Search results for: atmospheric reentry.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 202

Search results for: atmospheric reentry.

172 On Some Signs of a Recurrent Climate Scenario Advent

Authors: Vladimir I. Byshev, Victor G. Neiman, Yuri A. Romanov, Ilya V. Serykh

Abstract:

Since atmosphere pressure field is an actual envoy of climatic signal the atmospheric Highs and Lows should be attributed to the key active focal points within the ocean-atmosphere interplay system. Here we were set a task to determine how the dynamics of those centres of action relates to the climate change both on regional and global scales. For this target the near-surface temperature and atmospheric pressure differences between the Icelandic Low and the Azores High were considered. The secular term of phase states of the system under consideration was found divided into three nonintersecting subsets. Each of that was put in consequence with one of three climatic scenarios related to the periods of 1905-1935 (relatively warm phase), 1940-1970 (cold phase) and 1980-2000 (warm phase).

Keywords: Climate change, climatic scenario, fields of environmental characteristics, North Atlantic region.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1516
171 Optical Characterization of a Microwave Plasma Torch for Hydrogen Production

Authors: Babajide O. Ogungbesan, Rajneesh Kumar, Mohamed Sassi

Abstract:

Hydrogen sulfide (H2S) is a very toxic gas that is produced in very large quantities in the oil and gas industry. It cannot be flared to the atmosphere and Claus process based gas plants are used to recover the sulfur and convert the hydrogen to water. In this paper, we present optical characterization of an atmospheric pressure microwave plasma torch for H2S dissociation into hydrogen and sulfur. The torch is operated at 2.45 GHz with power up to 2 kW. Three different gases can simultaneously be injected in the plasma torch. Visual imaging and optical emission spectroscopy are used to characterize the plasma for varying gas flow rates and microwave power. The plasma length, emission spectra and temperature are presented. The obtained experimental results validate our earlier published simulation results of plasma torch.

Keywords: Atmospheric pressure microwave plasma, gas dissociation, optical emission spectroscopy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3228
170 Using ALOHA Code to Evaluate CO2 Concentration for Maanshan Nuclear Power Plant

Authors: W. S. Hsu, S. W. Chen, Y. T. Ku, Y. Chiang, J. R. Wang , J. H. Yang, C. Shih

Abstract:

ALOHA code was used to calculate the concentration under the CO2 storage burst condition for Maanshan nuclear power plant (NPP) in this study. Five main data are input into ALOHA code including location, building, chemical, atmospheric, and source data. The data from Final Safety Analysis Report (FSAR) and some reports were used in this study. The ALOHA results are compared with the failure criteria of R.G. 1.78 to confirm the habitability of control room. The result of comparison presents that the ALOHA result is below the R.G. 1.78 criteria. This implies that the habitability of control room can be maintained in this case. The sensitivity study for atmospheric parameters was performed in this study. The results show that the wind speed has the larger effect in the concentration calculation.

Keywords: PWR, ALOHA, habitability, Maanshan.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 684
169 Current Status of Nitrogen Saturation in the Upper Reaches of the Kanna River, Japan

Authors: Sakura Yoshii, Masakazu Abe, Akihiro Iijima

Abstract:

Nitrogen saturation has become one of the serious issues in the field of forest environment. The watershed protection forests located in the downwind hinterland of Tokyo Metropolitan Area are believed to be facing nitrogen saturation. In this study, we carefully focus on the balance of nitrogen between load and runoff. Annual nitrogen load via atmospheric deposition was estimated to 461.1 t-N/year in the upper reaches of the Kanna River. Annual nitrogen runoff to the forested headwater stream of the Kanna River was determined to 184.9 t-N/year, corresponding to 40.1% of the total nitrogen load. Clear seasonal change in NO3-N concentration was still observed. Therefore, watershed protection forest of the Kanna River is most likely to be in Stage-1 on the status of nitrogen saturation.

Keywords: Atmospheric deposition, Nitrogen accumulation, Denitrification, Forest ecosystems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1678
168 Performance Analysis of M-Ary Pulse Position Modulation in Multihop Multiple Input Multiple Output-Free Space Optical System over Uncorrelated Gamma-Gamma Atmospheric Turbulence Channels

Authors: Hechmi Saidi, Noureddine Hamdi

Abstract:

The performance of Decode and Forward (DF) multihop Free Space Optical ( FSO) scheme deploying Multiple Input Multiple Output (MIMO) configuration under Gamma-Gamma (GG) statistical distribution, that adopts M-ary Pulse Position Modulation (MPPM) coding, is investigated. We have extracted exact and estimated values of Symbol-Error Rates (SERs) respectively. A closed form formula related to the Probability Density Function (PDF) is expressed for our designed system. Thanks to the use of DF multihop MIMO FSO configuration and MPPM signaling, atmospheric turbulence is combatted; hence the transmitted signal quality is improved.

