Search results for: damping controller
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 998

Search results for: damping controller

158 Maximum Power Point Tracking Based on Estimated Power for PV Energy Conversion System

Authors: Zainab Almukhtar, Adel Merabet

Abstract:

In this paper, a method for maximum power point tracking of a photovoltaic energy conversion system is presented. This method is based on using the difference between the power from the solar panel and an estimated power value to control the DC-DC converter of the photovoltaic system. The difference is continuously compared with a preset error permitted value. If the power difference is more than the error, the estimated power is multiplied by a factor and the operation is repeated until the difference is less or equal to the threshold error. The difference in power will be used to trigger a DC-DC boost converter in order to raise the voltage to where the maximum power point is achieved. The proposed method was experimentally verified through a PV energy conversion system driven by the OPAL-RT real time controller. The method was tested on varying radiation conditions and load requirements, and the Photovoltaic Panel was operated at its maximum power in different conditions of irradiation.

Keywords: Control system, power error, solar panel, MPPT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1279
157 Development of Wind Turbine Simulator for Generator Torque Control

Authors: Jae-Kyung Lee, Joon-Young Park, Ki-Yong Oh, Jun-Shin Park

Abstract:

Wind turbine should be controlled to capture maximum wind energy and to prevent the turbine from being stalled. To achieve those two goals, wind turbine controller controls torque on generator and limits input torque from wind by pitching blade. Usually, torque on generator is controlled using inverter torque set point. However, verifying a control algorithm in actual wind turbine needs a lot of efforts to test and the actual wind turbine could be broken while testing a control algorithm. So, several software have developed and commercialized by Garrad Hassan, GH Bladed, and NREL, FAST. Even though, those programs can simulate control system modeling with subroutines or DLLs. However, those simulation programs are not able to emulate detailed generator or PMSG. In this paper, a small size wind turbine simulator is developed with induction motor and small size drive train. The developed system can simulate wind turbine control algorithm in the region before rated power.

Keywords: Wind turbine, simulator, wind turbine control, wind turbine torque control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3078
156 Suitable Die Shaping for a Rectangular Shape Bottle by Application of FEM and AI Technique

Authors: N. Ploysook, R. Rugsaj, C. Suvanjumrat

Abstract:

The characteristic requirement for producing rectangular shape bottles was a uniform thickness of the plastic bottle wall. Die shaping was a good technique which controlled the wall thickness of bottles. An advance technology which was the finite element method (FEM) for blowing parison to be a rectangular shape bottle was conducted to reduce waste plastic from a trial and error method of a die shaping and parison control method. The artificial intelligent (AI) comprised of artificial neural network and genetic algorithm was selected to optimize the die gap shape from the FEM results. The application of AI technique could optimize the suitable die gap shape for the parison blow molding which did not depend on the parison control method to produce rectangular bottles with the uniform wall. Particularly, this application can be used with cheap blow molding machines without a parison controller therefore it will reduce cost of production in the bottle blow molding process.

Keywords: AI, bottle, die shaping, FEM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2563
155 Development of Roller-Based Interior Wall Painting Robot

Authors: Mohamed T. Sorour, Mohamed A. Abdellatif, Ahmed A. Ramadan, Ahmed A. Abo-Ismail

Abstract:

This paper describes the development of an autonomous robot for painting the interior walls of buildings. The robot consists of a painting arm with an end effector roller that scans the walls vertically and a mobile platform to give horizontal feed to paint the whole area of the wall. The painting arm has a planar twolink mechanism with two joints. Joints are driven from a stepping motor through a ball screw-nut mechanism. Four ultrasonic sensors are attached to the mobile platform and used to maintain a certain distance from the facing wall and to avoid collision with side walls. When settled on adjusted distance from the wall, the controller starts the painting process autonomously. Simplicity, relatively low weight and short painting time were considered in our design. Different modules constituting the robot have been separately tested then integrated. Experiments have shown successfulness of the robot in its intended tasks.

