Search results for: amplitude equation.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1389

Search results for: amplitude equation.

1389 Effect of Gravity Modulation on Weakly Non-Linear Stability of Stationary Convection in a Dielectric Liquid

Authors: P. G. Siddheshwar, B. R. Revathi

Abstract:

The effect of time-periodic oscillations of the Rayleigh- Benard system on the heat transport in dielectric liquids is investigated by weakly nonlinear analysis. We focus on stationary convection using the slow time scale and arrive at the real Ginzburg- Landau equation. Classical fourth order Runge-kutta method is used to solve the Ginzburg-Landau equation which gives the amplitude of convection and this helps in quantifying the heat transfer in dielectric liquids in terms of the Nusselt number. The effect of electrical Rayleigh number and the amplitude of modulation on heat transport is studied.

Keywords: Dielectric liquid, Nusselt number, amplitude equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2216
1388 The Finite Difference Scheme for the Suspended String Equation with the Nonlinear Damping Term

Authors: Jaipong Kasemsuwan

Abstract:

A numerical solution of the initial boundary value problem of the suspended string vibrating equation with the particular nonlinear damping term based on the finite difference scheme is presented in this paper. The investigation of how the second and third power terms of the nonlinear term affect the vibration characteristic. We compare the vibration amplitude as a result of the third power nonlinear damping with the second power obtained from previous report provided that the same initial shape and initial velocities are assumed. The comparison results show that the vibration amplitude is inversely proportional to the coefficient of the damping term for the third power nonlinear damping case, while the vibration amplitude is proportional to the coefficient of the damping term in the second power nonlinear damping case.

Keywords: Finite-difference method, the nonlinear damped equation, the numerical simulation, the suspended string equation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1451
1387 Ginzburg-Landau Model for Curved Two-Phase Shallow Mixing Layers

Authors: Irina Eglite, Andrei A. Kolyshkin

Abstract:

Method of multiple scales is used in the paper in order to derive an amplitude evolution equation for the most unstable mode from two-dimensional shallow water equations under the rigid-lid assumption. It is assumed that shallow mixing layer is slightly curved in the longitudinal direction and contains small particles. Dynamic interaction between carrier fluid and particles is neglected. It is shown that the evolution equation is the complex Ginzburg-Landau equation. Explicit formulas for the computation of the coefficients of the equation are obtained.

Keywords: Shallow water equations, mixing layer, weakly nonlinear analysis, Ginzburg-Landau equation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1419
1386 Large Amplitude Free Vibration of a Very Sag Marine Cable

Authors: O. Punjarat, S. Chucheepsakul, T. Phanyasahachart

Abstract:

This paper focuses on a variational formulation of large amplitude free vibration behavior of a very sag marine cable. In the static equilibrium state, the marine cable has a very large sag configuration. In the motion state, the marine cable is assumed to vibrate in in-plane motion with large amplitude from the static equilibrium position. The total virtual work-energy of the marine cable at the dynamic state is formulated which involves the virtual strain energy due to axial deformation, the virtual work done by effective weight, and the inertia forces. The equations of motion for the large amplitude free vibration of marine cable are obtained by taking into account the difference between the Euler’s equation in the static state and the displaced state. Based on the Galerkin finite element procedure, the linear and nonlinear stiffness matrices, and mass matrices of the marine cable are obtained and the eigenvalue problem is solved. The natural frequency spectrum and the large amplitude free vibration behavior of marine cable are presented.

Keywords: Axial deformation, free vibration, Galerkin Finite Element Method, large amplitude, variational method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 828
1385 Surface Roughness Effects in Pure Sliding EHL Line Contacts with Carreau-Type Shear-Thinning Lubricants

Authors: Punit Kumar, Niraj Kumar

Abstract:

The influence of transverse surface roughness on EHL characteristics has been investigated numerically using an extensive set of full EHL line contact simulations for shear-thinning lubricants under pure sliding condition. The shear-thinning behavior of lubricant is modeled using Carreau viscosity equation along with Doolittle-Tait equation for lubricant compressibility. The surface roughness is assumed to be sinusoidal and it is present on the stationary surface. It is found that surface roughness causes sharp pressure peaks along with reduction in central and minimum film thickness. With increasing amplitude of surface roughness, the minimum film thickness decreases much more rapidly as compared to the central film thickness.