Keywords: FSO, MIMO, MIMO, multihop, DF, SER, GG channel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 606
167 Optimal Estimation of Surface Reflectance from Landsat TM Visible and Mid Infrared Data over Penang Island

Authors: H. S. Lim, M. Z. MatJafri, K. Abdullah, N. Mohd. Saleh

Abstract:

Retrieval of the surface reflectance is important in the remotely sensed data analysis to obtain the atmospheric reflectance or atmospheric correction. The relationship between visible and mid infrared reflectance over land was investigated and developed in this study. The surface reflectances of the two visible bands were measured using a handheld spectroradiometer collected around Penang Island. In this study, we use the assumption that the 2.1 μm band is not affected by aerosol and it is transparent to most aerosol types (except dust). Therefore the satellite observed signal is the same as the surface signal in 2.1 μm band. The correlation between the surface reflectance measured by the spectroradiometer in the blue and red region and the 2.1 μm observed by the satellite has been established. We investigate five dates of Landsat TM scenes in this study. The finding obtained by this study indicates that the surface reflectance can be retrieved from the 2.1 μm band.

Keywords: Surface Reflectance, Landsat TM, Aerosol, Spectroradiometer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1157
166 Microwave Plasma Dry Reforming of Methane at High CO2/CH4 Feed Ratio

Authors: Nabil Majd Alawi, Gia Hung Pham, Ahmed Barifcani

Abstract:

Dry reforming of methane that converts two greenhouses gases (CH4 and CO2) to synthesis gas (a mixture of H2 and CO) was studied in a commercial bench scale microwave (MW) plasma reactor system at atmospheric pressure. The CO2, CH4 and N2 conversions; H2, CO selectivities and yields, and syngas ratio (H2/CO) were investigated in a wide range of total feed flow rate (0.45 – 2.1 L/min), MW power (700 – 1200 watt) and CO2/CH4 molar ratio (2 – 5). At the feed flow rates of CH4, CO2 and N2 of 0.2, 0.4 and 1.5 L/min respectively, and the MWs input power of 700 W, the highest conversions of CH4 and CO2, selectivity and yield of H2, CO and H2/CO ratio of 79.35%, 44.82%, 50.12, 58.42, 39.77%, 32.89%, and 0.86, respectively, were achieved. The results of this work show that the product ratio increases slightly with the increasing total feed flow rate, but it decreases significantly with the increasing MW power and feeds CO2/CH4 ratio.

Keywords: Atmospheric pressure, methane dry reforming, microwave plasma, synthesis gas production.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 904
165 Contact Drying Simulation of Particulate Materials: A Comprehensive Approach

Authors: Marco Intelvi, Apolinar Picado, Joaquín Martínez

Abstract:

In this work, simulation algorithms for contact drying of agitated particulate materials under vacuum and at atmospheric pressure were developed. The implementation of algorithms gives a predictive estimation of drying rate curves and bulk bed temperature during contact drying. The calculations are based on the penetration model to describe the drying process, where all process parameters such as heat and mass transfer coefficients, effective bed properties, gas and liquid phase properties are estimated with proper correlations. Simulation results were compared with experimental data from the literature. In both cases, simulation results were in good agreement with experimental data. Few deviations were identified and the limitations of the predictive capabilities of the models are discussed. The programs give a good insight of the drying behaviour of the analysed powders.

Keywords: Agitated bed, Atmospheric pressure, Penetrationmodel, Vacuum

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2188
164 Leaching Behaviour of a Low-grade South African Nickel Laterite

Authors: Catherine K. Thubakgale, Richard K.K. Mbaya, Kaby Kabongo

Abstract:

The morphology, mineralogical and chemical composition of a low-grade nickel ore from Mpumalanga, South Africa, were studied by scanning electron microscope (SEM), X-ray diffraction (XRD) and X-ray fluorescence (XRF), respectively. The ore was subjected to atmospheric agitation leaching using sulphuric acid to investigate the effects of acid concentration, leaching temperature, leaching time and particle size on extraction of nickel and cobalt. Analyses results indicated the ore to be a saprolitic nickel laterite belonging to the serpentine group of minerals. Sulphuric acid was found to be able to extract nickel from the ore. Increased acid concentration and temperature only produced low amounts of nickel but improved cobalt extraction. As high as 77.44% Ni was achieved when leaching a -106+75μm fraction with 4.0M acid concentration at 25oC. The kinetics of nickel leaching from the saprolitic ore were studied and the activation energy was determined to be 18.16kJ/mol. This indicated that nickel leaching reaction was diffusion controlled.