Keywords: Automated roller painting, Construction robots, Mobile robots, service robots, two link planar manipulator

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6907
154 Tracking Control of a Linear Parabolic PDE with In-domain Point Actuators

Authors: Amir Badkoubeh, Guchuan Zhu

Abstract:

This paper addresses the problem of asymptotic tracking control of a linear parabolic partial differential equation with indomain point actuation. As the considered model is a non-standard partial differential equation, we firstly developed a map that allows transforming this problem into a standard boundary control problem to which existing infinite-dimensional system control methods can be applied. Then, a combination of energy multiplier and differential flatness methods is used to design an asymptotic tracking controller. This control scheme consists of stabilizing state-feedback derived from the energy multiplier method and feed-forward control based on the flatness property of the system. This approach represents a systematic procedure to design tracking control laws for a class of partial differential equations with in-domain point actuation. The applicability and system performance are assessed by simulation studies.

Keywords: Tracking Control, In-domain point actuation, PartialDifferential Equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2020
153 PI Control for Positive Output Elementary Super Lift Luo Converter

Authors: K. Ramash Kumar, S. Jeevananthan

Abstract:

The object of this paper is to design and analyze a proportional – integral (PI) control for positive output elementary super lift Luo converter (POESLLC), which is the start-of-the-art DC-DC converter. The positive output elementary super lift Luo converter performs the voltage conversion from positive source voltage to positive load voltage. This paper proposes a development of PI control capable of providing the good static and dynamic performance compared to proportional – integralderivative (PID) controller. Using state space average method derives the dynamic equations describing the positive output elementary super lift luo converter and PI control is designed. The simulation model of the positive output elementary super lift Luo converter with its control circuit is implemented in Matlab/Simulink. The PI control for positive output elementary super lift Luo converter is tested for transient region, line changes, load changes, steady state region and also for components variations.

Keywords: DC-DC converter, Positive output elementarysuper lift Luo converter (POESLLC), Proportional – Integral (PI)control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4969
152 Performance Evaluation of Improved Ball End Magnetorheological Finishing Process

Authors: Anant Kumar Singh, Sunil Jha, Pulak M. Pandey

Abstract:

A novel nanofinishing process using improved ball end magnetorheological (MR) finishing tool was developed for finishing of flat as well as 3D surfaces of ferromagnetic and non ferromagnetic workpieces. In this process a magnetically controlled ball end of smart MR polishing fluid is generated at the tip surface of the tool which is used as a finishing medium and it is guided to follow the surface to be finished through computer controlled 3-axes motion controller. The experiments were performed on ferromagnetic workpiece surface in the developed MR finishing setup to study the effect of finishing time on final surface roughness. The performance of present finishing process on final finished surface roughness was studied. The surface morphology was observed under scanning electron microscopy and atomic force microscope. The final surface finish was obtained as low as 19.7 nm from the initial surface roughness of 142.9 nm. The outcome of newly developed finishing process can be found useful in its applications in aerospace, automotive, dies and molds manufacturing industries, semiconductor and optics machining etc.

Keywords: Ball end MR finishing tool, Magnetorheological finishing, Nanofinishing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2288
151 Application of H2 -based Sliding Mode Control for an Active Magnetic Bearing System

Authors: Abdul Rashid Husain, Mohamad Noh Ahmad, Abdul Halim Mohd. Yatim

Abstract:

In this paper, application of Sliding Mode Control (SMC) technique for an Active Magnetic Bearing (AMB) system with varying rotor speed is considered. The gyroscopic effect and mass imbalance inherited in the system is proportional to rotor speed in which this nonlinearity effect causes high system instability as the rotor speed increases. Transformation of the AMB dynamic model into regular system shows that these gyroscopic effect and imbalance lie in the mismatched part of the system. A H2-based sliding surface is designed which bound the mismatched parts. The solution of the surface parameter is obtained using Linear Matrix Inequality (LMI). The performance of the controller applied to the AMB model is demonstrated through simulation works under various system conditions.

