Optical Characterization of a Microwave Plasma Torch for Hydrogen Production
Authors: Babajide O. Ogungbesan, Rajneesh Kumar, Mohamed Sassi
Abstract:
Hydrogen sulfide (H2S) is a very toxic gas that is produced in very large quantities in the oil and gas industry. It cannot be flared to the atmosphere and Claus process based gas plants are used to recover the sulfur and convert the hydrogen to water. In this paper, we present optical characterization of an atmospheric pressure microwave plasma torch for H2S dissociation into hydrogen and sulfur. The torch is operated at 2.45 GHz with power up to 2 kW. Three different gases can simultaneously be injected in the plasma torch. Visual imaging and optical emission spectroscopy are used to characterize the plasma for varying gas flow rates and microwave power. The plasma length, emission spectra and temperature are presented. The obtained experimental results validate our earlier published simulation results of plasma torch.
Keywords: Atmospheric pressure microwave plasma, gas dissociation, optical emission spectroscopy.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1079454
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3289References:
[1] T. Hammer, "Application of plasma technology in environmental Techniques", Contrib. Plasma Phys., vol.39, pp.441-462, 1999.
[2] A. Bogaerts, E. Neyts, R. Gijbls, J. Mullen, " Gas discharge plasmas and their applications", SpectrochimicaActa, vol. 57 B, pp.609-658, 2002.
[3] V. A. Abolentsev, et al, " Pulsed wet discharge as an effective means of gas purification from H2S and organsulfur impurities", High energy Chemistry, vol. 29, pp.353-357,1995.
[4] A. Rani D, at al, "Plasma treatment of air pollution control residues", Waste Management, vol. 28 (7), pp. 1254-1262,Aug. 2007.
[5] M. A. Malik, A. Ghaffar, S.A. Malik, " Water purification by electrical discharges, Plasma Sources Sci. Techn., vol.10, pp. 82-91,2001.
[6] H. K.Yasuda (Ed.), Plasmapolymerization and plasma interactions with polymeric materials, Wiley, New York, 1990.
[7] M. Laroussi, et al, "Images of biological samples undergoing sterilization by a glow discharge at atmospheric pressure", IEEE Trans. Plasma Sci., vol. 27, pp.34-35,1999.
[8] M. A. Lieberman and A. J. Lichtenberg, Principles of plasma discharge and Materials, Wiley, New York, 1994.
[9] A. Grill, Cold plasma in materials fabrication: from fundamentals to applications, IEEE press, New York, 1994.
[10] J. R. Roth et al, "Aerodynamic flow acceleration using Paraelectric and peristaltic electrohydrodynamic effects of a one atmosphere uniform glow discharge plasma", Physics of Plasmas,vol.10(5), pp. 2127-2135,2003.
[11] L. Zajickova, et al, "Atmospheric pressure microwave torch for synthesis of carbon nanotubes", Plasma Phys. Contr. Fusion, vol.47,pp B655- B666, 2005.
[12] O. Jasek, et al, " Carbon nanotubes synthesis in microwave plasma torch at atmospheric pressure" Materials Science and Engineering, vol. C26, pp. 1189-1193, 2006.
[13] K. M. Greem, et al, "Electronic excitation temperature profiles in air microwave plasma torch, IEEE Tran. Plasma Sci., vol. 29, pp.399-406, April 2001.
[14] A. T. Zander and G. M. Hieftje, "Microwave-supported discharges", Appl. Spectrosc., vol. 35 (4), pp. 357-371, 1981.
[15] J. R. Roth, Industrial plasma engineering, vol. 1: Principles (IOP, Bristol), 1995.
[16] P. P. Woskov, D. Y. Rhee, P. Thoma, D. R. Cohn, J. E. Surma, and C. H.Titus, "Microwave plasma continuous emissions monitor for trace-metals in furnace exhaust", Rev. Sci. Instrum.,vol. 67 (10), pp. 3700-3707, 1996.
[17] M. Moisan, J. Hubert, J. Margot, G. Sauve', and Z. Zakrzewski, Microwave Discharge: Fundamentals and Applications, edited by C. M. Ferreira andM. Moisan, Plenum, New York, 1992,Chap. 1.
[18] J. Jonkers, et al, "On the electron temperatures and densities in plasmas produced by the "torche à injection axiale",Spectrochim. Acta Part B, vol. 5 (11)1, pp.1385-1392,Sept. 1996.
[19] M. Moisan, G. Sauve', Z. Zakrzewski, and J. Hubert, "An atmospheric pressure waveguide-fed microwave plasma torch: the TIA design",Plasma Sources Sci.Technol. vol. 3 (4), pp. 584-592, Nov. 1994.
[20] C. Prokisch, A. M. Bilgic, E. Voges, J. A. C. Broekaert, J. Jonkers, M. vanSande, and J. A. M. van der Mullen, "Photographic plasma images and electron number density as well as electron temperature mappings of a plasma sustained with a modified argon microwave plasma torch (MPT) measured by spatially resolved Thomson scattering", Spectrochim. Acta part B, vol.54 (9), pp.1253-1266, Sept. 1999.