Keywords: Laterite, sulphuric acid, atmospheric leaching, nickel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3252
163 The U.S. Missile Defense Shield and Global Security Destabilization: An Inconclusive Link

Authors: Michael A. Unbehauen, Gregory D. Sloan, Alberto J. Squatrito

Abstract:

Missile proliferation and global stability are intrinsically linked. Missile threats continually appear at the forefront of global security issues. North Korea’s recently demonstrated nuclear and intercontinental ballistic missile (ICBM) capabilities, for the first time since the Cold War, renewed public interest in strategic missile defense capabilities. To protect from limited ICBM attacks from so-called rogue actors, the United States developed the Ground-based Midcourse Defense (GMD) system. This study examines if the GMD missile defense shield has contributed to a safer world or triggered a new arms race. Based upon increased missile-related developments and the lack of adherence to international missile treaties, it is generally perceived that the GMD system is a destabilizing factor for global security. By examining the current state of arms control treaties as well as existing missile arsenals and ongoing efforts in technologies to overcome U.S. missile defenses, this study seeks to analyze the contribution of GMD to global stability. A thorough investigation cannot ignore that, through the establishment of this limited capability, the U.S. violated longstanding, successful weapons treaties and caused concern among states that possess ICBMs. GMD capability contributes to the perception that ICBM arsenals could become ineffective, creating an imbalance in favor of the United States, leading to increased global instability and tension. While blame for the deterioration of global stability and non-adherence to arms control treaties is often placed on U.S. missile defense, the facts do not necessarily support this view. The notion of a renewed arms race due to GMD is supported neither by current missile arsenals nor by the inevitable development of new and enhanced missile technology, to include multiple independently targeted reentry vehicles (MIRVs), maneuverable reentry vehicles (MaRVs), and hypersonic glide vehicles (HGVs). The methodology in this study encapsulates a period of time, pre- and post-GMD introduction, while analyzing international treaty adherence, missile counts and types, and research in new missile technologies. The decline in international treaty adherence, coupled with a measurable increase in the number and types of missiles or research in new missile technologies during the period after the introduction of GMD, could be perceived as a clear indicator of GMD contributing to global instability. However, research into improved technology (MIRV, MaRV and HGV) prior to GMD, as well as a decline of various global missile inventories and testing of systems during this same period, would seem to invalidate this theory. U.S. adversaries have exploited the perception of the U.S. missile defense shield as a destabilizing factor as a pretext to strengthen and modernize their militaries and justify their policies. As a result, it can be concluded that global stability has not significantly decreased due to GMD; but rather, the natural progression of technological and missile development would inherently include innovative and dynamic approaches to target engagement, deterrence, and national defense.

Keywords: Arms control, arms race, global security, GMD, ICBM, missile defense, proliferation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1098
162 Water Vapor Plasma Torch: Design, Characteristics and Applications

Authors: A. Tamošiūnas, P. Valatkevičius, V. Grigaitiene, V. Valinčius

Abstract:

The atmospheric pressure plasma torch with a direct current arc discharge stabilized by water vapor vortex was experimentally investigated. Overheated up to 450K water vapor was used as plasma forming gas. Plasma torch design is one of the most important factors leading to a stable operation of the device. The electrical and thermal characteristics of the plasma torch were determined during the experimental investigations. The design and the basic characteristics of the water vapor plasma torch are presented in the paper. Plasma torches with the electric arc stabilized by water vapor vortex provide special performance characteristics in some plasma processing applications such as thermal plasma neutralization and destruction of organic wastes enabling to extract high caloric value synthesis gas as by-product of the process. Syngas could be used as a surrogate fuel partly replacing the dependence on the fossil fuels or used as a feedstock for hydrogen, methanol production.

Keywords: Arc discharge, atmospheric pressure thermal plasma, plasma torch, water vapor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4426
161 Investigation of Short Time Scale Variation of Solar Radiation Spectrum in UV, PAR, and NIR Bands due to Atmospheric Aerosol and Water Vapor

Authors: Jackson H. W. Chang, Jedol Dayou, Justin Sentian

Abstract:

Long terms variation of solar insolation had been widely studied. However, its parallel observations in short time scale is rather lacking. This paper aims to investigate the short time scale evolution of solar radiation spectrum (UV, PAR, and NIR bands) due to atmospheric aerosols and water vapors. A total of 25 days of global and diffused solar spectrum ranges from air mass 2 to 6 were collected using ground-based spectrometer with shadowband technique. The result shows that variation of solar radiation is the least in UV fraction, followed by PAR and the most in NIR. Broader variations in PAR and NIR are associated with the short time scale fluctuations of aerosol and water vapors. The corresponding daily evolution of UV, PAR, and NIR fractions implies that aerosol and water vapors variation could also be responsible for the deviation pattern in the Langley-plot analysis.

