Keywords: Even harmonic components of sloshing waves, Green–Naghdi equations, nonlinearity, solitary waves.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 827
1387 Arbitrary Amplitude Ion-Acoustic Solitary Waves in Electron-Ion-Positron Plasma with Nonthermal Electrons

Authors: Basudev Ghosh, Sreyasi Banerjee

Abstract:

Using pseudo potential method arbitrary amplitude ion-acoustic solitary waves have been theoretically studied in a collisionless plasma consisting of warm drifting positive ions, Boltzmann positrons and nonthermal electrons. Ion-acoustic solitary wave solutions have been obtained and the dependence of the solitary wave profile on different plasma parameters has been studied numerically. Lower and higher order compressive and rarefactive solitary waves are observed in presence of positrons, nonthermal electrons, ion drift velocity and finite ion temperature. Inclusion of higher order nonlinearity is shown to have significant correction to the solitary wave profile for the same values of plasma parameters.

Keywords: Ion-acoustic waves, Nonthermal electrons, Sagdeev potential, Solitary waves.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2118
1386 A Novel Instantaneous Frequency Computation Approach for Empirical Mode Decomposition

Authors: Liming Zhang

Abstract:

This paper introduces a new instantaneous frequency computation approach  -Counting Instantaneous Frequency for a general class of signals called simple waves. The classsimple wave contains a wide range of continuous signals for which the concept instantaneous frequency has a perfect physical sense. The concept of  -Counting Instantaneous Frequency also applies to all the discrete data. For all the simple wave signals and the discrete data, -Counting instantaneous frequency can be computed directly without signal decomposition process. The intrinsic mode functions obtained through empirical mode decomposition belongs to simple wave. So  -Counting instantaneous frequency can be used together with empirical mode decomposition.

Keywords: Instantaneous frequency, empirical mode decomposition, intrinsic mode function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1525
1385 Simulation of Lightning Surge Propagation in Transmission Lines Using the FDTD Method

Authors: Kokiat Aodsup, Thanatchai Kulworawanichpong

Abstract:

This paper describes a finite-difference time-domainFDTD) method to analyze lightning surge propagation in electric transmission lines. Numerical computation of solving the Telegraphist-s equations is determined and investigated its effectiveness. A source of lightning surge wave on power transmission lines is modeled by using Heidler-s surge model. The proposed method was tested against medium-voltage power transmission lines in comparison with the solution obtained by using lattice diagram. As a result, the calculation showed that the method is one of accurate methods to analyze transient lightning wave in power transmission lines.

Keywords: Traveling wave, Lightning surge, Bewley lattice diagram, Telegraphist's equations, Finite-difference time-domain (FDTD) method,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5288
1384 Achieving Shear Wave Elastography by a Three-element Probe for Wearable Human-machine Interface

Authors: Jipeng Yan, Xingchen Yang, Xiaowei Zhou, Mengxing Tang, Honghai Liu

Abstract:

Shear elastic modulus of skeletal muscles can be obtained by shear wave elastography (SWE) and has been linearly related to muscle force. However, SWE is currently implemented using array probes. Price and volumes of these probes and their driving equipment prevent SWE from being used in wearable human-machine interfaces (HMI). Moreover, beamforming processing for array probes reduces the real-time performance. To achieve SWE by wearable HMIs, a customized three-element probe is adopted in this work, with one element for acoustic radiation force generation and the others for shear wave tracking. In-phase quadrature demodulation and 2D autocorrelation are adopted to estimate velocities of tissues on the sound beams of the latter two elements. Shear wave speeds are calculated by phase shift between the tissue velocities. Three agar phantoms with different elasticities were made by changing the weights of agar. Values of the shear elastic modulus of the phantoms were measured as 8.98, 23.06 and 36.74 kPa at a depth of 7.5 mm respectively. This work verifies the feasibility of measuring shear elastic modulus by wearable devices.

