Search results for: Vertical Pump
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 633

Search results for: Vertical Pump

573 Modelling and Simulation of the Freezing Systems and Heat Pumps Using Unisim® Design

Authors: C. Patrascioiu

Abstract:

The paper describes the modeling and simulation of the heat pumps domain processes. The main objective of the study is the use of the heat pump in propene–propane distillation processes. The modeling and simulation instrument is the Unisim® Design simulator. The paper is structured in three parts: An overview of the compressing gases, the modeling and simulation of the freezing systems, and the modeling and simulation of the heat pumps. For each of these systems, there are presented the Unisim® Design simulation diagrams, the input–output system structure and the numerical results. Future studies will consider modeling and simulation of the propene–propane distillation process with heat pump.

Keywords: Distillation, heat pump, simulation, Unisim Design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2390
572 Bright–Dark Pulses in Nonlinear Polarisation Rotation Based Erbium-Doped Fiber Laser

Authors: R. Z. R. R. Rosdin, N. M. Ali, S. W. Harun, H. Arof

Abstract:

We have experimentally demonstrated bright-dark pulses in a nonlinear polarization rotation (NPR) based mode-locked Erbium-doped fiber laser (EDFL) with a long cavity configuration. Bright–dark pulses could be achieved when the laser works in the passively mode-locking regime and the net group velocity dispersion is quite anomalous. The EDFL starts to generate a bright pulse train with degenerated dark pulse at the mode-locking threshold pump power of 35.09 mW by manipulating the polarization states of the laser oscillation modes using a polarization controller (PC). A split bright–dark pulse is generated when further increasing the pump power up to 37.95 mW. Stable bright pulses with no obvious evidence of a dark pulse can also be generated when further adjusting PC and increasing the pump power up to 52.19 mW. At higher pump power of 54.96 mW, a new form of bright-dark pulse emission was successfully identified with the repetition rate of 29 kHz. The bright and dark pulses have a duration of 795.5 ns and 640 ns, respectively.

Keywords: Erbium-doped fiber laser, Nonlinear polarization rotation, bright-dark pulse.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2424
571 A Mesh Free Moving Node Method To Analyze Flow Through Spirals of Orbiting Scroll Pump

Authors: I.Banerjee, A.K.Mahendra, T.K.Bera, B.G.Chandresh

Abstract:

The scroll pump belongs to the category of positive displacement pump can be used for continuous pumping of gases at low pressure apart from general vacuum application. The shape of volume occupied by the gas moves and deforms continuously as the spiral orbits. To capture flow features in such domain where mesh deformation varies with time in a complicated manner, mesh less solver was found to be very useful. Least Squares Kinetic Upwind Method (LSKUM) is a kinetic theory based mesh free Euler solver working on arbitrary distribution of points. Here upwind is enforced in molecular level based on kinetic flux vector splitting scheme (KFVS). In the present study we extended the LSKUM to moving node viscous flow application. This new code LSKUM-NS-MN for moving node viscous flow is validated for standard airfoil pitching test case. Simulation performed for flow through scroll pump using LSKUM-NS-MN code agrees well with the experimental pumping speed data.

Keywords: Least Squares, Moving node, Pitching, Spirals.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1859
570 Analysis of SEIG for a Wind Pumping Plant Using Induction Motor

Authors: A. Abbou, H. Mahmoudi, M. Akherraz

Abstract:

In contrast to conventional generators, self-excited induction generators are found to be most suitable machines for wind energy conversion in remote and windy areas due to many advantages over grid connected machines. This papers presents a Self-Excited Induction Generator (SEIG) driven by wind turbine and supplying an induction motor which is coupled to a centrifugal pump. A method to describe the steady state performance based on nodal analysis is presented. Therefore the advanced knowledge of the minimum excitation capacitor value is required. The effects of variation of excitation capacitance on system and rotor speed under different loading conditions have been analyzed and considered to optimize induction motor pump performances.