Keywords: Aerosol, short time scale variation, solar radiation, water vapor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1793
160 The Study of Increasing Environmental Temperature on the Dynamical Behaviour of a Prey-Predator System: A Model

Authors: O. P. Misra, Preety Kalra

Abstract:

It is well recognized that the green house gases such as Chlorofluoro Carbon (CFC), CH4, CO2 etc. are responsible directly or indirectly for the increase in the average global temperature of the Earth. The presence of CFC is responsible for the depletion of ozone concentration in the atmosphere due to which the heat accompanied with the sun rays are less absorbed causing increase in the atmospheric temperature of the Earth. The gases like CH4 and CO2 are also responsible for the increase in the atmospheric temperature. The increase in the temperature level directly or indirectly affects the dynamics of interacting species systems. Therefore, in this paper a mathematical model is proposed and analysed using stability theory to asses the effects of increasing temperature due to greenhouse gases on the survival or extinction of populations in a prey-predator system. A threshold value in terms of a stress parameter is obtained which determines the extinction or existence of populations in the underlying system.

Keywords: Equilibria, Green house gases, Model, Populations, Stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1480
159 Perturbative Analysis on a Lunar Free Return Trajectory

Authors: Emre Ünal, Hasan Başaran

Abstract:

In this study, starting with a predetermined Lunar free-return trajectory, an analysis of major near-Earth perturbations is carried out. Referencing to historical Apollo-13 flight, changes in the mission’s resultant perimoon and perigee altitudes with each perturbative effect are evaluated. The perturbations that were considered are Earth oblateness effects, up to the 6th order, atmospheric drag, third body perturbations consisting of solar and planetary effects and solar radiation pressure effects. It is found that for a Moon mission, most of the main perturbative effects spoil the trajectory significantly while some came out to be negligible. It is seen that for apparent future request of constructing low cost, reliable and safe trajectories to the Moon, most of the orbital perturbations are crucial.

Keywords: Apollo-13 trajectory, atmospheric drag, lunar trajectories, oblateness effect, perturbative effects, solar radiation pressure, third body perturbations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 408
158 The Effect of Glass Thickness on Stress in Vacuum Glazing

Authors: Farid Arya, Trevor Hyde, Andrea Trevisi, Paolo Basso, Danilo Bardaro

Abstract:

Heat transfer through multiple pane windows can be reduced by creating a vacuum pressure less than 0.1 Pa between the glass panes, with low emittance coatings on one or more of the internal surfaces. Fabrication of vacuum glazing (VG) requires the formation of a hermetic seal around the periphery of the glass panes together with an array of support pillars between the panes to prevent them from touching under atmospheric pressure. Atmospheric pressure and temperature differentials induce stress which can affect the integrity of the glazing. Several parameters define the stresses in VG including the glass thickness, pillar specifications, glazing dimensions and edge seal configuration. Inherent stresses in VG can result in fractures in the glass panes and failure of the edge seal. In this study, stress in VG with different glass thicknesses is theoretically studied using Finite Element Modelling (FEM). Based on the finding in this study, suggestions are made to address problems resulting from the use of thinner glass panes in the fabrication of VG. This can lead to the development of high performance, light and thin VG.

Keywords: ABAQUS, glazing, stress, vacuum glazing, vacuum insulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 795
157 Investigation of Tbilisi City Atmospheric Air Pollution with PM in Usual and Emergency Situations Using the Observational and Numerical Modeling Data

Authors: N. Gigauri, V. Kukhalashvili, V. Sesadze, A. Surmava, L. Intskirveli

Abstract:

Pollution of the Tbilisi atmospheric air with PM2.5 and PM10 in usual and pandemic situations by using the data of 5 stationary observation points is investigated. The values of the statistical characteristic parameters of PM in the atmosphere of Tbilisi are analyzed and trend graphs are constructed. By means of analysis of pollution levels in the quarantine and usual periods the proportion of vehicle traffic in pollution of city is estimated. Experimental measurements of PM2.5, PM10 in the atmosphere have been carried out in different districts of the city and map of the distribution of their concentrations were constructed. It is shown that maximum pollution values are recorded in the city center and along major motorways. It is shown that the average monthly concentrations vary in the range of 0.6-1.6 Maximum Permissible Concentration (MPC). Average daily values of concentration vary at 2-4 days intervals. The distribution of PM10 generated as a result of traffic is numerical modeled. The modeling results are compared with the observation data.