Keywords: Shear elastic modulus, skeletal muscle, ultrasound, wearable human-machine interface.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 711
1383 Bone Mineral Density and Quality, Body Composition of Women in the Postmenopausal Period

Authors: Vladyslav Povoroznyuk, Oksana Ivanyk, Nataliia Dzerovych

Abstract:

In the diagnostics of osteoporosis, the gold standard is considered to be bone mineral density; however, X-ray densitometry is not an accurate indicator of osteoporotic fracture risk under all circumstances. In this regard, the search for new methods that could determine the indicators not only of the mineral density, but of the bone tissue quality, is a logical step for diagnostic optimization. One of these methods is the evaluation of trabecular bone quality. The aim of this study was to examine the quality and mineral density of spine bone tissue, femoral neck, and body composition of women depending on the duration of the postmenopausal period, to determine the correlation of body fat with indicators of bone mineral density and quality. The study examined 179 women in premenopausal and postmenopausal periods. The patients were divided into the following groups: Women in the premenopausal period and women in the postmenopausal period at various stages (early, middle, late postmenopause). A general examination and study of the above parameters were conducted with General Electric X-ray densitometer. The results show that bone quality and mineral density probably deteriorate with advancing of postmenopausal period. Total fat and lean mass ratio is not likely to change with age. In the middle and late postmenopausal periods, the bone tissue mineral density of the spine and femoral neck increases along with total fat mass.

Keywords: Osteoporosis, bone tissue mineral density, bone quality, fat mass, lean mass, postmenopausal osteoporosis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 885
1382 Influence of Paralleled Capacitance Effect in Well-defined Multiple Value Logical Level System with Active Load

Authors: Chih Chin Yang, Yen Chun Lin, Hsiao Hsuan Cheng

Abstract:

Three similar negative differential resistance (NDR) profiles with both high peak to valley current density ratio (PVCDR) value and high peak current density (PCD) value in unity resonant tunneling electronic circuit (RTEC) element is developed in this paper. The PCD values and valley current density (VCD) values of the three NDR curves are all about 3.5 A and 0.8 A, respectively. All PV values of NDR curves are 0.40 V, 0.82 V, and 1.35 V, respectively. The VV values are 0.61 V, 1.07 V, and 1.69 V, respectively. All PVCDR values reach about 4.4 in three NDR curves. The PCD value of 3.5 A in triple PVCDR RTEC element is better than other resonant tunneling devices (RTD) elements. The high PVCDR value is concluded the lower VCD value about 0.8 A. The low VCD value is achieved by suitable selection of resistors in triple PVCDR RTEC element. The low PV value less than 1.35 V possesses low power dispersion in triple PVCDR RTEC element. The designed multiple value logical level (MVLL) system using triple PVCDR RTEC element provides equidistant logical level. The logical levels of MVLL system are about 0.2 V, 0.8 V, 1.5 V, and 2.2 V from low voltage to high voltage and then 2.2 V, 1.3 V, 0.8 V, and 0.2 V from high voltage back to low voltage in half cycle of sinusoid wave. The output level of four levels MVLL system is represented in 0.3 V, 1.1 V, 1.7 V, and 2.6 V, which satisfies the NMP condition of traditional two-bit system. The remarkable logical characteristic of improved MVLL system with paralleled capacitor are with four significant stable logical levels about 220 mV, 223 mV, 228 mV, and 230 mV. The stability and articulation of logical levels of improved MVLL system are outstanding. The average holding time of improved MVLL system is approximately 0.14 μs. The holding time of improved MVLL system is fourfold than of basic MVLL system. The function of additional capacitor in the improved MVLL system is successfully discovered.

Keywords: Capacitance, Logical level, Constant current source

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1343
1381 Plasma Density Distribution in Asymmetric Geometry Capacitive Coupled Plasma Discharge System

Authors: Yinchang Du, Yangfang Li

Abstract:

In this work, we used the single Langmuir probe to measure the plasma density distribution in an geometrically asymmetric capacitive coupled plasma discharge system. Because of the frame structure of powered electrode, the plasma density was not homogeneous in the discharge volume. It was higher under the frame, but lower in the centre. Finite element simulation results showed a good agreement with the experiment results. To increase the electron density in the central volume and improve the homogeneity of the plasma, we added an auxiliary electrode, powered by DC voltage, in the simulation geometry. The simulation results showed that the auxiliary electrode could alter the potential distribution and improve the density homogeneity effectively.