Keywords: Active magnetic bearing, sliding mode control, linear matrix inequality, mismatched uncertainty and imbalance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1557
150 Investigation of Various PWM Techniques for Shunt Active Filter

Authors: J. Chelladurai, G. Saravana Ilango, C. Nagamani, S. Senthil Kumar

Abstract:

Pulse width modulation (PWM) techniques have been the subject of intensive research for different industrial and power sector applications. A large variety of methods, different in concept and performance, have been newly developed and described. This paper analyzes the comparative merits of Sinusoidal Pulse Width Modulation (SPWM) and Space Vector Pulse Width Modulation (SVPWM) techniques and the suitability of these techniques in a Shunt Active Filter (SAF). The objective is to select the scheme that offers effective utilization of DC bus voltage and also harmonic reduction at the input side. The effectiveness of the PWM techniques is tested in the SAF configuration with a non linear load. The performance of the SAF with the SPWM and (SVPWM) techniques are compared with respect to the THD in source current. The study reveals that in the context of closed loop SAF control with the SVPWM technique there is only a minor improvement in THD. The utilization of the DC bus with SVPWM is also not significant compared to that with SPWM because of the non sinusoidal modulating signal from the controller in SAF configuration.

Keywords: Voltage source inverter, Shunt active filter, SPWM, SVPWM, Matlab/SIMULINK.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2735
149 Passive Non-Prehensile Manipulation on Helix Path Based on Mechanical Intelligence

Authors: Abdullah Bajelan, Adel Akbarimajd

Abstract:

Object manipulation techniques in robotics can be categorized in two major groups including manipulation with grasp and manipulation without grasp. The original aim of this paper is to develop an object manipulation method where in addition to being grasp-less, the manipulation task is done in a passive approach. In this method, linear and angular positions of the object are changed and its manipulation path is controlled. The manipulation path is a helix track with constant radius and incline. The method presented in this paper proposes a system which has not the actuator and the active controller. So this system requires a passive mechanical intelligence to convey the object from the status of the source along the specified path to the goal state. This intelligent is created based on utilizing the geometry of the system components. A general set up for the components of the system is considered to satisfy the required conditions. Then after kinematical analysis, detailed dimensions and geometry of the mechanism is obtained. The kinematical results are verified by simulation in ADAMS.

Keywords: Mechanical intelligence, Object manipulation, Passive mechanism, Passive non-prehensile manipulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1221
148 Implementation of MPPT Algorithm for Grid Connected PV Module with IC and P&O Method

Authors: Arvind Kumar, Manoj Kumar, Dattatraya H. Nagaraj, Amanpreet Singh, Jayanthi Prattapati

Abstract:

In recent years, the use of renewable energy resources instead of pollutant fossil fuels and other forms has increased. Photovoltaic generation is becoming increasingly important as a renewable resource since it does not cause in fuel costs, pollution, maintenance, and emitting noise compared with other alternatives used in power applications. In this paper, Perturb and Observe and Incremental Conductance methods are used to improve energy conversion efficiency under different environmental conditions. PI controllers are used to control easily DC-link voltage, active and reactive currents. The whole system is simulated under standard climatic conditions (1000 W/m2, 250C) in MATLAB and the irradiance is varied from 1000 W/m2 to 300 W/m2. The use of PI controller makes it easy to directly control the power of the grid connected PV system. Finally the validity of the system will be verified through the simulations in MATLAB/Simulink environment.

Keywords: Incremental conductance algorithm, modeling of PV panel, perturb and observe algorithm, photovoltaic system and simulation results.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1809
147 Performance Enhancement of Analog Voltage Inverter with Adaptive Gain Control for Capacitive Load

Authors: Sun-Ki Hong, Yong-Ho Cho, Ki-Seok Kim, Tae-Sam Kang

Abstract:

Piezoelectric actuator is treated as RC load when it is modeled electrically. For some piezoelectric actuator applications, arbitrary voltage is required to actuate. Especially for unidirectional arbitrary voltage driving like as sine wave, some special inverter with circuit that can charge and discharge the capacitive energy can be used. In this case, the difference between power supply level and the object voltage level for RC load is varied. Because the control gain is constant, the controlled output is not uniform according to the voltage difference. In this paper, for charge and discharge circuit for unidirectional arbitrary voltage driving for piezoelectric actuator, the controller gain is controlled according to the voltage difference. With the proposed simple idea, the load voltage can have controlled smoothly although the voltage difference is varied. The appropriateness is proved from the simulation of the proposed circuit.