Keywords: SEIG, Induction Motor, Centrifugal Pump, capacitance requirements, wind rotor speed.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2267
569 Dynamics of a Vapour Bubble inside a Vertical Rigid Cylinder with a Deposit Rib

Authors: S. Mehran, S. Rouhi, F.Rouzbahani, E. Haghgoo

Abstract:

In this paper dynamics of a vapour bubble generated due to a local energy input inside a vertical rigid cylinder and in the absence of buoyancy forces is investigated. Different ratios of the diameter of the rigid cylinder to the maximum radius of the bubble are considered. The Boundary Integral Equation Method is employed for numerical simulation of the problem. Results show that during the collapse phase of the bubble inside a vertical rigid cylinder, two liquid micro jets are developed on the top and bottom sides of the vapour bubble and are directed inward. Results also show that existence of a deposit rib inside the vertical rigid cylinder slightly increases the life time of the bubble. It is found that by increasing the ratio of the cylinder diameter to the maximum radius of the bubble, the rate of the growth and collapse phases of the bubble increases and the life time of the bubble decreases.

Keywords: Vapour bubble, Vertical rigid cylinder, Boundaryelement method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1941
568 Comparative Study of Experimental and Theoretical Convective, Evaporative for Two Model Distiller

Authors: Khaoula Hidouri, Ali Benhmidene, Bechir Chouachi

Abstract:

The purification of brackish seawater becomes a necessity and not a choice against demographic and industrial growth especially in third world countries. Two models can be used in this work: simple solar still and simple solar still coupled with a heat pump. In this research, the productivity of water by Simple Solar Distiller (SSD) and Simple Solar Distiller Hybrid Heat Pump (SSDHP) was determined by the orientation, the use of heat pump, the simple or double glass cover. The productivity can exceed 1.2 L/m²h for the SSDHP and 0.5 L/m²h for SSD model. The result of the global efficiency is determined for two models SSD and SSDHP give respectively 30%, 50%. The internal efficiency attained 35% for SSD and 60% of the SSDHP models. Convective heat coefficient can be determined by attained 2.5 W/m²°C and 0.5 W/m²°C respectively for SSDHP and SSD models.

Keywords: Productivity, efficiency, convective heat coefficient, SSD model, SSDHP model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 752
567 A Comparative Study of the Modeling and Quality Control of the Propylene-Propane Classical Distillation and Distillation Column with Heat Pump

Authors: C. Patrascioiu, Cao Minh Ahn

Abstract:

The paper presents the research evolution in the propylene – propane distillation process, especially for the distillation columns equipped with heat pump. The paper is structured in three parts: separation of the propylene-propane mixture, steady state process modeling, and quality control systems. The first part is dedicated to state of art of the two distillation processes. The second part continues the author’s researches of the steady state process modeling. There has been elaborated a software simulation instrument that may be used to dynamic simulation of the process and to design the quality control systems. The last part presents the research of the control systems, especially for quality control systems.

Keywords: Distillation, absorption, heat pump, Unisim Design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1288
566 Numerical Simulation of the Dynamic Behavior of a LaNi5 Water Pumping System

Authors: Miled Amel, Ben Maad Hatem, Askri Faouzi, Ben Nasrallah Sassi

Abstract:

Metal hydride water pumping system uses hydrogen as working fluid to pump water for low head and high discharge. The principal operation of this pump is based on the desorption of hydrogen at high pressure and its absorption at low pressure by a metal hydride. This work is devoted to study a concept of the dynamic behavior of a metal hydride pump using unsteady model and LaNi5 as hydriding alloy. This study shows that with MHP, it is possible to pump 340l/kg-cycle of water in 15 000s using 1 Kg of LaNi5 at a desorption temperature of 360 K, a pumping head equal to 5 m and a desorption gear ratio equal to 33. This study reveals also that the error given by the steady model, using LaNi5 is about 2%.A dimensional mathematical model and the governing equations of the pump were presented to predict the coupled heat and mass transfer within the MHP. Then, a numerical simulation is carried out to present the time evolution of the specific water discharge and to test the effect of different parameters (desorption temperature, absorption temperature, desorption gear ratio) on the performance of the water pumping system (specific water discharge, pumping efficiency and pumping time). In addition, a comparison between results obtained with steady and unsteady model is performed with different hydride mass. Finally, a geometric configuration of the reactor is simulated to optimize the pumping time.