Keywords: Capacitive coupled discharge, asymmetric discharge, homogeneous plasma.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2829
1380 A Study on Brushless DC Motor for High Torque Density

Authors: Jung-Moo Seo, Jung-Hwan Kim, Se-Hyun Rhyu, Jun-Hyuk Choi, In-Soung Jung,

Abstract:

Brushless DC motor with high torque density and slim topology for easy loading for robot system is proposed and manufactured. Electromagnetic design is executed by equivalent magnetic circuit model and numerical analysis. Manufactured motor is tested and verified characteristics comparing with conventional BLDC motor.

Keywords: Brushless DC motor, Robot joint module, Torque density, Pole/slot ratio

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6847
1379 Application of a Generalized Additive Model to Reveal the Relations between the Density of Zooplankton with Other Variables in the West Daya Bay, China

Authors: Weiwen Li, Hao Huang, Chengmao You, Jianji Liao, Lei Wang, Lina An

Abstract:

Zooplankton are a central issue in the ecology which makes a great contribution to maintaining the balance of an ecosystem. It is critical in promoting the material cycle and energy flow within the ecosystems. A generalized additive model (GAM) was applied to analyze the relationships between the density (individuals per m³) of zooplankton and other variables in West Daya Bay. All data used in this analysis (the survey month, survey station (longitude and latitude), the depth of the water column, the superficial concentration of chlorophyll a, the benthonic concentration of chlorophyll a, the number of zooplankton species and the number of zooplankton species) were collected through monthly scientific surveys during January to December 2016. GLM model (generalized linear model) was used to choose the significant variables’ impact on the density of zooplankton, and the GAM was employed to analyze the relationship between the density of zooplankton and the significant variables. The results showed that the density of zooplankton increased with an increase of the benthonic concentration of chlorophyll a, but decreased with a decrease in the depth of the water column. Both high numbers of zooplankton species and the overall total number of zooplankton individuals led to a higher density of zooplankton.

Keywords: Density, generalized linear model, generalized additive model, the West Daya Bay, zooplankton.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 958
1378 Voltage Sag Effect on Three Phase Five Leg Transformers

Authors: M. R. Dolatian, A. Jalilian

Abstract:

The behavior of three phase five leg transformer under voltage sag is studied in this paper. This paper proposes a simple, practical model of a three phase-five leg, saturated transformer with accurate performance. Transformer saturation is produced when the voltage sag is recovered and it causes inrush current in transformer. Effects of voltage sag depth, duration and initial point on wave have been analyzed in this paper. Initial point on wave can produce maximum inrush current in five leg transformers while comparing with three leg transformers. The magnetic circuit symmetry of five leg transformer produces the more symmetrical shape of inrush current curves versus initial point on wave and sag duration than three leg transformer. The simulations show that current peak has a periodical dependence on sag duration and linear dependence on sag depth. Inrush current that is produced in three phase five leg transformer is higher than three phase three leg transformer.

Keywords: Inrush current, three phase five leg transformer, saturation, voltage sag.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2876
1377 Analysis of Explosive Shock Wave and its Application in Snow Avalanche Release

Authors: Mahmoud Zarrini, R. N. Pralhad

Abstract:

Avalanche velocity (from start to track zone) has been estimated in the present model for an avalanche which is triggered artificially by an explosive devise. The initial development of the model has been from the concept of micro-continuum theories [1], underwater explosions [2] and from fracture mechanics [3] with appropriate changes to the present model. The model has been computed for different slab depth R, slope angle θ, snow density ¤ü, viscosity μ, eddy viscosity η*and couple stress parameter η. The applicability of the present model in the avalanche forecasting has been highlighted.

