Search results for: continuous stirred tank reactor (CSTR)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1199

Search results for: continuous stirred tank reactor (CSTR)

1019 Investigation of Gas Phase Composition During Carbon Nanotube Production

Authors: S. Yaglikci, B. Salgara, F. Soysal, B. Cicek

Abstract:

Chemical vapor deposition method was used to produce carbon nanotubes on an iron based catalyst from acetylene. Gas-phase samples collected from the different positions of the tubular reactor were analyzed by GC/MS. A variety of species ranging from hydrogen to naphthalene were observed and changes in their concentrations were plotted against the reactor position. Briefly benzene, toluene, styrene, indene and naphthalene were the main higher molecular weight species and vinylacetylene and diacetylene were the important intermediates. Nanotube characterization was performed by scanning electron microscopy and transmission electron microscopy.

Keywords: Carbon nanotubes, chemical vapor deposition, GC/MS, species profile

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1834
1018 Identification of Anaerobic Microorganisms for Converting Kitchen Waste to Biogas

Authors: A. Malakahmad, S.M. Zain, N.E. Ahmad Basri, S. R. Mohamed Kutty, M. H. Isa

Abstract:

Anaerobic digestion process is one of the alternative methods to convert organic waste into methane gas which is a fuel and energy source. Activities of various kinds of microorganisms are the main factor for anaerobic digestion which produces methane gas. Therefore, in this study a modified Anaerobic Baffled Reactor (ABR) with working volume of 50 liters was designed to identify the microorganisms through biogas production. The mixture of 75% kitchen waste and 25% sewage sludge was used as substrate. Observations on microorganisms in the ABR showed that there exists a small amount of protozoa (5%) and fungi (2%) in the system, but almost 93% of the microorganism population consists of bacteria. It is definitely clear that bacteria are responsible for anaerobic biodegradation of kitchen waste. Results show that in the acidification zone of the ABR (front compartments of reactor) fast growing bacteria capable of growth at high substrate levels and reduced pH was dominant. A shift to slower growing scavenging bacteria that grow better at higher pH was occurring towards the end of the reactor. Due to the ability of activity in acetate environment the percentages of Methanococcus, Methanosarcina and Methanotrix were higher than other kinds of methane former in the system.

Keywords: Anaerobic microorganism identification, Kitchenwaste, Biogas.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2514
1017 Optimization of a Bioremediation Strategy for an Urban Stream of Matanza-Riachuelo Basin

Authors: María D. Groppa, Andrea Trentini, Myriam Zawoznik, Roxana Bigi, Carlos Nadra, Patricia L. Marconi

Abstract:

In the present work, a remediation bioprocess based on the use of a local isolate of the microalgae Chlorella vulgaris immobilized in alginate beads is proposed. This process was shown to be effective for the reduction of several chemical and microbial contaminants present in Cildáñez stream, a water course that is part of the Matanza-Riachuelo Basin (Buenos Aires, Argentina). The bioprocess, involving the culture of the microalga in autotrophic conditions in a stirred-tank bioreactor supplied with a marine propeller for 6 days, allowed a significant reduction of Escherichia coli and total coliform numbers (over 95%), as well as of ammoniacal nitrogen (96%), nitrates (86%), nitrites (98%), and total phosphorus (53%) contents. Pb content was also significantly diminished after the bioprocess (95%). Standardized cytotoxicity tests using Allium cepa seeds and Cildáñez water pre- and post-remediation were also performed. Germination rate and mitotic index of onion seeds imbibed in Cildáñez water subjected to the bioprocess was similar to that observed in seeds imbibed in distilled water and significantly superior to that registered when untreated Cildáñez water was used for imbibition. Our results demonstrate the potential of this simple and cost-effective technology to remove urban-water contaminants, offering as an additional advantage the possibility of an easy biomass recovery, which may become a source of alternative energy.