Keywords: Air pollution, numerical modeling, PM2.5, PM10.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 518
156 Theoretical Study of Flexible Edge Seals for Vacuum Glazing

Authors: Farid Arya, Trevor Hyde

Abstract:

The development of vacuum glazing represents a significant advancement in the area of low heat loss glazing systems with the potential to substantially reduce building heating and cooling loads. Vacuum glazing consists of two or more glass panes hermetically sealed together around the edge with a vacuum gap between the panes. To avoid the glass panes from collapsing and touching each other under the influence of atmospheric pressure an array of support pillars is provided between the glass panes. A high level of thermal insulation is achieved by evacuating the spaces between the glass panes to a very low pressure which greatly reduces conduction and convection within the space; therefore heat transfer through this kind of glazing is significantly lower when compared with conventional insulating glazing. However, vacuum glazing is subject to inherent stresses due to atmospheric pressure and temperature differentials which can lead to fracture of the glass panes and failure of the edge seal. A flexible edge seal has been proposed to minimise the impact of these issues. In this paper, vacuum glazing system with rigid and flexible edge seals is theoretically studied and their advantages and disadvantages are discussed.

Keywords: Flexible edge seal, stress, support pillar, vacuum glazing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1211
155 Characterisation of Hydrocarbons in Atmospheric Aerosols from Different European Sites

Authors: C. A. Alves, A. Vicente, M. Evtyugina, C. A. Pio, A. Hoffer, G. Kiss, S. Decesari, R. Hillamo, E.Swietlicki

Abstract:

The concentrations of aliphatic and polycyclic aromatic hydrocarbons (PAH) were determined in atmospheric aerosol samples collected at a rural site in Hungary (K-puszta, summer 2008), a boreal forest (Hyytiälä,  April 2007) and a polluted rural area in Italy (San Pietro Capofiume, Po Valley, April 2008). A clear distinction between “clean" and “polluted" periods was observed. Concentrations obtained for Hyytiälä are significantly lower than those for the other two sites. Source reconciliation was performed using diagnostic parameters, such as the carbon preference index and ratios between PAH. The presence of an unresolved complex mixture of hydrocarbons, especially for the Finnish and Italian samples, is indicative of petrogenic inputs. In K-puszta, the aliphatic hydrocarbons are dominated by leaf wax n-alkanes. The long range transport of anthropogenic pollution contributed to the Finnish aerosol. Industrial activities and vehicular emissions represent major sources in San Pietro Capofiume. PAH in K-puszta consist of both pyrogenic and petrogenic compounds.

Keywords: Particulate matter, n-alkanes, PAH, BaPE, ruralsites, source reconciliation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1898
154 Effect of Atmospheric Turbulence on Hybrid FSO/RF Link Availability under Qatar Harsh Climate

Authors: Abir Touati, Syed Jawad Hussain, Farid Touati, Ammar Bouallegue

Abstract:

Although there has been a growing interest in the hybrid free-space optical link and radio frequency FSO/RF communication system, the current literature is limited to results obtained in moderate or cold environment. In this paper, using a soft switching approach, we investigate the effect of weather inhomogeneities on the strength of turbulence hence the channel refractive index under Qatar harsh environment and their influence on the hybrid FSO/RF availability. In this approach, either FSO/RF or simultaneous or none of them can be active. Based on soft switching approach and a finite state Markov Chain (FSMC) process, we model the channel fading for the two links and derive a mathematical expression for the outage probability of the hybrid system. Then, we evaluate the behavior of the hybrid FSO/RF under hazy and harsh weather. Results show that the FSO/RF soft switching renders the system outage probability less than that of each link individually. A soft switching algorithm is being implemented on FPGAs using Raptor code interfaced to the two terminals of a 1Gbps/100 Mbps FSO/RF hybrid system, the first being implemented in the region. Experimental results are compared to the above simulation results.

Keywords: Atmospheric turbulence, haze, soft switching, Raptor codes, refractive index.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2524
153 Two-Stage Launch Vehicle Trajectory Modeling for Low Earth Orbit Applications

Authors: Assem M. F. Sallam, Ah. El-S. Makled

Abstract:

This paper presents a study on the trajectory of a two stage launch vehicle. The study includes dynamic responses of motion parameters as well as the variation of angles affecting the orientation of the launch vehicle (LV). LV dynamic characteristics including state vector variation with corresponding altitude and velocity for the different LV stages separation, as well as the angle of attack and flight path angles are also discussed. A flight trajectory study for the drop zone of first stage and the jettisoning of fairing are introduced in the mathematical modeling to study their effect. To increase the accuracy of the LV model, atmospheric model is used taking into consideration geographical location and the values of solar flux related to the date and time of launch, accurate atmospheric model leads to enhancement of the calculation of Mach number, which affects the drag force over the LV. The mathematical model is implemented on MATLAB based software (Simulink). The real available experimental data are compared with results obtained from the theoretical computation model. The comparison shows good agreement, which proves the validity of the developed simulation model; the maximum error noticed was generally less than 10%, which is a result that can lead to future works and enhancement to decrease this level of error.