Keywords: Snow avalanche velocity, avalanche zones, shockwave, couple stress fluids.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1646
1376 Effect of Pulp Density on Biodesulfurization of Mongolian Lignite Coal

Authors: Ashish Pathak, Dong-Jin Kim, Byoung-Gon Kim

Abstract:

Biological processes based on oxidation of sulfur compounds by chemolithotrophic microorganisms are emerging as an efficient and eco-friendly technique for removal of sulfur from the coal. In the present article, study was carried out to investigate the potential of biodesulfurization process in removing the sulfur from lignite coal sample collected from a Mongolian coal mine. The batch biodesulfurization experiments were conducted in 2.5 L borosilicate baffle type reactors at 35 ºC using Acidithiobacillus ferrooxidans. The effect of pulp density on efficiency of biodesulfurization was investigated at different solids concentration (1-10%) of coal. The results of the present study suggested that the rate of desulfurization was retarded at higher coal pulp density. The optimum pulp density found 5% at which about 48% of the total sulfur was removed from the coal.

Keywords: Biodesulfurization, bioreactor, coal, pyrite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1360
1375 Effect of Blade Shape on the Performance of Wells Turbine for Wave Energy Conversion

Authors: Katsuya Takasaki, Manabu Takao, Toshiaki Setoguchi

Abstract:

The effect of a 3-dimensional (3D) blade on the turbine characteristics of Wells turbine for wave energy conversion has been investigated experimentally by model testing under steady flow conditions in this study, in order to improve the peak efficiency and stall characteristics. The aim of use of 3D blade is to prevent flow separation on the suction surface near the tip. The chord length is constant with radius and the blade profile changes gradually from the mean radius to tip. The proposed blade profiles in the study are NACA0015 from the hub to mean radius and NACA0025 at the tip. The performances of Wells turbine with 3D blades has been compared with those of the original Wells turbine, i.e., the turbine with 2-dimensional (2D) blades. As a result, it was concluded that although the peak efficiency of Wells turbine can be improved by the use of the proposed 3D blade, its blade does not overcome the weakness of stalling.

Keywords: Fluid machinery, ocean engineering, stall, wave energy conversion, Wells turbine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3543
1374 Ab initio Study of Co2ZrGe and Co2NbB Full Heusler Compounds

Authors: Abada Ahmed, Hiadsi Said, Ouahrani Tarik, Amrani Bouhalouane, Amara Kadda

Abstract:

Using the first-principles full-potential linearized augmented plane wave plus local orbital (FP-LAPW+lo) method based on density functional theory (DFT), we have investigated the electronic structure and magnetism of full Heusler alloys Co2ZrGe and Co2NbB. These compounds are predicted to be half-metallic ferromagnets (HMFs) with a total magnetic moment of 2.000 B per formula unit, well consistent with the Slater-Pauling rule. Calculations show that both the alloys have an indirect band gaps, in the minority-spin channel of density of states (DOS), with values of 0.58 eV and 0.47 eV for Co2ZrGe and Co2NbB, respectively. Analysis of the DOS and magnetic moments indicates that their magnetism is mainly related to the d-d hybridization between the Co and Zr (or Nb) atoms. The half-metallicity is found to be relatively robust against volume changes. In addition, an atom inside molecule AIM formalism and an electron localization function ELF were also adopted to study the bonding properties of these compounds, building a bridge between their electronic and bonding behavior. As they have a good crystallographic compatibility with the lattice of semiconductors used industrially and negative calculated cohesive energies with considerable absolute values these two alloys could be promising magnetic materials in the spintronic field.

Keywords: Electronic properties, full Heusler alloys, halfmetallic ferromagnets, magnetic properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2458
1373 Structural and Optical Properties of CdSiP2 and CdSiAs2 Nonlinear Optical Materials

Authors: N. N. Omehe

Abstract:

CdSiP2 and CdsiAs2 are nonlinear optical materials for near and mid-infrared applications. Density functional theory has been applied to study the structure, band gap, and optical properties of these materials. The pseudopotential method was used in the form of projector augmented wave (PAW) and norm-conserving, the band structure calculations yielded a band gap of 1.55 eV and 0.88 eV for CdSiP2 and CdsiAs2 respectively. The values of ε1(ω)  from the doelectric function calculations are 15 and 14.9 CdSiP2 and CdsiAs2 respectively.