Keywords: Bioreactor, bioremediation, Chlorella vulgaris, Matanza-Riachuelo basin, microalgae.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 779
1016 Identification of Nonlinear Systems Using Radial Basis Function Neural Network

Authors: C. Pislaru, A. Shebani

Abstract:

This paper uses the radial basis function neural network (RBFNN) for system identification of nonlinear systems. Five nonlinear systems are used to examine the activity of RBFNN in system modeling of nonlinear systems; the five nonlinear systems are dual tank system, single tank system, DC motor system, and two academic models. The feed forward method is considered in this work for modelling the non-linear dynamic models, where the KMeans clustering algorithm used in this paper to select the centers of radial basis function network, because it is reliable, offers fast convergence and can handle large data sets. The least mean square method is used to adjust the weights to the output layer, and Euclidean distance method used to measure the width of the Gaussian function.

Keywords: System identification, Nonlinear system, Neural networks, RBF neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2813
1015 Kinetics of Hydrodesulphurization of Diesel: Mass Transfer Aspects

Authors: Sudip K. Ganguly

Abstract:

In order to meet environmental norms, Indian fuel policy aims at producing ultra low sulphur diesel (ULSD) in near future. A catalyst for meeting such requirements has been developed and kinetics of this catalytic process is being looked into. In the present investigations, effect of mass transfer on kinetics of ultra deep hydrodesulphurization (UDHDS) to produce ULSD has been studied to determine intrinsic kinetics over a pre-sulphided catalyst. Experiments have been carried out in a continuous flow micro reactor operated in the temperature range of 330 to 3600C, whsv of 1 hr-1 at a pressure of 35 bar, and its parameters estimated. Based on the derived rate expression and estimated parameters optimum operation range has been determined for this UDHDS catalyst to obtain ULSD product.

Keywords: Diesel, hydrodesulphurization, kinetics, mass transfer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1755
1014 Design and Control of an Integrated Plant for Simultaneous Production of γ-Butyrolactone and 2-Methyl Furan

Authors: Ahtesham Javaid, Costin S. Bildea

Abstract:

The design and plantwide control of an integrated plant where the endothermic 1,4-butanediol dehydrogenation and the exothermic furfural hydrogenation is simultaneously performed in a single reactor is studied. The reactions can be carried out in an adiabatic reactor using small hydrogen excess and with reduced parameter sensitivity. The plant is robust and flexible enough to allow different production rates of γ-butyrolactone and 2-methyl furan, keeping high product purities. Rigorous steady state and dynamic simulations performed in AspenPlus and AspenDynamics to support the conclusions.

Keywords: Dehydrogenation and hydrogenation, Reaction coupling, Design and control, Process integration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4705
1013 Coupling Compensation of 6-DOF Parallel Robot Based on Screw Theory

Authors: Ming Cong, Yinghua Wu, Dong Liu, Haiying Wen, Junfa Yu

Abstract:

In order to improve control performance and eliminate steady, a coupling compensation for 6-DOF parallel robot is presented. Taking dynamic load Tank Simulator as the research object, this paper analyzes the coupling of 6-DOC parallel robot considering the degree of freedom of the 6-DOF parallel manipulator. The coupling angle and coupling velocity are derived based on inverse kinematics model. It uses the mechanism-model combined method which takes practical moving track that considering the performance of motion controller and motor as its input to make the study. Experimental results show that the coupling compensation improves motion stability as well as accuracy. Besides, it decreases the dither amplitude of dynamic load Tank Simulator.