Keywords: Dynamic behavior, unsteady model, LaNi5, performance of the water pumping system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 724
565 On the Seismic Response of Collided Structures

Authors: George D. Hatzigeorgiou, Nikos G. Pnevmatikos

Abstract:

This study examines the inelastic behavior of adjacent planar reinforced concrete (R.C.) frames subjected to strong ground motions. The investigation focuses on the effects of vertical ground motion on the seismic pounding. The examined structures are modeled and analyzed by RUAUMOKO dynamic nonlinear analysis program using reliable hysteretic models for both structural members and contact elements. It is found that the vertical ground motion mildly affects the seismic response of adjacent buildings subjected to structural pounding and, for this reason, it can be ignored from the displacement and interstorey drifts assessment. However, the structural damage is moderately affected by the vertical component of earthquakes.

Keywords: Nonlinear seismic behavior, reinforced concrete structures, structural pounding, vertical ground motions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2041
564 Computational Evaluation of a C-A Heat Pump

Authors: Young-Jin Baik, Minsung Kim, Young-Soo Lee, Ki-Chang Chang, Seong-Ryong Park

Abstract:

The compression-absorption heat pump (C-A HP), one of the promising heat recovery equipments that make process hot water using low temperature heat of wastewater, was evaluated by computer simulation. A simulation program was developed based on the continuity and the first and second laws of thermodynamics. Both the absorber and desorber were modeled using UA-LMTD method. In order to prevent an unfeasible temperature profile and to reduce calculation errors from the curved temperature profile of a mixture, heat loads were divided into lots of segments. A single-stage compressor was considered. A compressor cooling load was also taken into account. An isentropic efficiency was computed from the map data. Simulation conditions were given based on the system consisting of ordinarily designed components. The simulation results show that most of the total entropy generation occurs during the compression and cooling process, thus suggesting the possibility that system performance can be enhanced if a rectifier is introduced.

Keywords: Waste heat recovery, Heat Pump.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1673
563 The Flotation Device Designed to Treat Phosphate Rock

Authors: Z. Q. Zhang, Y. Zhang, D. L. Li

Abstract:

To overcome the some shortcomings associated with traditional flotation machines and columns in collophanite flotation, a flotation device was designed and fabricated in the laboratory. A multi-impeller pump with same function as a mechanical cell was used instead of the injection sparger and circulation pump in column flotation unit. The influence of main operational parameters of the device like feed flow rate, air flow rate and impellers’ speed on collophanite flotation was analyzed. Experiment results indicate that the influence of the operational parameters were significant on flotation recovery and grade of phosphate concentrate. The best operating conditions of the device were: feed flow rate 0.62 L/min, air flow rate 6.67 L/min and impellers speed 900 rpm. At these conditions, a phosphate concentrate assaying about 30.5% P2O5 and 1% MgO with a P2O5 recovery of about 81% was obtained from a Yuan'an phosphate ore sample containing about 22.30% P2O5 and 3.2% MgO.

Keywords: Collophanite flotation, flotation columns, flotation machines, multi-impeller pump.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 751
562 Transient Free Laminar Convection in the Vicinity of a Thermal Conductive Vertical Plate

Authors: Anna Bykalyuk, Frédéric Kuznik, Kévyn Johannes

Abstract:

In this paper the influence of a vertical plate’s thermal capacity is numerically investigated in order to evaluate the evolution of the thermal boundary layer structure, as well as the convective heat transfer coefficient and the velocity and temperature profiles. Whereas the heat flux of the heated vertical plate is evaluated under time depending boundary conditions. The main important feature of this problem is the unsteadiness of the physical phenomena. A 2D CFD model is developed with the Ansys Fluent 14.0 environment and is validated using unsteady data obtained for plasterboard studied under a dynamic temperature evolution. All the phenomena produced in the vicinity of the thermal conductive vertical plate (plasterboard) are analyzed and discussed. This work is the first stage of a holistic research on transient free convection that aims, in the future, to study the natural convection in the vicinity of a vertical plate containing Phase Change Materials (PCM).