Keywords: Band structure, chalcopyrite, near-infrared materials, mid-infrared materials, nonlinear material, optical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 126
1372 Analytical Solution for Free Vibration of Rectangular Kirchhoff Plate from Wave Approach

Authors: Mansour Nikkhah-Bahrami, Masih Loghmani, Mostafa Pooyanfar

Abstract:

In this paper, an analytical approach for free vibration analysis of four edges simply supported rectangular Kirchhoff plates is presented. The method is based on wave approach. From wave standpoint vibration propagate, reflect and transmit in a structure. Firstly, the propagation and reflection matrices for plate with simply supported boundary condition are derived. Then, these matrices are combined to provide a concise and systematic approach to free vibration analysis of a simply supported rectangular Kirchhoff plate. Subsequently, the eigenvalue problem for free vibration of plates is formulated and the equation of plate natural frequencies is constructed. Finally, the effectiveness of the approach is shown by comparison of the results with existing classical solution.

Keywords: Kirchhoff plate, propagation matrix, reflection matrix, vibration analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2379
1371 Polarization Modulation by free-Standing Asymmetric Hole Arrays

Authors: Hong-Wen Hsieh, Shun-Tung Yen

Abstract:

We theoretically demonstrate modulation of light polarization by a crossed rectangular hole array with asymmetric arm lengths. There are two waveguide modes that can modulate the x- and y- polarized incident waves independently. A specific structure is proposed to convert a left-hand incident wave to a right-hand outgoing wave by transmission.

Keywords: Crossed rectangular hole array, extraordinary optical transmission, polarization modulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1244
1370 Dynamic Interaction between Two Neighboring Tunnels in a Layered Half-Space

Authors: Chao He, Shunhua Zhou, Peijun Guo

Abstract:

The vast majority of existing underground railway lines consist of twin tunnels. In this paper, the dynamic interaction between two neighboring tunnels in a layered half-space is investigated by an analytical model. The two tunnels are modelled as cylindrical thin shells, while the soil in the form of a layered half-space with two cylindrical cavities is simulated by the elastic continuum theory. The transfer matrix method is first used to derive the relationship between the plane wave vectors in arbitrary layers and the source layer. Thereafter, the wave translation and transformation are introduced to determine the plane and cylindrical wave vectors in the source layer. The solution for the dynamic interaction between twin tunnels in a layered half-space is obtained by means of the compatibility of displacements and equilibrium of stresses on the two tunnel–soil interfaces. By coupling the proposed model with a fully track model, the train-induced vibrations from twin tunnels in a multi-layered half-space are investigated. The numerical results demonstrate that the existence of a neighboring tunnel has a significant effect on ground vibrations.

Keywords: Underground railway, twin tunnels, wave translation and transformation, transfer matrix method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 662
1369 Two-Dimensional Solitary Wave Solution to the Quadratic Nonlinear Schrdinger Equation

Authors: Sarun Phibanchon

Abstract:

The solitary wave solution of the quadratic nonlinear Schrdinger equation is determined by the iterative method called Petviashvili method. This solution is also used for the initial condition for the time evolution to study the stability analysis. The spectral method is applied for the time evolution.

Keywords: soliton, iterative method, spectral method, plasma

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1814
1368 Surge Protection of Power Supply used for Automation Devices in Power Distribution System

Authors: Liheng Ying, Guangjiong Sun

Abstract:

The intent of this essay is to evaluate the effectiveness of surge suppressor aimed at power supply used for automation devices in power distribution system which is consist of MOV and T type low-pass filter. Books, journal articles and e-sources related to surge protection of power supply used for automation devices in power distribution system were consulted, and the useful information was organized, analyzed and developed into five parts: characteristics of surge wave, protection against surge wave, impedance characteristics of target, using Matlab to simulate circuit response after 5kV,1.2/50s surge wave and suggestions for surge protection. The results indicate that various types of load situation have great impact on the effectiveness of surge protective device. Therefore, type and parameters of surge protective device need to be carefully selected, and load matching is also vital to be concerned.