Keywords: Launch vehicle modeling, launch vehicle trajectory, mathematical modeling, MATLAB-Simulink.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3229
152 Dynamic Stall Characterization of Low Reynolds Airfoil in Mars and Titan’s Atmosphere

Authors: Vatasta Koul, Vaibhav Sharma, Ayush Gupta, Rajesh Yadav

Abstract:

Exploratory missions to Mars and Titan have increased recently with various endeavors to find an alternate home to humankind. The use of surface rovers has its limitations due to rugged and uneven surfaces of these planetary bodies. The use of aerial robots requires the complete aerodynamic characterization of these vehicles in the atmospheric conditions of these planetary bodies. The dynamic stall phenomenon is extremely important for rotary wings performance under low Reynolds number that can be encountered in Martian and Titan’s atmosphere. The current research focuses on the aerodynamic characterization and exploration of the dynamic stall phenomenon of two different airfoils viz. E387 and Selig-Donovan7003 in Martian and Titan’s atmosphere at low Reynolds numbers of 10000 and 50000. The two-dimensional numerical simulations are conducted using commercially available finite volume solver with multi-species non-reacting mixture of gases as the working fluid. The k-epsilon (k-ε) turbulence model is used to capture the unsteady flow separation and the effect of turbulence. The dynamic characteristics are studied at a fixed different constant rotational extreme of angles of attack. This study of airfoils at different low Reynolds number and atmospheric conditions on Mars and Titan will be resulting in defining the aerodynamic characteristics of these airfoils for unmanned aerial missions for outer space exploration.

Keywords: Aerodynamic, dynamic stall, low Reynolds, Mars, Titan.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 591
151 Nickel Electroplating in Post Supercritical CO2 Mixed Watts Bath under Different Agitations

Authors: Chun-Ying Lee, Kun-Hsien Lee, Bor-Wei Wang

Abstract:

The process of post-supercritical CO2 electroplating uses the electrolyte solution after being mixed with supercritical CO2 and released to atmospheric pressure. It utilizes the microbubbles that form when oversaturated CO2 in the electrolyte returns to gaseous state, which gives the similar effect of pulsed electroplating. Under atmospheric pressure, the CO2 bubbles gradually diffuse. Therefore, the introduction of ultrasound and/or other agitation can potentially excite the CO2 microbubbles to achieve an electroplated surface of even higher quality. In this study, during the electroplating process, three different modes of agitation: magnetic stirrer agitation, ultrasonic agitation and a combined mode (magnetic + ultrasonic) were applied, respectively, in order to obtain an optimal surface morphology and mechanical properties for the electroplated Ni coating. It is found that the combined agitation mode at a current density of 40 A/dm2 achieved the smallest grain size, lower surface roughness, and produced an electroplated Ni layer that achieved hardness of 320 HV, much higher when compared with conventional method, which were usually in the range of 160 to 300 HV. However, at the same time, the electroplating with combined agitation developed a higher internal stress of 320 MPa due to the lower current efficiency of the process and finer grain in the coating. Moreover, a new control methodology for tailoring the coating’s mechanical property through its thickness was demonstrated by the timely introduction of ultrasonic agitation during the electroplating process with post supercritical CO2 mixed electrolyte.

Keywords: Nickel electroplating, micro-bubbles, supercritical carbon dioxide, ultrasonic agitation, magnetic stirring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 827
150 Comparison of Microwave-Assisted and Conventional Leaching for Extraction of Copper from Chalcopyrite Concentrate

Authors: Ayfer Kilicarslan, Kubra Onol, Sercan Basit, Muhlis Nezihi Saridede

Abstract:

Chalcopyrite (CuFeS2) is the most common primary mineral used for the commercial production of copper. The low dissolution efficiency of chalcopyrite in sulfate media has prevented an efficient industrial leaching of this mineral in sulfate media. Ferric ions, bacteria, oxygen and other oxidants have been used as oxidizing agents in the leaching of chalcopyrite in sulfate and chloride media under atmospheric or pressure leaching conditions. Two leaching methods were studied to evaluate chalcopyrite (CuFeS2) dissolution in acid media. First, the conventional oxidative acid leaching method was carried out using sulfuric acid (H2SO4) and potassium dichromate (K2Cr2O7) as oxidant at atmospheric pressure. Second, microwave-assisted acid leaching was performed using the microwave accelerated reaction system (MARS) for same reaction media. Parameters affecting the copper extraction such as leaching time, leaching temperature, concentration of H2SO4 and concentration of K2Cr2O7 were investigated. The results of conventional acid leaching experiments were compared to the microwave leaching method. It was found that the copper extraction obtained under high temperature and high concentrations of oxidant with microwave leaching is higher than those obtained conventionally. 81% copper extraction was obtained by the conventional oxidative acid leaching method in 180 min, with the concentration of 0.3 mol/L K2Cr2O7 in 0.5M H2SO4 at 50 ºC, while 93.5% copper extraction was obtained in 60 min with microwave leaching method under same conditions.