Keywords: Analog voltage inverter, Capacitive load, Gain control, DC-DC converter, Piezoelectric, Voltage waveform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1705
146 FWM Aware Fuzzy Dynamic Routing and Wavelength Assignment in Transparent Optical Networks

Authors: Debajyoti Mishra, Urmila Bhanja

Abstract:

In this paper, a novel fuzzy approach is developed while solving the Dynamic Routing and Wavelength Assignment (DRWA) problem in optical networks with Wavelength Division Multiplexing (WDM). In this work, the effect of nonlinear and linear impairments such as Four Wave Mixing (FWM) and amplifier spontaneous emission (ASE) noise are incorporated respectively. The novel algorithm incorporates fuzzy logic controller (FLC) to reduce the effect of FWM noise and ASE noise on a requested lightpath referred in this work as FWM aware fuzzy dynamic routing and wavelength assignment algorithm. The FWM crosstalk products and the static FWM noise power per link are pre computed in order to reduce the set up time of a requested lightpath, and stored in an offline database. These are retrieved during the setting up of a lightpath and evaluated online taking the dynamic parameters like cost of the links into consideration.

Keywords: Amplifier spontaneous emission (ASE), Dynamic routing and wavelength assignment, Four wave mixing (FWM), Fuzzy rule based system (FRBS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1698
145 Wrap-around View Equipped on Mobile Robot

Authors: Sun Lim, Sewoong Jun, Il-Kyun Jung

Abstract:

This paper presents a wrap-around view system with 4 smart cameras module and remote motion mobile robot control equipped with smart camera module system. The two-level scheme for remote motion control with smart-pad(IPAD) is introduced on this paper. In the low-level, the wrap-around view system is controlled or operated to keep the reference points lying around top view image plane. On the higher level, a robot image based motion controller is utilized to drive the mobile platform to reach the desired position or track the desired motion planning through image feature feedback. The design wrap-around view system equipped on presents such advantages as follows: 1) a satisfactory solution for the FOV and affine problem; 2) free of any complex and constraint with robot pose. The performance of the wrap-around view equipped on mobile robot remote control is proven by experimental results.

Keywords: four smart camera, wrap-around view, remote mobile robot control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1767
144 Design and Motion Control of a Two-Wheel Inverted Pendulum Robot

Authors: Shiuh-Jer Huang, Su-Shean Chen, Sheam-Chyun Lin

Abstract:

Two-wheel inverted pendulum robot (TWIPR) is designed with two-hub DC motors for human riding and motion control evaluation. In order to measure the tilt angle and angular velocity of the inverted pendulum robot, accelerometer and gyroscope sensors are chosen. The mobile robot’s moving position and velocity were estimated based on DC motor built in hall sensors. The control kernel of this electric mobile robot is designed with embedded Arduino Nano microprocessor. A handle bar was designed to work as steering mechanism. The intelligent model-free fuzzy sliding mode control (FSMC) was employed as the main control algorithm for this mobile robot motion monitoring with different control purpose adjustment. The intelligent controllers were designed for balance control, and moving speed control purposes of this robot under different operation conditions and the control performance were evaluated based on experimental results.

Keywords: Balance control, speed control, intelligent controller and two wheel inverted pendulum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1121
143 Programmable Logic Controller for Cassava Centrifugal Machine

Authors: R. Oonsivilai, M. Oonsivilai, J. Sanguemrum, N. Thumsirirat, A. Oonsivilai

Abstract:

Chaiyaphum Starch Co. Ltd. is one of many starch manufacturers that has introduced machinery to aid in manufacturing. Even though machinery has replaced many elements and is now a significant part in manufacturing processes, problems that must be solved with respect to current process flow to increase efficiency still exist. The paper-s aim is to increase productivity while maintaining desired quality of starch, by redesigning the flipping machine-s mechanical control system which has grossly low functional lifetime. Such problems stem from the mechanical control system-s bearings, as fluids and humidity can access into said bearing directly, in tandem with vibrations from the machine-s function itself. The wheel which is used to sense starch thickness occasionally falls from its shaft, due to high speed rotation during operation, while the shaft may bend from impact when processing dried bread. Redesigning its mechanical control system has increased its efficiency, allowing quality thickness measurement while increasing functional lifetime an additional 62 days.