Keywords: coupling compensation, screw theory, parallel robot, mechanism-model combined motion

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1633
1012 Modeling, Simulation and Monitoring of Nuclear Reactor Using Directed Graph and Bond Graph

Authors: A. Badoud, M. Khemliche, S. Latreche

Abstract:

The main objective developed in this paper is to find a graphic technique for modeling, simulation and diagnosis of the industrial systems. This importance is much apparent when it is about a complex system such as the nuclear reactor with pressurized water of several form with various several non-linearity and time scales. In this case the analytical approach is heavy and does not give a fast idea on the evolution of the system. The tool Bond Graph enabled us to transform the analytical model into graphic model and the software of simulation SYMBOLS 2000 specific to the Bond Graphs made it possible to validate and have the results given by the technical specifications. We introduce the analysis of the problem involved in the faults localization and identification in the complex industrial processes. We propose a method of fault detection applied to the diagnosis and to determine the gravity of a detected fault. We show the possibilities of application of the new diagnosis approaches to the complex system control. The industrial systems became increasingly complex with the faults diagnosis procedures in the physical systems prove to become very complex as soon as the systems considered are not elementary any more. Indeed, in front of this complexity, we chose to make recourse to Fault Detection and Isolation method (FDI) by the analysis of the problem of its control and to conceive a reliable system of diagnosis making it possible to apprehend the complex dynamic systems spatially distributed applied to the standard pressurized water nuclear reactor.

Keywords: Bond Graph, Modeling, Simulation, Monitoring, Analytical Redundancy Relations, Pressurized Water Reactor, Directed Graph.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1941
1011 Investigation of the Capability of REALP5 to Solve Complex Fuel Geometry

Authors: D. Abdelrazek, M. NaguibAly, A. A. Badawi, Asmaa G. Abo Elnour, A. A. El-Kafas

Abstract:

This work is developed within IAEA Coordinated Research Program 1496, “Innovative methods in research reactor analysis: Benchmark against experimental data on neutronics and thermal-hydraulic computational methods and tools for operation and safety analysis of research reactors”.

The study investigates the capability of Code RELAP5/Mod3.4 to solve complex geometry complexity. Its results are compared to the results of PARET, a common code in thermal hydraulic analysis for research reactors, belonging to MTR-PC groups.

The WWR-SM reactor at the Institute of Nuclear Physics (INP) in the Republic of Uzbekistan is simulated using both PARET and RELAP5 at steady state. Results from the two codes are compared.

REALP5 code succeeded in solving the complex fuel geometry. The PARET code needed some calculations to obtain the final result. Although the final results from the PARET are more accurate, the small differences in both results makes using RELAP5 code recommended in case of complex fuel assemblies. 

Keywords: Complex fuel geometry, PARET, RELAP5, WWR-SM reactor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2203
1010 BTEX (Benzene, Toluene, Ethylbenzene and Xylene) Degradation by Cold Plasma

Authors: Anelise Leal Vieira Cubas, Marina de Medeiros Machado, Marília de Medeiros Machado

Abstract:

The volatile organic compounds - BTEX (Benzene, Toluene, Ethylbenzene, and Xylene) petroleum derivatives, have high rates of toxicity, which may carry consequences for human health, biota and environment. In this directon, this paper proposes a method of treatment of these compounds by using corona discharge plasma technology. The efficiency of the method was tested by analyzing samples of BTEX after going through a plasma reactor by gas chromatography method. The results show that the optimal residence time of the sample in the reactor was 8 minutes.

Keywords: BTEX, Degradation, Cold plasma.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2694
1009 Modeling and Simulation of In-vessel Core Handling in PFBR Operator Training Simulator

Authors: Bindu Sankar, Jaideep Chakraborty, Rashmi Nawlakha, A. Venkatesan, S. Raghupathy, T. Jayanthi, S.A.V. Satya Murty

Abstract:

Component handling system is one of the important sub systems of Prototype Fast Breeder Reactor (PFBR) used for fuel handling. Core handling system is again a sub system of component handling system. Core handling system consists of in-vessel and ex-vessel subassembly handling. In-vessel core handling involves transfer arm, large rotatable plug and small rotatable plug operations. Modeling and simulation of in-vessel core handling is a part of development of Prototype Fast Breeder Reactor Operator Training Simulator. This paper deals with simulation and modeling of operations of transfer arm, large rotatable plug and small rotatable plug needed for in-vessel core handling. Process modeling was developed in house using platform independent Cµ code with OpenGL (Open Graphics Library). The control logic models and virtual panel were modeled using simulation tool.