Keywords: EHL, Carreau, Shear-thinning, Surface Roughness, Amplitude, Wavelength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2335
1384 Ginzburg-Landau Model : an Amplitude Evolution Equation for Shallow Wake Flows

Authors: Imad Chaddad, Andrei A. Kolyshkin

Abstract:

Linear and weakly nonlinear analysis of shallow wake flows is presented in the present paper. The evolution of the most unstable linear mode is described by the complex Ginzburg-Landau equation (CGLE). The coefficients of the CGLE are calculated numerically from the solution of the corresponding linear stability problem for a one-parametric family of shallow wake flows. It is shown that the coefficients of the CGLE are not so sensitive to the variation of the base flow profile.

Keywords: Ginzburg-Landau equation, shallow wake flow, weakly nonlinear theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1578
1383 On the Integer Solutions of the Pell Equation x2 - dy2 = 2t

Authors: Ahmet Tekcan, Betül Gezer, Osman Bizim

Abstract:

Let k ≥ 1 and t ≥ 0 be two integers and let d = k2 + k be a positive non-square integer. In this paper, we consider the integer solutions of Pell equation x2 - dy2 = 2t. Further we derive a recurrence relation on the solutions of this equation.

Keywords: Pell equation, Diophantine equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2387
1382 Load Discontinuity in Shock Response and Its Remedies

Authors: Shuenn-Yih Chang, Chiu-Li Huang

Abstract:

It has been shown that a load discontinuity at the end of an impulse will result in an extra impulse and hence an extra amplitude distortion if a step-by-step integration method is employed to yield the shock response. In order to overcome this difficulty, three remedies are proposed to reduce the extra amplitude distortion. The first remedy is to solve the momentum equation of motion instead of the force equation of motion in the step-by-step solution of the shock response, where an external momentum is used in the solution of the momentum equation of motion. Since the external momentum is a resultant of the time integration of external force, the problem of load discontinuity will automatically disappear. The second remedy is to perform a single small time step immediately upon termination of the applied impulse while the other time steps can still be conducted by using the time step determined from general considerations. This is because that the extra impulse caused by a load discontinuity at the end of an impulse is almost linearly proportional to the step size. Finally, the third remedy is to use the average value of the two different values at the integration point of the load discontinuity to replace the use of one of them for loading input. The basic motivation of this remedy originates from the concept of no loading input error associated with the integration point of load discontinuity. The feasibility of the three remedies are analytically explained and numerically illustrated.

Keywords: Dynamic analysis, load discontinuity, shock response, step-by-step integration

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1332
1381 Solitary Wave Solutions for Burgers-Fisher type Equations with Variable Coefficients

Authors: Amit Goyal, Alka, Rama Gupta, C. Nagaraja Kumar

Abstract:

We have solved the Burgers-Fisher (BF) type equations, with time-dependent coefficients of convection and reaction terms, by using the auxiliary equation method. A class of solitary wave solutions are obtained, and some of which are derived for the first time. We have studied the effect of variable coefficients on physical parameters (amplitude and velocity) of solitary wave solutions. In some cases, the BF equations could be solved for arbitrary timedependent coefficient of convection term.

Keywords: Solitary wave solution, Variable coefficient Burgers- Fisher equation, Auxiliary equation method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1627
1380 The Finite Difference Scheme for the Suspended String Equation with the Nonlinear External Forces

Authors: Jaipong Kasemsuwan

Abstract:

This paper presents the finite difference scheme and the numerical simulation of suspended string. The vibration solutions when the various external forces are taken into account are obtained and compared with the solutions without external force. In addition, we also investigate how the external forces and their powers and coefficients affect the amplitude of vibration.