Keywords: Control system, Machinery, Measurement, Potato starch

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2058
142 Studies on Pre-Ignition Chamber Dynamics of Solid Rockets with Different Port Geometries

Authors: S. Vivek, Sharad Sharan, R. Arvind, D. V. Praveen, J. Vigneshwar, S. Ajith, V. R. Sanal Kumar

Abstract:

In this paper numerical studies have been carried out to examine the pre-ignition flow features of high-performance solid propellant rocket motors with two different port geometries but with same propellant loading density. Numerical computations have been carried out using a validated 3D, unsteady, 2nd-order implicit, SST k- ω turbulence model. In the numerical study, a fully implicit finite volume scheme of the compressible, Reynolds-Averaged, Navier- Stokes equations is employed. We have observed from the numerical results that in solid rocket motors with highly loaded propellants having divergent port geometry the hot igniter gases can create preignition pressure oscillations leading to thrust oscillations due to the flow unsteadiness and recirculation. We have also observed that the igniter temperature fluctuations are diminished rapidly thereby reaching the steady state value faster in the case of solid propellant rocket motors with convergent port than the divergent port irrespective of the igniter total pressure. We have concluded that the prudent selection of the port geometry, without altering the propellant loading density, for damping the total temperature fluctuations within the motor is a meaningful objective for the suppression and control of instability and/or thrust oscillations often observed in solid propellant rocket motors with non-uniform port geometry.

Keywords: Pre-Ignition chamber dynamics, starting transient, solid rockets, thrust oscillations in SRMs, ignition transient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2225
141 Intelligent Agent Approach to the Control of Critical Infrastructure Networks

Authors: James D. Gadze, Niki Pissinou, Kia Makki

Abstract:

In this paper we propose an intelligent agent approach to control the electric power grid at a smaller granularity in order to give it self-healing capabilities. We develop a method using the influence model to transform transmission substations into information processing, analyzing and decision making (intelligent behavior) units. We also develop a wireless communication method to deliver real-time uncorrupted information to an intelligent controller in a power system environment. A combined networking and information theoretic approach is adopted in meeting both the delay and error probability requirements. We use a mobile agent approach in optimizing the achievable information rate vector and in the distribution of rates to users (sensors). We developed the concept and the quantitative tools require in the creation of cooperating semiautonomous subsystems which puts the electric grid on the path towards intelligent and self-healing system.

Keywords: Mobile agent, power system operation and control, real time, wireless communication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1624
140 Hardware-in-the-Loop Test for Automatic Voltage Regulator of Synchronous Condenser

Authors: Ha Thi Nguyen, Guangya Yang, Arne Hejde Nielsen, Peter Højgaard Jensen

Abstract:

Automatic voltage regulator (AVR) plays an important role in volt/var control of synchronous condenser (SC) in power systems. Test AVR performance in steady-state and dynamic conditions in real grid is expensive, low efficiency, and hard to achieve. To address this issue, we implement hardware-in-the-loop (HiL) test for the AVR of SC to test the steady-state and dynamic performances of AVR in different operating conditions. Startup procedure of the system and voltage set point changes are studied to evaluate the AVR hardware response. Overexcitation, underexcitation, and AVR set point loss are tested to compare the performance of SC with the AVR hardware and that of simulation. The comparative results demonstrate how AVR will work in a real system. The results show HiL test is an effective approach for testing devices before deployment and is able to parameterize the controller with lower cost, higher efficiency, and more flexibility.

Keywords: Automatic voltage regulator, hardware-in-the-loop, synchronous condenser, real time digital simulator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1043
139 An Energy Efficient Digital Baseband for Batteryless Remote Control

Authors: Wei-Da Toh, Yuan Gao, Minkyu Je

Abstract:

In this paper, an energy efficient digital baseband circuit for piezoelectric (PE) harvester powered batteryless remote control system is presented. Pulse mode PE harvester, which provides short duration of energy, is adopted to replace conventional chemical battery in wireless remote controller. The transmitter digital baseband repeats the control command transmission once the digital circuit is initiated by the power-on-reset. A power efficient data frame format is proposed to maximize the transmission repetition time. By using the proposed frame format and receiver clock and data recovery method, the receiver baseband is able to decode the command even when the received data has 20% error. The proposed transmitter and receiver baseband are implemented using FPGA and simulation results are presented.