Keywords: Animation, Core Handling System, Prototype Fast Breeder Reactor, Simulator

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1661
1008 Fuel Reserve Tanks Dynamic Analysis Due to Earthquake Loading

Authors: F.Saadi, A.Aboudi Asl

Abstract:

In this paper, the dynamic analysis of fuel storage tanks has been studied and some equations are presented for the created fluid waves due to storage tank motions. Also, the equations for finite elements of fluid and structure interactions, and boundary conditions dominant on structure and fluid, were researched. In this paper, a numerical simulation is performed for the dynamic analysis of a storage tank contained a fluid. This simulation has carried out by ANSYS software, using FSI solver (Fluid and Structure Interaction solver), and by considering the simulated fluid dynamic motions due to earthquake loading, based on velocities and movements of structure and fluid according to all boundary conditions dominant on structure and fluid.

Keywords: fluid and structure interactions, finite elementmethod, ANSYS – FSI

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2091
1007 Study of Some Innovant Reactors without on- Site Refueling with Triso and Cermet Fuel

Authors: A.Chetaine, A. Benchrif, H. Amsil, V. Kuznetsov, Y. Shimazu

Abstract:

The evaluation of unit cell neutronic parameters and lifetime for some innovant reactors without on sit-refuling will be held in this work. the behavior of some small and medium reactors without on site refueling with triso and cermet fuel. For the FBNR long life except we propose to change the enrichment of the Cermet MFE to 9%. For the AFPR reactor we can see that the use of the Cermet MFE can extend the life of this reactor but to maintain the same life period for AFPR-SC we most use burnup poison to have the same slope for Kinf (Burnup). PFPWR50 cell behaves almost in same way using both fuels Cermet and TRISO. So we can conclude that PFPWR50 reactor, with CERMET Fuel, is kept among the long cycle reactors and with the new configuration we avoid subcriticality at the beginning of cycle. The evaluation of unit cell neutronic parameters reveals a good agreement with the goal of BWR-PB concept. It is found out that the Triso fuel assembly lifetime can be extended for a reasonably long period without being refueled, approximately up to 48GWd/t burnup. Using coated particles fuels with the Cermet composition can be more extended the fuel assembly life time, approximately 52 GWd/t.

Keywords: Cermet., Trisot, without on site refueling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1333
1006 Rigorous Modeling of Fixed-Bed Reactors Containing Finite Hollow Cylindrical Catalyst with Michaelis-Menten Type of Kinetics

Authors: Mohammad Asif

Abstract:

A large number of chemical, bio-chemical and pollution-control processes use heterogeneous fixed-bed reactors. The use of finite hollow cylindrical catalyst pellets can enhance conversion levels in such reactors. The absence of the pellet core can significantly lower the diffusional resistance associated with the solid phase. This leads to a better utilization of the catalytic material, which is reflected in the higher values for the effectiveness factor, leading ultimately to an enhanced conversion level in the reactor. It is however important to develop a rigorous heterogeneous model for the reactor incorporating the two-dimensional feature of the solid phase owing to the presence of the finite hollow cylindrical catalyst pellet. Presently, heterogeneous models reported in the literature invariably employ one-dimension solid phase models meant for spherical catalyst pellets. The objective of the paper is to present a rigorous model of the fixed-bed reactors containing finite hollow cylindrical catalyst pellets. The reaction kinetics considered here is the widely used Michaelis–Menten kinetics for the liquid-phase bio-chemical reactions. The reaction parameters used here are for the enzymatic degradation of urea. Results indicate that increasing the height to diameter ratio helps to improve the conversion level. On the other hand, decreasing the thickness is apparently not as effective. This could however be explained in terms of the higher void fraction of the bed that causes a smaller amount of the solid phase to be packed in the fixed-bed bio-chemical reactor.