Keywords: Nonlinear external forces, Numerical simulation, Suspended string equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1506
1379 The Proof of Two Conjectures Related to Pell-s Equation x2 −Dy2 = ± 4

Authors: Armend Sh. Shabani

Abstract:

Let D ≠ 1 be a positive non-square integer. In this paper are given the proofs for two conjectures related to Pell-s equation x2 -Dy2 = ± 4, proposed by A. Tekcan.

Keywords: Pell's equation, solutions of Pell's equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1237
1378 Effect of Electric Field Amplitude on Electrical Fatigue Behavior of Lead Zirconate Titanate Ceramic

Authors: S. Kampoosiri, S. Pojprapai, R. Yimnirunand, B. Marungsri

Abstract:

Fatigue behaviors of Lead Zirconate Titanate (PZT) ceramics under different amplitude of bipolar electrical loads have been investigated. Fatigue behavior is represented by the change of hysteresis loops and remnant polarization. Three levels of electrical load amplitudes (1.00, 1.25 and 1.50 kV /mm) were applied in this experimental. It was found that the remnant polarization decreased significantly with the number of loading cycles. The degree of fatigue degradation depends on the amplitude of electric field. The higher amplitude exhibits the greater fatigue degradation.

Keywords: Lead Zirconate Titanate (PZT), hysteresis loop, Sawyer-Tower circuit, fatigue, polarization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1897
1377 An Analytical Method for Solving General Riccati Equation

Authors: Y. Pala, M. O. Ertas

Abstract:

In this paper, the general Riccati equation is analytically solved by a new transformation. By the method developed, looking at the transformed equation, whether or not an explicit solution can be obtained is readily determined. Since the present method does not require a proper solution for the general solution, it is especially suitable for equations whose proper solutions cannot be seen at first glance. Since the transformed second order linear equation obtained by the present transformation has the simplest form that it can have, it is immediately seen whether or not the original equation can be solved analytically. The present method is exemplified by several examples.

Keywords: Riccati Equation, ordinary differential equation, nonlinear differential equation, analytical solution, proper solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2023
1376 The Pell Equation x2 − Py2 = Q

Authors: Ahmet Tekcan, Arzu Özkoç, Canan Kocapınar, Hatice Alkan

Abstract:

Let p be a prime number such that p ≡ 1(mod 4), say p = 1+4k for a positive integer k. Let P = 2k + 1 and Q = k2. In this paper, we consider the integer solutions of the Pell equation x2-Py2 = Q over Z and also over finite fields Fp. Also we deduce some relations on the integer solutions (xn, yn) of it.

Keywords: Pell equation, solutions of Pell equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2106
1375 Amplitude and Phase Analysis of EEG Signal by Complex Demodulation

Authors: Sun K. Yoo, Hee Cheol Kang

Abstract:

Analysis of amplitude and phase characteristics for delta, theta, and alpha bands at localized time instant from EEG signals is important for the characterizing information processing in the brain. In this paper, complex demodulation method was used to analyze EEG (Electroencephalographic) signal, particularly for auditory evoked potential response signal, with sufficient time resolution and designated frequency bandwidth resolution required. The complex demodulation decomposes raw EEG signal into 3 designated delta, theta, and alpha bands with complex EEG signal representation at sampled time instant, which can enable the extraction of amplitude envelope and phase information. Throughout simulated test data, and real EEG signal acquired during auditory attention task, it can extract the phase offset, phase and frequency changing instant and decomposed amplitude envelope for delta, theta, and alpha bands. The complex demodulation technique can be efficiently used in brain signal analysis in case of phase, and amplitude information required.

Keywords: EEG, Complex Demodulation, Amplitude, Phase.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4755
1374 Application of He-s Amplitude Frequency Formulation for a Nonlinear Oscillator with Fractional Potential

Authors: Meng Hu, Lili Wang

Abstract:

In this paper, He-s amplitude frequency formulation is used to obtain a periodic solution for a nonlinear oscillator with fractional potential. By calculation and computer simulations, compared with the exact solution shows that the result obtained is of high accuracy.