Keywords: Clock and Data Recovery (CDR), Correlator, Digital Baseband, Gold Code, Power-On-Reset.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1976
138 Control Strategy of Solar Thermal Cooling System under the Indonesia Climate

Authors: Budihardjo Sarwo Sastrosudiro, Arnas Lubis, Muhammad Idrus Alhamid, Nasruddin Jusuf

Abstract:

Solar thermal cooling system was installed on Mechanical Research Center (MRC) Building that is located in Universitas Indonesia, Depok, Indonesia. It is the first cooling system in Indonesia that utilizes solar energy as energy input combined with natural gas; therefore, the control system must be appropriated with the climates. In order to stabilize the cooling capacity and also to maximize the use of solar energy, the system applies some controllers. Constant flow rate and on/off controller are applied for the hot water, chilled water and cooling water pumps. The hot water circulated by pump when the solar radiation is over than 400W/m2, and the chilled water is continually circulated by pump and its temperature is kept constant 7 °C by absorption chiller. The cooling water is also continually circulated until the outlet temperature of cooling tower below than 27 oC. Furthermore, the three-way valve is used to control the hot water for generate vapor on absorption chiller. The system performance using that control system is shown in this study results.

Keywords: Absorption chiller, control system, solar cooling, solar energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1425
137 Curing Time Effect on Behavior of Cement Treated Marine Clay

Authors: H. W. Xiao, F. H. Lee

Abstract:

Cement stabilization has been widely used for improving the strength and stiffness of soft clayey soils. Cement treated soil specimens used to investigate the stress-strain behaviour in the laboratory study are usually cured for 7 days. This paper examines the effects of curing time on the strength and stress strain behaviour of cement treated marine clay under triaxial loading condition. Laboratory-prepared cement treated Singapore marine clay with different mix proportion S-C-W (soil solid-cement solid-water) and curing time (7 days to 180 days) was investigated through conducting unconfined compressive strength test and triaxial test. The results show that the curing time has a significant effect on the unconfined compressive strength u q , isotropic compression behaviour and stress strain behaviour. Although the primary yield loci of the cement treated soil specimens with the same mix proportion expand with curing time, they are very narrowly banded and have nearly the same shape after being normalized by isotropic compression primary stress ' py p . The isotropic compression primary yield stress ' py p was shown to be linearly related to unconfined compressive strength u q for specimens with different curing time and mix proportion. The effect of curing time on the hardening behaviour will diminish with consolidation stress higher than isotropic compression primary yield stress but its damping rate is dependent on the cement content.

Keywords: Cement treated soil, curing time effect, hardening behaviour, isotropic compression primary yield stress, unconfined compressive strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3847
136 Wavelet-Based Data Compression Technique for Wireless Sensor Networks

Authors: P. Kumsawat, N. Pimpru, K. Attakitmongcol, A.Srikaew

Abstract:

In this paper, we proposed an efficient data compression strategy exploiting the multi-resolution characteristic of the wavelet transform. We have developed a sensor node called “Smart Sensor Node; SSN". The main goals of the SSN design are lightweight, minimal power consumption, modular design and robust circuitry. The SSN is made up of four basic components which are a sensing unit, a processing unit, a transceiver unit and a power unit. FiOStd evaluation board is chosen as the main controller of the SSN for its low costs and high performance. The software coding of the implementation was done using Simulink model and MATLAB programming language. The experimental results show that the proposed data compression technique yields recover signal with good quality. This technique can be applied to compress the collected data to reduce the data communication as well as the energy consumption of the sensor and so the lifetime of sensor node can be extended.