Keywords: Fixed-bed reactor, Finite hollow cylinder, Catalyst pellet, Conversion, Michaelis-Menten kinetics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1552
1005 Investigation of the GFR2400 Reactivity Control System

Authors: Ján Haščík, Štefan Čerba, Jakub Lüley, Branislav Vrban

Abstract:

The presented paper is related to the design methods and neutronic characterization of the reactivity control system in the large power unit of Generation IV Gas cooled Fast Reactor – GFR2400. The reactor core is based on carbide pin fuel type with the application of refractory metallic liners used to enhance the fission product retention of the SiCcladding. The heterogeneous design optimization of control rod is presented and the results of rods worth and their interferences in a core are evaluated. In addition, the idea of reflector removal as an additive reactivity management option is investigated and briefly described.

Keywords: Control rods design, GFR2400, hot spot, movable reflector, reactivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1758
1004 Design of a Mould System for Horizontal Continuous Casting of Bilayer Aluminium Strips

Authors: Ch. Nerl, M. Wimmer, P. Hofer, E. Kaschnitz

Abstract:

The present article deals with a composite casting process that allows to produce bilayer AlSn6-Al strips based on the technique of horizontal continuous casting. In the first part experimental investigations on the production of a single layer AlSn6 strip are described. Afterwards essential results of basic compound casting trials using simple test specimen are presented to define the thermal conditions required for a metallurgical compound between the alloy AlSn6 and pure aluminium. Subsequently, numerical analyses are described. A finite element model was used to examine a continuous composite casting process. As a result of the simulations the main influencing parameters concerning the thermal conditions within the composite casting region could be pointed out. Finally, basic guidance is given for the design of an appropriate composite mould system.

Keywords: Aluminium alloys, composite casting, compound casting, continuous casting, numerical simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3123
1003 Homogeneity of Microstructure and Mechanical Properties in Horizontal Continuous Cast Billet

Authors: V. Arbabi , I. Ebrahimzadeh, H. Ghanbari, M.M. Kaykha

Abstract:

Horizontal continuous casting is widely used to produce semi-finished non-Ferrous products. Homogeneity in the metallurgical characteristics and mechanical properties for this product is vital for industrial application. In the present work, the microstructure and mechanical properties of a horizontal continuous cast two-phase brass billet have been studied. Impact strength and hardness variations were examined and the phase composition and porosity studied with image analysis software. Distinct differences in mechanical properties were observed between the upper, middle and lower parts of the billet, which are explained in terms of the morphology and size of the phase in the microstructure. Hardness variation in the length of billet is higher in upper area but impact strength is higher in lower areas.

Keywords: Horizontal Continuous Casting, Two-phase brasses, CuZn40Al1 alloy, Microstructure, Impact Strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2131
1002 Experimental Challenges and Solutions in Design and Operation of the Test Rig for Water Lubricated Journal Bearing

Authors: Ravindra Mallya, B. Satish Shenoy, B. Raghuvir Pai

Abstract:

The study deals with the challenges in developing a test rig to test the performance of water lubricated journal bearing. The test rig is designed to simulate the working conditions of the bearing in order to understand their performance before they are put in operation. The bearing that is studied is the commercially available water lubricated bearing which has a rubber liner bonded with a rigid metal shell. The lubricant enters the bearing axially through a pressurized inlet tank and exits to an outlet tank which is at sufficiently low pressure. The load on the bearing is applied through the dead weight system which acts both in upward and downward direction so that net load acts on the bearing. The issues in feeding the lubricant into the bearing from the inlet side and preventing the leakage of the lubricant is discussed. The application of the load on the test bearing while maintaining the bearing afloat is also discussed.

Keywords: Axial groove, hydrodynamic pressure, journal bearing, test rig, water lubrication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2608
1001 Reservoir Operating by Ant Colony Optimization for Continuous Domains (ACOR) Case Study: Dez Reservoir

Authors: A. B. Dariane, A. M. Moradi

Abstract:

A direct search approach to determine optimal reservoir operating is proposed with ant colony optimization for continuous domains (ACOR). The model is applied to a system of single reservoir to determine the optimum releases during 42 years of monthly steps. A disadvantage of ant colony based methods and the ACOR in particular, refers to great amount of computer run time consumption. In this study a highly effective procedure for decreasing run time has been developed. The results are compared to those of a GA based model.