Keywords: He's amplitude frequency formulation, Periodic solution, Nonlinear oscillator, Fractional potential.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1368
1373 The Diophantine Equation y2 − 2yx − 3 = 0 and Corresponding Curves over Fp

Authors: Ahmet Tekcan, Arzu Özkoç, Hatice Alkan

Abstract:

In this work, we consider the number of integer solutions of Diophantine equation D : y2 - 2yx - 3 = 0 over Z and also over finite fields Fp for primes p ≥ 5. Later we determine the number of rational points on curves Ep : y2 = Pp(x) = yp 1 + yp 2 over Fp, where y1 and y2 are the roots of D. Also we give a formula for the sum of x- and y-coordinates of all rational points (x, y) on Ep over Fp.

Keywords: Diophantine equation, Pell equation, quadratic form.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1266
1372 Frequency and Amplitude Measurement of a Vibrating Object in Water Using Ultrasonic Speckle Technique

Authors: Hongmao Zhu, Jun Chu, Lei Shen, Zhihua Luo

Abstract:

The principle of frequency and amplitude measurement of a vibrating object in water using ultrasonic speckle technique is presented in this paper. Compared with other traditional techniques, the ultrasonic speckle technique can be applied to vibration measurement of a nonmetal object with rough surface in water in a noncontact way. The relationship between speckle movement and object movement was analyzed. Based on this study, an ultrasonic speckle measurement system was set up. With this system the frequency and amplitude of an underwater vibrating cantilever beam was detected. The result shows that the experimental data is in good agreement with the calibrating data.

Keywords: Frequency, Amplitude, Vibration measurement, Ultrasonic speckle

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1507
1371 Optimization of Propulsion in Flapping Micro Air Vehicles Using Genetic Algorithm Method

Authors: Mahdi Abolfazli, Ebrahim Barati, Hamid Reza Karbasian

Abstract:

In this paper the kinematic parameters of a regular Flapping Micro Air Vehicle (FMAV) is investigated. The optimization is done using multi-objective Genetic algorithm method. It is shown that the maximum propulsive efficiency is occurred on the Strouhal number of 0.2-0.3 and foil-pitch amplitude of 15°-30°. Furthermore, increasing pitch amplitude with respect to power optimization increases the thrust slightly until pitch amplitude around 30°, and then the trust is increased notably with increasing of pitch amplitude. Additionally, the maximum mean thrust coefficient is computed of 2.67 and propulsive efficiency for this value is 42%. Based on the thrust optimization, the maximum propulsive efficiency is acquired 54% while the mean thrust coefficient is 2.18 at the same propulsive efficiency. Consequently, the maximum propulsive efficiency is obtained 77% and the appropriate Strouhal number, pitch amplitude and phase difference between heaving and pitching are calculated of 0.27, 31° and 77°, respectively.

Keywords: Flapping foil propulsion, Genetic algorithm, Micro Air Vehicle (MAV), Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2154
1370 Evaluation of Multilevel Modulation Formats for 100Gbps Transmission with Direct Detection

Authors: Majed Omar Al-Dwairi

Abstract:

This paper evaluate the multilevel modulation for different techniques such as amplitude shift keying (M-ASK), MASK, differential phase shift keying (M-ASK-Bipolar), Quaternary Amplitude Shift Keying (QASK) and Quaternary Polarization-ASK (QPol-ASK) at a total bit rate of 107 Gbps. The aim is to find a costeffective very high speed transport solution. Numerical investigation was performed using Monte Carlo simulations. The obtained results indicate that some modulation formats can be operated at 100Gbps in optical communication systems with low implementation effort and high spectral efficiency.

Keywords: Optical communication, multilevel amplitude shift keying (M-ASK), Differential phase shift keying (DPSK), Quaternary Amplitude Shift Keying (QASK), Quaternary Polarization-ASK (QPol-ASK).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2260
1369 Solution of The KdV Equation with Asymptotic Degeneracy

Authors: Tapas Kumar Sinha, Joseph Mathew

Abstract:

Recently T. C. Au-Yeung, C.Au, and P. C. W. Fung [2] have given the solution of the KdV equation [1] to the boundary condition , where b is a constant. We have further extended the method of [2] to find the solution of the KdV equation with asymptotic degeneracy. Via simulations we find both bright and dark Solitons (i.e. Solitons with opposite phases).