Keywords: automation devices in power distribution system, MOV, surge, T type low-pass filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1754
1367 The Reach of Shopping Center Layout Form on U Subway - Based On Kernel Density Estimate

Authors: Wen Liu

Abstract:

With the rapid progress of modern cities, the railway construction must be developing quickly in China.As a typical high-density country, shopping center on the subway should be one important factor during the process of urban development. The paper discusses the influence of the layout of shopping center on the subway, and put it in the time and space’s axis of Shanghai urban development. We usethe digital technology to establish the database of relevant information. And then get the change role about shopping center on subway in Shanghaiby the Kernel density estimate.The result shows the development of shopping center on subway has a relationship with local economic strength, population size, policysupport, and city construction. And the suburbanization trend of shopping center would be increasingly significant.By this case research, we could see the Kernel density estimate is an efficient analysis method on the spatial layout. It could reveal the characters of layout form of shopping center on subway in essence. And it can also be applied to the other research of space form.

Keywords: Shanghai, Shopping center on the subway, Layout form, The Kernel density estimate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1743
1366 Numerical Investigation of Nozzle Shape Effect on Shock Wave in Natural Gas Processing

Authors: Esam I. Jassim, Mohamed M. Awad

Abstract:

Natural gas flow contains undesirable solid particles, liquid condensation, and/or oil droplets and requires reliable removing equipment to perform filtration. Recent natural gas processing applications are demanded compactness and reliability of process equipment. Since conventional means are sophisticated in design, poor in efficiency, and continue lacking robust, a supersonic nozzle has been introduced as an alternative means to meet such demands. A 3-D Convergent-Divergent Nozzle is simulated using commercial Code for pressure ratio (NPR) varies from 1.2 to 2. Six different shapes of nozzle are numerically examined to illustrate the position of shock-wave as such spot could be considered as a benchmark of particle separation. Rectangle, triangle, circular, elliptical, pentagon, and hexagon nozzles are simulated using Fluent Code with all have same cross-sectional area. The simple one-dimensional inviscid theory does not describe the actual features of fluid flow precisely as it ignores the impact of nozzle configuration on the flow properties. CFD Simulation results, however, show that nozzle geometry influences the flow structures including location of shock wave. The CFD analysis predicts shock appearance when p01/pa>1.2 for almost all geometry and locates at the lower area ratio (Ae/At). Simulation results showed that shock wave in Elliptical nozzle has the farthest distance from the throat among the others at relatively small NPR. As NPR increases, hexagon would be the farthest. The numerical result is compared with available experimental data and has shown good agreement in terms of shock location and flow structure.

Keywords: CFD, Particle Separation, Shock wave, Supersonic Nozzle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3201
1365 Simulation and Measurement the Radiation of an Antenna inside a Metallic Case using FDTD

Authors: Shabnam Ladan, M. S. Abrishamian

Abstract:

In this paper we have developed a FDTD simulation code which can treat wave propagation of a monopole antenna in a metallic case which covers with PML, and performed a series of three dimensional FDTD simulations of electromagnetic wave propagation in this space .We also provide a measurement set up in antenna lab and fortunately the simulations and measurements show good agreement. According to simulation and measurement results, we confirmed that the computer program which had been written in FORTRAN, works correctly.

Keywords: FDTD, EMC, monopole antenna.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1492
1364 Optimisation of A Phase Change Thermal Storage System

Authors: Nasrul Amri Mohd Amin, Martin Belusko, Frank Bruno

Abstract:

PCMs have always been viewed as a suitable candidate for off peak thermal storage, particularly for refrigeration systems, due to the high latent energy densities of these materials. However, due to the need to have them encapsulated within a container this density is reduced. Furthermore, PCMs have a low thermal conductivity which reduces the useful amount of energy which can be stored. To consider these factors, the true energy storage density of a PCM system was proposed and optimised for PCMs encapsulated in slabs. Using a validated numerical model of the system, a parametric study was undertaken to investigate the impact of the slab thickness, gap between slabs and the mass flow rate. The study showed that, when optimised, a PCM system can deliver a true energy storage density between 53% and 83% of the latent energy density of the PCM.

Keywords: Phase change material, refrigeration, sustainability, thermal energy storage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2253