Keywords: Ant colony optimization, continuous, metaheuristics, reservoir, decreasing run time, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1984
1000 Chaos-based Secure Communication via Continuous Variable Structure Control

Authors: Cheng-Fang Huang, Meei-Ling Hung, Teh-Lu Liao, Her-Terng Yau, Jun-Juh Yan

Abstract:

The design of chaos-based secure communication via synchronized modified Chua-s systems is investigated in this paper. A continuous control law is proposed to ensure synchronization of the master and slave modified Chua-s systems by using the variable structure control technique. Particularly, the concept of extended systems is introduced such that a continuous control input is obtained to avoid chattering phenomenon. Then, it becomes possible to ensure that the message signal embedded in the transmitter can be recovered in the receiver.

Keywords: Chaos, Secure communication, Synchronization, Variable structure control (VSC)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1388
999 Aeration Optimization in an Activated Sludge Wastewater Treatment Plant Based on CFD Method: A Case Study

Authors: Seyed Sina Khamesi, Rana Rafiei

Abstract:

The extensive aeration process is widely used for wastewater treatment. However, due to the high energy consumption of this process, which is closely related to the issues of environmental sustainability and global climate change, this article presents a simple solution to reduce energy consumption in this process. The amount of required energy is one of the critical considerations for various wastewater treatment techniques. For this purpose, an industrial wastewater treatment plant and all energy-consumer equipment in terms of energy consumption have been analyzed. The investigations and measurements revealed that the aeration unit has the highest energy consumption rate. To address this, an innovative approach is proposed to reduce energy consumption in the identified high-consumer unit. The proposed solution involves introducing baffles to divide the tank into multiple parts and using a tank with a small width and long length to enhance the mixing process. This approach reduces the need for additional equipment and significantly lowers energy consumption. To thoroughly scrutinize the proposed solution and analyze the behavior of the multi-phase fluid inside the tank, the sewage flow has been modeled using the computational fluid dynamics (CFD) method. The study presents an optimal design for the aeration unit based on these findings. The results indicate that implementing the technique suggested in this article can decrease total energy consumption by 33.15% and can be applied to all types of biological treatment plants.

Keywords: Wastewater treatment, aeration, energy consumption, Computational Fluid Dynamics, activated sludge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 112
998 Improving Classification Accuracy with Discretization on Datasets Including Continuous Valued Features

Authors: Mehmet Hacibeyoglu, Ahmet Arslan, Sirzat Kahramanli

Abstract:

This study analyzes the effect of discretization on classification of datasets including continuous valued features. Six datasets from UCI which containing continuous valued features are discretized with entropy-based discretization method. The performance improvement between the dataset with original features and the dataset with discretized features is compared with k-nearest neighbors, Naive Bayes, C4.5 and CN2 data mining classification algorithms. As the result the classification accuracies of the six datasets are improved averagely by 1.71% to 12.31%.

Keywords: Data mining classification algorithms, entropy-baseddiscretization method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2419
997 Predictions of Values in a Causticizing Process

Authors: R. Andreola, O. A. A. Santos, L. M. M, Jorge

Abstract:

An industrial system for the production of white liquor of a paper industry, Klabin Paraná Papéis, formed by ten reactors was modeled, simulated, and analyzed. The developed model considered possible water losses by evaporation and reaction, in addition to variations in volumetric flow of lime mud across the reactors due to composition variations. The model predictions agreed well with the process measurements at the plant and the results showed that the slaking reaction is nearly complete at the third causticizing reactor, while causticizing ends by the seventh reactor. Water loss due to slaking reaction and evaporation occurs more pronouncedly in the slaking reaction than in the final causticizing reactors; nevertheless, the lime mud flow remains nearly constant across the reactors.