Keywords: KdV equation, Asymptotic Degeneracy, Solitons, Inverse Scattering

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1620
1368 Effect of Amplitude and Mean Angle of Attack on Wake of an Oscillating Airfoil

Authors: Sadeghi H., Mani M., Ardakani M. A.

Abstract:

The unsteady wake of an EPPLER 361 airfoil in pitching motion has been investigated in a subsonic wind tunnel by hot-wire anemometry. The airfoil was given the pitching motion about the one-quarter chord axis at reduced frequency of 0182. Streamwise mean velocity profiles (wake profiles) were investigated at several vertically aligned points behind the airfoil at one-quarter chord downstream distance from trailing edge. Oscillation amplitude and mean angle of attack were varied to determine the effects on wake profiles. When the maximum dynamic angle of attack was below the static stall angle of attack, weak effects on wake were found by increasing oscillation amplitude and mean angle of attack. But, for higher angles of attack strong unsteady effects were appeared on the wake.

Keywords: Unsteady wake, amplitude, mean angle, EPPLER 361 airfoil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2677
1367 Analytical Investigation of the Effects of a Standing Ocean Wave in a Wave-Power Device OWC

Authors: E.G. Bautista, F. Méndez, O. Bautista, J.C. Arcos

Abstract:

In this work we study analytically and numerically the performance of the mean heave motion of an OWC coupled with the governing equation of the spreading ocean waves due to the wide variation in an open parabolic channel with constant depth. This paper considers that the ocean wave propagation is under the assumption of a shallow flow condition. In order to verify the effect of the waves in the OWC firstly we establish the analytical model in a non-dimensional form based on the energy equation. The proposed wave-power system has to aims: one is to perturb the ocean waves as a consequence of the channel shape in order to concentrate the maximum ocean wave amplitude in the neighborhood of the OWC and the second is to determine the pressure and volume oscillation of air inside the compression chamber.

Keywords: Oscillating water column, Shallow flow, Waveenergy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1467
1366 Exact Solutions of the Helmholtz equation via the Nikiforov-Uvarov Method

Authors: Said Laachir, Aziz Laaribi

Abstract:

The Helmholtz equation often arises in the study of physical problems involving partial differential equation. Many researchers have proposed numerous methods to find the analytic or approximate solutions for the proposed problems. In this work, the exact analytical solutions of the Helmholtz equation in spherical polar coordinates are presented using the Nikiforov-Uvarov (NU) method. It is found that the solution of the angular eigenfunction can be expressed by the associated-Legendre polynomial and radial eigenfunctions are obtained in terms of the Laguerre polynomials. The special case for k=0, which corresponds to the Laplace equation is also presented.

Keywords: Helmholtz equation, Nikiforov-Uvarov method, exact solutions, eigenfunctions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3003
1365 Enhancing Oscillation Amplitude Response Generated by Vortex Induced Vibrations Through Experimental Identification of Optimum Parameters

Authors: Mohammed F. Alhaddad

Abstract:

Vortex Induced Vibrations (VIV) is a phenomenon that occurs as a result of a flow passing by a bluff body. The aim of this paper is to identify factors for maximizing oscillation amplitude generated by VIV in order to enhance the energy harnessed through this method. The experimental study in this paper will examine the effect of oscillating cylinder diameter, surface roughness, the location of surface roughness with respect to the centreline of the oscillating cylinder and the velocity on the oscillation amplitude of the used module.

Keywords: Energy, renewable, electrostatic, vibration, vortex.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 84
1364 Study of Cahn-Hilliard Equation to Simulate Phase Separation

Authors: Nara Guimarães, Marcelo Aquino Martorano, Douglas Gouvêa

Abstract:

An investigation into Cahn-Hilliard equation was carried out through numerical simulation to identify a possible phase separation for one and two dimensional domains. It was observed that this equation can reproduce important mass fluxes necessary for phase separation within the miscibility gap and for coalescence of particles.