Keywords: Extraction, copper, microwave-assisted leaching, chalcopyrite, potassium dichromate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2804
149 Greenhouse Gasses’ Effect on Atmospheric Temperature Increase and the Observable Effects on Ecosystems

Authors: Alexander J. Severinsky

Abstract:

Radiative forces of greenhouse gases (GHG) increase the temperature of the Earth's surface, more on land, and less in oceans, due to their thermal capacities. Given this inertia, the temperature increase is delayed over time. Air temperature, however, is not delayed as air thermal capacity is much lower. In this study, through analysis and synthesis of multidisciplinary science and data, an estimate of atmospheric temperature increase is made. Then, this estimate is used to shed light on current observations of ice and snow loss, desertification and forest fires, and increased extreme air disturbances. The reason for this inquiry is due to the author’s skepticism that current changes cannot be explained by a "~1 oC" global average surface temperature rise within the last 50-60 years. The only other plausible cause to explore for understanding is that of atmospheric temperature rise. The study utilizes an analysis of air temperature rise from three different scientific disciplines: thermodynamics, climate science experiments, and climactic historical studies. The results coming from these diverse disciplines are nearly the same, within ± 1.6%. The direct radiative force of GHGs with a high level of scientific understanding is near 4.7 W/m2 on average over the Earth’s entire surface in 2018, as compared to one in pre-Industrial time in the mid-1700s. The additional radiative force of fast feedbacks coming from various forms of water gives approximately an additional ~15 W/m2. In 2018, these radiative forces heated the atmosphere by approximately 5.1 oC, which will create a thermal equilibrium average ground surface temperature increase of 4.6 oC to 4.8 oC by the end of this century. After 2018, the temperature will continue to rise without any additional increases in the concentration of the GHGs, primarily of carbon dioxide and methane. These findings of the radiative force of GHGs in 2018 were applied to estimates of effects on major Earth ecosystems. This additional force of nearly 20 W/m2 causes an increase in ice melting by an additional rate of over 90 cm/year, green leaves temperature increase by nearly 5 oC, and a work energy increase of air by approximately 40 Joules/mole. This explains the observed high rates of ice melting at all altitudes and latitudes, the spread of deserts and increases in forest fires, as well as increased energy of tornadoes, typhoons, hurricanes, and extreme weather, much more plausibly than the 1.5 oC increase in average global surface temperature in the same time interval. Planned mitigation and adaptation measures might prove to be much more effective when directed toward the reduction of existing GHGs in the atmosphere.

Keywords: GHG radiative forces, GHG air temperature, GHG thermodynamics, GHG historical, GHG experimental, GHG radiative force on ice, GHG radiative force on plants, GHG radiative force in air.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 502
148 Numerical Study of Bubbling Fluidized Beds Operating at Sub-atmospheric Conditions

Authors: Lanka Dinushke Weerasiri, Subrat Das, Daniel Fabijanic, William Yang

Abstract:

Fluidization at vacuum pressure has been a topic that is of growing research interest. Several industrial applications (such as drying, extractive metallurgy, and chemical vapor deposition (CVD)) can potentially take advantage of vacuum pressure fluidization. Particularly, the fine chemical industry requires processing under safe conditions for thermolabile substances, and reduced pressure fluidized beds offer an alternative. Fluidized beds under vacuum conditions provide optimal conditions for treatment of granular materials where the reduced gas pressure maintains an operational environment outside of flammability conditions. The fluidization at low-pressure is markedly different from the usual gas flow patterns of atmospheric fluidization. The different flow regimes can be characterized by the dimensionless Knudsen number. Nevertheless, hydrodynamics of bubbling vacuum fluidized beds has not been investigated to author’s best knowledge. In this work, the two-fluid numerical method was used to determine the impact of reduced pressure on the fundamental properties of a fluidized bed. The slip flow model implemented by Ansys Fluent User Defined Functions (UDF) was used to determine the interphase momentum exchange coefficient. A wide range of operating pressures was investigated (1.01, 0.5, 0.25, 0.1 and 0.03 Bar). The gas was supplied by a uniform inlet at 1.5Umf and 2Umf. The predicted minimum fluidization velocity (Umf) shows excellent agreement with the experimental data. The results show that the operating pressure has a notable impact on the bed properties and its hydrodynamics. Furthermore, it also shows that the existing Gorosko correlation that predicts bed expansion is not applicable under reduced pressure conditions.