Keywords: Causticizing, lime, prediction, process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1821
996 Kinetic Modeling of the Fischer-Tropsch Reactions and Modeling Steady State Heterogeneous Reactor

Authors: M. Ahmadi Marvast, M. Sohrabi, H. Ganji

Abstract:

The rate of production of main products of the Fischer-Tropsch reactions over Fe/HZSM5 bifunctional catalyst in a fixed bed reactor is investigated at a broad range of temperature, pressure, space velocity, H2/CO feed molar ratio and CO2, CH4 and water flow rates. Model discrimination and parameter estimation were performed according to the integral method of kinetic analysis. Due to lack of mechanism development for Fisher – Tropsch Synthesis on bifunctional catalysts, 26 different models were tested and the best model is selected. Comprehensive one and two dimensional heterogeneous reactor models are developed to simulate the performance of fixed-bed Fischer – Tropsch reactors. To reduce computational time for optimization purposes, an Artificial Feed Forward Neural Network (AFFNN) has been used to describe intra particle mass and heat transfer diffusion in the catalyst pellet. It is seen that products' reaction rates have direct relation with H2 partial pressure and reverse relation with CO partial pressure. The results show that the hybrid model has good agreement with rigorous mechanistic model, favoring that the hybrid model is about 25-30 times faster.

Keywords: Fischer-Tropsch, heterogeneous modeling, kinetic study.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2779
995 A Xenon Mass Gauging through Heat Transfer Modeling for Electric Propulsion Thrusters

Authors: A. Soria-Salinas, M.-P. Zorzano, J. Martín-Torres, J. Sánchez-García-Casarrubios, J.-L. Pérez-Díaz, A. Vakkada-Ramachandran

Abstract:

The current state-of-the-art methods of mass gauging of Electric Propulsion (EP) propellants in microgravity conditions rely on external measurements that are taken at the surface of the tank. The tanks are operated under a constant thermal duty cycle to store the propellant within a pre-defined temperature and pressure range. We demonstrate using computational fluid dynamics (CFD) simulations that the heat-transfer within the pressurized propellant generates temperature and density anisotropies. This challenges the standard mass gauging methods that rely on the use of time changing skin-temperatures and pressures. We observe that the domes of the tanks are prone to be overheated, and that a long time after the heaters of the thermal cycle are switched off, the system reaches a quasi-equilibrium state with a more uniform density. We propose a new gauging method, which we call the Improved PVT method, based on universal physics and thermodynamics principles, existing TRL-9 technology and telemetry data. This method only uses as inputs the temperature and pressure readings of sensors externally attached to the tank. These sensors can operate during the nominal thermal duty cycle. The improved PVT method shows little sensitivity to the pressure sensor drifts which are critical towards the end-of-life of the missions, as well as little sensitivity to systematic temperature errors. The retrieval method has been validated experimentally with CO2 in gas and fluid state in a chamber that operates up to 82 bar within a nominal thermal cycle of 38 °C to 42 °C. The mass gauging error is shown to be lower than 1% the mass at the beginning of life, assuming an initial tank load at 100 bar. In particular, for a pressure of about 70 bar, just below the critical pressure of CO2, the error of the mass gauging in gas phase goes down to 0.1% and for 77 bar, just above the critical point, the error of the mass gauging of the liquid phase is 0.6% of initial tank load. This gauging method improves by a factor of 8 the accuracy of the standard PVT retrievals using look-up tables with tabulated data from the National Institute of Standards and Technology.

Keywords: Electric propulsion, mass gauging, propellant, PVT, xenon.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2136
994 Applying 5S Lean Technology: An Infrastructure for Continuous Process Improvement

Authors: Raid A. Al-Aomar

Abstract:

This paper presents an application of 5S lean technology to a production facility. Due to increased demand, high product variety, and a push production system, the plant has suffered from excessive wastes, unorganized workstations, and unhealthy work environment. This has translated into increased production cost, frequent delays, and low workers morale. Under such conditions, it has become difficult, if not impossible, to implement effective continuous improvement studies. Hence, the lean project is aimed at diagnosing the production process, streamlining the workflow, removing/reducing process waste, cleaning the production environment, improving plant layout, and organizing workstations. 5S lean technology is utilized for achieving project objectives. The work was a combination of both culture changes and tangible/physical changes on the shop floor. The project has drastically changed the plant and developed the infrastructure for a successful implementation of continuous improvement as well as other best practices and quality initiatives.