Keywords: Wireless sensor network, wavelet transform, data compression, ZigBee, skipped high-pass sub-band.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2947
135 Agent-based Simulation for Blood Glucose Control in Diabetic Patients

Authors: Sh. Yasini, M. B. Naghibi-Sistani, A. Karimpour

Abstract:

This paper employs a new approach to regulate the blood glucose level of type I diabetic patient under an intensive insulin treatment. The closed-loop control scheme incorporates expert knowledge about treatment by using reinforcement learning theory to maintain the normoglycemic average of 80 mg/dl and the normal condition for free plasma insulin concentration in severe initial state. The insulin delivery rate is obtained off-line by using Qlearning algorithm, without requiring an explicit model of the environment dynamics. The implementation of the insulin delivery rate, therefore, requires simple function evaluation and minimal online computations. Controller performance is assessed in terms of its ability to reject the effect of meal disturbance and to overcome the variability in the glucose-insulin dynamics from patient to patient. Computer simulations are used to evaluate the effectiveness of the proposed technique and to show its superiority in controlling hyperglycemia over other existing algorithms

Keywords: Insulin Delivery rate, Q-learning algorithm, Reinforcement learning, Type I diabetes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2142
134 Dynamic Performance Evaluation of Distributed Generation Units in the Micro Grid

Authors: Abdolreza Roozbeh, Reza Sedaghati, Ali Asghar Baziar, Mohammad Reza Tabatabaei

Abstract:

This paper presents dynamic models of distributed generators (DG) and investigates dynamic behavior of the DG units in the micro grid system. The DG units include photovoltaic and fuel cell sources. The voltage source inverter is adopted since the electronic interface which can be equipped with its controller to keep stability of the micro grid during small signal dynamics. This paper also introduces power management strategies and implements the DG load sharing concept to keep the micro grid operation in gridconnected and islanding modes of operation. The results demonstrate the operation and performance of the photovoltaic and fuel cell as distributed generators in a micro grid. The entire control system in the micro grid is developed by combining the benefits of the power control and the voltage control strategies. Simulation results are all reported, confirming the validity of the proposed control technique.

Keywords: Stability, Distributed Generation, Dynamic, Micro Grid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2021
133 Vibration Analysis of Gas Turbine SIEMENS 162MW - V94.2 Related to Iran Power Plant Industry in Fars Province

Authors: Omid A. Zargar

Abstract:

Vibration analysis of most critical equipment is considered as one of the most challenging activities in preventive maintenance. Utilities are heart of the process in big industrial plants like petrochemical zones. Vibration analysis methods and condition monitoring systems of these kinds of equipments are developed too much in recent years. On the other hand, there are too much operation factors like inlet and outlet pressures and temperatures that should be monitored. In this paper, some of the most effective concepts and techniques related to gas turbine vibration analysis are discussed. In addition, a gas turbine SIEMENS 162MW - V94.2 vibration case history related to Iran power industry in Fars province is explained. Vibration monitoring system and machinery technical specification are introduced. Besides, absolute and relative vibration trends, turbine and compressor orbits, Fast Fourier transform (FFT) in absolute vibrations, vibration modal analysis, turbine and compressor start up and shut down conditions, bode diagrams for relative vibrations, Nyquist diagrams and waterfall or three-dimensional FFT diagrams in startup and trip conditions are discussed with relative graphs. Furthermore, Split Resonance in gas turbines is discussed in details. Moreover, some updated vibration monitoring system, blade manufacturing technique and modern damping mechanism are discussed in this paper.

Keywords: Gas turbine, turbine compressor, vibration data collector, utility, condition monitoring, non-contact probe, Relative Vibration, Absolute Vibration, Split Resonance, Time Wave Form (TWF), Fast Fourier transform (FFT).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3581
132 Drafting the Design and Development of Micro- Controller Based Portable Soil Moisture Sensor for Advancement in Agro Engineering

Authors: Guneet Mander, Gurinder Pal Singh

Abstract:

Moisture is an important consideration in many aspects ranging from irrigation, soil chemistry, golf course, corrosion and erosion, road conditions, weather predictions, livestock feed moisture levels, water seepage etc. Vegetation and crops always depend more on the moisture available at the root level than on precipitation occurrence. In this paper, design of an instrument is discussed which tells about the variation in the moisture contents of soil. This is done by measuring the amount of water content in soil by finding the variation in capacitance of soil with the help of a capacitive sensor. The greatest advantage of soil moisture sensor is reduced water consumption. The sensor is also be used to set lower and upper threshold to maintain optimum soil moisture saturation and minimize water wilting, contributes to deeper plant root growth ,reduced soil run off /leaching and less favorable condition for insects and fungal diseases. Capacitance method is preferred because, it provides absolute amount of water content and also measures water content at any depth.