Keywords: Cahn-Hilliard equation, miscibility gap, phase separation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2053
1363 Transient Population Dynamics of Phase Singularities in 2D Beeler-Reuter Model

Authors: Hidetoshi Konno, Akio Suzuki

Abstract:

The paper presented a transient population dynamics of phase singularities in 2D Beeler-Reuter model. Two stochastic modelings are examined: (i) the Master equation approach with the transition rate (i.e., λ(n, t) = λ(t)n and μ(n, t) = μ(t)n) and (ii) the nonlinear Langevin equation approach with a multiplicative noise. The exact general solution of the Master equation with arbitrary time-dependent transition rate is given. Then, the exact solution of the mean field equation for the nonlinear Langevin equation is also given. It is demonstrated that transient population dynamics is successfully identified by the generalized Logistic equation with fractional higher order nonlinear term. It is also demonstrated the necessity of introducing time-dependent transition rate in the master equation approach to incorporate the effect of nonlinearity.

Keywords: Transient population dynamics, Phase singularity, Birth-death process, Non-stationary Master equation, nonlinear Langevin equation, generalized Logistic equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1593
1362 Traveling Wave Solutions for the Sawada-Kotera-Kadomtsev-Petviashivili Equation and the Bogoyavlensky-Konoplechenko Equation by (G'/G)- Expansion Method

Authors: Nisha Goyal, R.K. Gupta

Abstract:

This paper presents a new function expansion method for finding traveling wave solutions of a nonlinear equations and calls it the G G -expansion method, given by Wang et al recently. As an application of this new method, we study the well-known Sawada-Kotera-Kadomtsev-Petviashivili equation and Bogoyavlensky-Konoplechenko equation. With two new expansions, general types of soliton solutions and periodic solutions for these two equations are obtained.

Keywords: Sawada-Kotera-Kadomtsev-Petviashivili equation, Bogoyavlensky-Konoplechenko equation,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1617
1361 Stability of Fractional Differential Equation

Authors: Rabha W. Ibrahim

Abstract:

We study a Dirichlet boundary value problem for Lane-Emden equation involving two fractional orders. Lane-Emden equation has been widely used to describe a variety of phenomena in physics and astrophysics, including aspects of stellar structure, the thermal history of a spherical cloud of gas, isothermal gas spheres,and thermionic currents. However, ordinary Lane-Emden equation does not provide the correct description of the dynamics for systems in complex media. In order to overcome this problem and describe dynamical processes in a fractalmedium, numerous generalizations of Lane-Emden equation have been proposed. One such generalization replaces the ordinary derivative by a fractional derivative in the Lane-Emden equation. This gives rise to the fractional Lane-Emden equation with a single index. Recently, a new type of Lane-Emden equation with two different fractional orders has been introduced which provides a more flexible model for fractal processes as compared with the usual one characterized by a single index. The contraction mapping principle and Krasnoselskiis fixed point theorem are applied to prove the existence of solutions of the problem in a Banach space. Ulam-Hyers stability for iterative Cauchy fractional differential equation is defined and studied.

Keywords: Fractional calculus, fractional differential equation, Lane-Emden equation, Riemann-Liouville fractional operators, Volterra integral equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3715
1360 Traveling Wave Solutions for Shallow Water Wave Equation by (G'/G)-Expansion Method

Authors: Anjali Verma, Ram Jiwari, Jitender Kumar

Abstract:

This paper presents a new function expansion method for finding traveling wave solution of a non-linear equation and calls it the (G'/G)-expansion method. The shallow water wave equation is reduced to a non linear ordinary differential equation by using a simple transformation. As a result the traveling wave solutions of shallow water wave equation are expressed in three forms: hyperbolic solutions, trigonometric solutions and rational solutions.

Keywords: Shallow water wave equation, Exact solutions, (G'/G) expansion method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1839