Keywords: 5S Technique, Continuous Improvement, Kaizen, Lean Technology, Work Methods, Work Standards

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4854
993 Weakly Generalized Closed Map

Authors: R. Parimelazhagan, N. Nagaveni

Abstract:

In this paper we introduce a new class of mg-continuous mapping and studied some of its basic properties.We obtain some characterizations of such functions. Moreover we define sub minimal structure and further study certain properties of mg-closed sets.

Keywords: M-structure, mg-continuous mapping, minimal structure, mg T2 space, sub minimal structure, T12 space, mg-compact set.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1490
992 CLASS, A New Tool for Nuclear Scenarios: Description and First Application

Authors: B. Mouginot, J.B. Clavel, N Thiolliere

Abstract:

The presented work is motivated by a french law regarding nuclear waste management. In order to avoid the limitation coming with the usage of the existing scenario codes, as COSI, VISION or FAMILY, the Core Library for Advance Scenario Simulation (CLASS) is being develop. CLASS is an open source tool, which allows any user to simulate an electronuclear scenario. The main CLASS asset, is the possibility to include any type of reactor, even a complitely new concept, through the generation of its ACSII evolution database. In the present article, the CLASS working basis will be presented as well as a simple exemple in order to show his potentiel. In the considered exemple, the effect of the transmutation will be assessed on Minor Actinide Inventory produced by PWR reactors.

Keywords: Electronuclear scenario, reactor, simulation, nuclear waste.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1640
991 An investigation on the Effect of Continuous Phase Height on the First and Second Critical Rotor Speeds in a Rotary Disc Contactor

Authors: Hoda Molavi, Sima Hoseinpoor, Hossein Bahmanyar

Abstract:

A Rotary Disc Contactor with inner diameter of 9.1cm and maximum operating height of 40cm has been used to investigate break up phenomenon. Water-Toluene, Water as continuous phase and Toluene as dispersed phase, was selected as chemical system in the experiments. The mentioned chemical system has high interfacial tension so it was possible to form big drops which permit accurate investigation on break up phenomenon as well as the first and second critical rotor speeds. In this study, Break up phenomenon has been studied as a function of mother drop size, rotor speed and continuous phase height. Further more; the effects of mother drop size and continuous phase height on the first and second critical rotor speeds were investigated. Finally, two modified correlations were proposed to estimate the first and second critical speeds.

Keywords: Breakage, First critical rotor speed, Rotary disccontactor, Second critical rotor speed

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1379
990 Desktop High-Speed Aerodynamics by Shallow Water Analogy in a Tin Box for Engineering Students

Authors: Etsuo Morishita

Abstract:

In this paper, we show shallow water in a tin box as an analogous simulation tool for high-speed aerodynamics education and research. It is customary that we use a water tank to create shallow water flow. While a flow in a water tank is not necessarily uniform and is sometimes wavy, we can visualize a clear supercritical flow even when we move a body manually in stationary water in a simple shallow tin box. We can visualize a blunt shock wave around a moving circular cylinder together with a shock pattern around a diamond airfoil. Another interesting analogous experiment is a hydrodynamic shock tube with water and tea. We observe the contact surface clearly due to color difference of the two liquids those are invisible in the real gas dynamics experiment. We first revisit the similarities between high-speed aerodynamics and shallow water hydraulics. Several educational and research experiments are then introduced for engineering students. Shallow water experiments in a tin box simulate properly the high-speed flows.

Keywords: Aerodynamics compressible flow, gas dynamics, hydraulics, shock wave.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 887