Keywords: Computational fluid dynamics, fluidized bed, gas-solid flow, vacuum pressure, slip flow, minimum fluidization velocity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 705
147 Sea Level Characteristics Referenced to Specific Geodetic Datum in Alexandria, Egypt

Authors: Ahmed M. Khedr, Saad M. Abdelrahman, Kareem M. Tonbol

Abstract:

Two geo-referenced sea level datasets (September 2008 – November 2010) and (April 2012 – January 2014) were recorded at Alexandria Western Harbour (AWH). Accurate re-definition of tidal datum, referred to the latest International Terrestrial Reference Frame (ITRF-2014), was discussed and updated to improve our understanding of the old predefined tidal datum at Alexandria. Tidal and non-tidal components of sea level were separated with the use of Delft-3D hydrodynamic model-tide suit (Delft-3D, 2015). Tidal characteristics at AWH were investigated and harmonic analysis showed the most significant 34 constituents with their amplitudes and phases. Tide was identified as semi-diurnal pattern as indicated by a “Form Factor” of 0.24 and 0.25, respectively. Principle tidal datums related to major tidal phenomena were recalculated referred to a meaningful geodetic height datum. The portion of residual energy (surge) out of the total sea level energy was computed for each dataset and found 77% and 72%, respectively. Power spectral density (PSD) showed accurate resolvability in high band (1–6) cycle/days for the nominated independent constituents, except some neighbouring constituents, which are too close in frequency. Wind and atmospheric pressure data, during the recorded sea level time, were analysed and cross-correlated with the surge signals. Moderate association between surge and wind and atmospheric pressure data were obtained. In addition, long-term sea level rise trend at AWH was computed and showed good agreement with earlier estimated rates.

Keywords: Alexandria, Delft-3D, Egypt, geodetic reference, harmonic analysis, sea level.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1308
146 Comparative Evaluation of Ice Adhesion Behavior

Authors: T. Strobl, D. Raps, M. Hornung

Abstract:

In this study, the adhesion of ice to solid substrates with different surface properties is compared. Clear ice, similar to atmospheric in-flight icing encounters, is accreted on the different substrates under controlled conditions. The ice adhesion behavior is investigated by means of a dynamic vibration testing technique with an electromagnetic shaker initiating ice de-bonding in the interface between the substrate and the ice. The results of the experiments reveal that the affinity for ice accretion is significantly influenced by the water contact angle of the respective sample.

Keywords: Contact angle, dynamic vibration measurement, ice adhesion, interfacial shear stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2298
145 Parallel Algorithm for Numerical Solution of Three-Dimensional Poisson Equation

Authors: Alibek Issakhov

Abstract:

In this paper developed and realized absolutely new algorithm for solving three-dimensional Poisson equation. This equation used in research of turbulent mixing, computational fluid dynamics, atmospheric front, and ocean flows and so on. Moreover in the view of rising productivity of difficult calculation there was applied the most up-to-date and the most effective parallel programming technology - MPI in combination with OpenMP direction, that allows to realize problems with very large data content. Resulted products can be used in solving of important applications and fundamental problems in mathematics and physics.

Keywords: MPI, OpenMP, three dimensional Poisson equation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1652
144 Numerical Simulation of High Pressure Hydrogen Emerges to Air

Authors: Mohamed H. Elhsnawi, Mesbah M. Salem, Saleh B. Mohamed

Abstract:

Numerical simulation performed to investigate the behavior of the high pressure hydrogen jetting of air. High pressure hydrogen (30–40 MPa) was injected to air at atmospheric pressure through 2mm orifice. Numerical simulations were performed with Kiva3V code with 2D axisymmetric geometry. Numerical simulations showed that auto ignition of high pressure hydrogen to air are possible due to molecular diffusion. Auto ignition was predicted at hydrogen-air contact surface due to mass and energy exchange between high temperature hydrogen and air heated by shock wave.

Keywords: Spontaneous Ignition, Diffusion Ignition, Hydrogen ignition, Hydrogen Jet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1854
143 The Photo-Absorption and Surface Feature of Nano-Structured TIO2 Coatings

Authors: Maryamossadat Bozorgtabar, Mohammadreza Rahimipour, Mehdi Salehi, Mohammadreza Jafarpour

Abstract:

Titanium dioxide coatings were deposited by utilizing atmospheric plasma spraying (APS) system. The agglomerated nanopowder and different spraying parameters were used to determine their influences on the microstructure surface feature and photoabsorption of the coatings. The microstructure of as-sprayed TiO2 coatings were characterized by scanning electron microscope (SEM). Surface characteristics were investigated by Fourier Transform Infrared (FT-IR). The photo absorption was determined by UV-VIS spectrophotometer. It is found that the spray parameters have an influence on the microstructure, surface feature and photo-absorption of the TiO2 coatings.

Keywords: APS, TiO2, Nanostructured Coating, Photoabsorption

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1681