Keywords: Capacitive Sensors, aluminum, Water, Irrigation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1950
131 On the AC-Side Interface Filter in Three-Phase Shunt Active Power Filter Systems

Authors: Mihaela Popescu, Alexandru Bitoleanu, Mircea Dobriceanu

Abstract:

The proper selection of the AC-side passive filter interconnecting the voltage source converter to the power supply is essential to obtain satisfactory performances of an active power filter system. The use of the LCL-type filter has the advantage of eliminating the high frequency switching harmonics in the current injected into the power supply. This paper is mainly focused on analyzing the influence of the interface filter parameters on the active filtering performances. Some design aspects are pointed out. Thus, the design of the AC interface filter starts from transfer functions by imposing the filter performance which refers to the significant current attenuation of the switching harmonics without affecting the harmonics to be compensated. A Matlab/Simulink model of the entire active filtering system including a concrete nonlinear load has been developed to examine the system performances. It is shown that a gamma LC filter could accomplish the attenuation requirement of the current provided by converter. Moreover, the existence of an optimal value of the grid-side inductance which minimizes the total harmonic distortion factor of the power supply current is pointed out. Nevertheless, a small converter-side inductance and a damping resistance in series with the filter capacitance are absolutely needed in order to keep the ripple and oscillations of the current at the converter side within acceptable limits. The effect of change in the LCL-filter parameters is evaluated. It is concluded that good active filtering performances can be achieved with small values of the capacitance and converter-side inductance.

Keywords: Active power filter, LCL filter, Matlab/Simulinkmodeling, Passive filters, Transfer function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2964
130 Depth Controls of an Autonomous Underwater Vehicle by Neurocontrollers for Enhanced Situational Awareness

Authors: Igor Astrov, Andrus Pedai

Abstract:

This paper focuses on a critical component of the situational awareness (SA), the neural control of autonomous constant depth flight of an autonomous underwater vehicle (AUV). Autonomous constant depth flight is a challenging but important task for AUVs to achieve high level of autonomy under adverse conditions. The fundamental requirement for constant depth flight is the knowledge of the depth, and a properly designed controller to govern the process. The AUV, named VORAM, is used as a model for the verification of the proposed hybrid control algorithm. Three neural network controllers, named NARMA-L2 controllers, are designed for fast and stable diving maneuvers of chosen AUV model. This hybrid control strategy for chosen AUV model has been verified by simulation of diving maneuvers using software package Simulink and demonstrated good performance for fast SA in real-time searchand- rescue operations.

Keywords: Autonomous underwater vehicles, depth control, neurocontrollers, situational awareness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1811
129 Design and Analysis of 1.4 MW Hybrid Saps System for Rural Electrification in Off-Grid Applications

Authors: Arpan Dwivedi, Yogesh Pahariya

Abstract:

In this paper, optimal design of hybrid standalone power supply system (SAPS) is done for off grid applications in remote areas where transmission of power is difficult. The hybrid SAPS system uses two primary energy sources, wind and solar, and in addition to these diesel generator is also connected to meet the load demand in case of failure of wind and solar system. This paper presents mathematical modeling of 1.4 MW hybrid SAPS system for rural electrification. This paper firstly focuses on mathematical modeling of PV module connected in a string, secondly focuses on modeling of permanent magnet wind turbine generator (PMWTG). The hybrid controller is also designed for selection of power from the source available as per the load demand. The power output of hybrid SAPS system is analyzed for meeting load demands at urban as well as for rural areas.

Keywords: SAPS, DG, PMWTG, rural area, off grid, PV module.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 803