[21] Y. Okamoto, "A microwave-induced unmagnetized plasma source for plasma processing", Plasma Sources Sci. Technol.vol. 5 (4), pp. 648- 652, Nov.1996.
[22] C. I. M. Beenakker, "A cavity for microwave-induced plasmas operated in helium and argon at atmospheric pressure", Spectrochim. Acta part B, vol. 31 (8-9), pp. 483-486, Dec.1976.
[23] K. Fallgatter, V. Svoboda, and J. D. Winefordner, "Physical and analyticalaspects of a microwave excited plasma", Appl. Spectrosc., vol. 25 (3), pp. 347-352, 1971.
[24] T. G. Beuthe and J.S. Chang, "Chemical kinetic modeling of nonequilibrium Ar-H2 thermal plasmas", Jpn. J. Appl. Phys., vol. 38, pp.4576-4580, 1999.
[25] I. Ishii and A. Montaser, "A tutorial discussion on measurements of rotational temperature in inductively coupled plasmas", SpectrochimicaActa Part B, vol. 46 (8), pp.1197-1206, 1991.
[26] J. M. Williamson and C. A. Dejoseph, "Determination of gas temperature in an open-air atmosphere pressure plasma torch from resolved plasma emission", J. Appl. Phys., vol. 93 (4), pp. 1893-1898, 2003.
[27] T. Hasegawa and J. D. Winefordner, “Rotational, vibrational and electronic excitation of a neutral nitrogen molecule in the ICP”, SpectrochimicaActa Part B, vol. 42 (5), pp. 651-663, 1987.
[28] Z. Machala, et al, “Emission spectroscopy of atmospheric pressure plasmas for bio-medical and environmental applications”,J. Molecular Spectroscopy, vol. 243, pp. 194-201, 2007.
[29] B. Raeymaekers, J.A.C Broekaert, F.Leis. “Radially resolved rotational temperatures in nitrogen-argon, oxygen-argon, air-argon and argon. ICPs”,SpectrochemicaActa Part B, vol.43, pp.941-949, 1988.
[30] L. M Cohen, R. K Hanson, “Emission and laser-induced fluorescence measurements in a supersonic jet of plasma heated nitrogen”, J PhysD,vol. 25, pp. 331-351, 1992.
[31] C.Parigger, D. H Plemmons, J. O Hornkohl, J.W.L Lewis, “Temperature measurements from frst-negative spectra produced by laser-induced multiphoton ionization and optical breakdown of nitrogen”, Appl Opt., vol. 34, pp. 3331-3335, 1995.
[32] C. D Scott, H. E Blackwell,S.Arepalli, M. A Akundi, “Techniques for estimating rotational and vibrational temperatures in nitrogen arcjetflow,JThermophys Heat Transfer, vol. 12, pp. 457-464, 1998.
[33] P. P Woskov, A. K Hadidi, M. C Borras,P. Thomas, K. Green,G. JFlores,“Spectroscopic diagnostics of an atmospheric microwave plasma for monitoring metals pollution”, RevSciInstrum., vol. 70, pp. 489-492, 1999.
[34] C. O. Laux, et al, “Rotational temperature measurements in air and nitrogen plasmas using the first negative system of ”,J. Quantitative Spectroscopy &Radiative Transfer, vol. 68, pp. 473-482, 2001.
[35] U.S Department of Health and Human Services, Toxicological profile for hydrogen sulfide, CAS No. 123-91-1, p.14, 2006: http://www.atsdr.cdc.gov/toxprofiles/tp114.pdf.
[36] M. Sassi and N. Amira, “ Microwave-induced plasma torch for thermal decomposition of H2S into hydrogen and sulfur” in Proc. 20th International symposium on plasma chemistry-2011, Philadelphia, USA, pp-1-4, July19-24, 2011.
[37] NajiAmira, “Microwave-induced plasma torch for thermal decomposition of H2S into hydrogen and sulfur”, Master’s Thesis, Mechanical Engineering, Masdar Institute of Science and Technology, Abu Dhabi, August 2011.
[38] M. Sassi and N. Amira, “Chemical reactor network modeling of a microwave plasma thermal decomposition of H2S into hydrogen and sulfur”, International J. Hydrogen Energy, vol.37 (3), pp. 10010-10019, July 2012.
[39] D. Robinson. “Heavy particles temperature measurements in a nitrogen plasma by a spectroscopic method”, J. Quant. Spectroc. Radiat. Transfer, vol. 4 (2), pp.335-342, March-April 1964.
[40] R. S. Mulliken, “The interpretation of band spectra. Part IIc,Empircal band types,” Rev. Mod. Phys., vol. 3 (1),pp. 89-155,1931.
[41] G. Herzberg, Molecular Spectra and Molecular structure, I. Spectra of diatomic molecules, van Nostrand,p. 208, New York, 1953.