Keywords: CFD modeling, natural convection, thermal conductive plate, time-depending boundary conditions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2103
561 Durability Enhancement of CaSO4 in Repetitive Operation of Chemical Heat Pump

Authors: Y. Shiren, M. Masuzawa, H. Ohkura, T. Yamagata, Y. Aman, N. Kobayashi

Abstract:

An important problem for the CaSO4/CaSO4・1/2H2O Chemical heat pump (CHP) is that the material is deactivated through repetitive reaction between hydration and dehydration in which the crystal phase of the material is transformed from III-CaSO4 to II-CaSO4. We investigated suppression on the phase change by adding a sulfated compound. The most effective material was MgSO4. MgSO4 doping increased the durability of CaSO4 in the actual CHP repetitive cycle of hydration/dehydration to 3.6 times that of undoped CaSO4. The MgSO4-doped CaSO4 showed a higher phase transition temperature and activation energy for crystal transformation from III-CaSO4 to II-CaSO4. MgSO4 doping decreased the crystal lattice size of CaSO4・1/2H2O and II-CaSO4 to smaller than that of undoped CaSO4. Modification of the crystal structure is considered to be related to the durability change in CaSO4 resulting from MgSO4 doping.

Keywords: CaSO4, chemical heat pump, durability of chemical heat storage material, heat storage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1790
560 Studying Frame-Resistant Steel Structures under Near Field Ground Motion

Authors: S. A. Hashemi, A. Khoshraftar

Abstract:

This paper presents the influence of the vertical seismic component on the non-linear dynamics analysis of three different structures. The subject structures were analyzed and designed according to recent codes. This paper considers three types of buildings: 5-, 10-, and 15-story buildings. The non-linear dynamics analysis of the structures with assuming elastic-perfectlyplastic behavior was performed using RAM PERFORM-3D software; the horizontal component was taken into consideration with and without the incorporation of the corresponding vertical component. Dynamic responses obtained for the horizontal component acting alone were compared with those obtained from the simultaneous application of both seismic components. The results show that the effect of the vertical component of ground motion may increase the axial load significantly in the interior columns and, consequently, the stories. The plastic mechanisms would be changed. The P-Delta effect is expected to increase. The punching base plate shear of the columns should be considered. Moreover, the vertical component increases the input energy when the structures exhibit inelastic behavior and are taller.

Keywords: Inelastic behavior, non-linear dynamic analysis, steel structure, vertical component.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1547
559 Experimental Tests of a Vertical-Axis Wind Turbine with Twisted Blades

Authors: Gabriele Bedon, Marco Raciti Castelli, Ernesto Benini

Abstract:

An experimental campaign of measurements for a Darrieus vertical-axis wind turbine (VAWT) is presented for open field conditions. The turbine is characterized by a twisted bladed design, each blade being placed at a fixed distance from the rotational shaft. The experimental setup to perform the acquisitions is described. The results are lower than expected, due to the high influence of the wind shear.

Keywords: Vertical-axis wind turbine, Darrieus wind turbine, twisted blades, experimental measurements, wind shear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2563
558 Studying Frame-Resistant Steel Structures under near Field Ground Motion

Authors: S. A. Hashemi, A. Khoshraftar

Abstract:

This paper presents the influence of the vertical seismic component on the non-linear dynamics analysis of three different structures. The subject structures were analyzed and designed according to recent codes. This paper considers three types of buildings: 5-, 10-, and 15-story buildings. The non-linear dynamics analysis of the structures with assuming elastic-perfectly-plastic behavior was performed using RAM PERFORM-3D software; the horizontal component was taken into consideration with and without the incorporation of the corresponding vertical component. Dynamic responses obtained for the horizontal component acting alone were compared with those obtained from the simultaneous application of both seismic components. The results show that the effect of the vertical component of ground motion may increase the axial load significantly in the interior columns and, consequently, the stories. The plastic mechanisms would be changed. The P-Delta effect is expected to increase. The punching base plate shear of the columns should be considered. Moreover, the vertical component increases the input energy when the structures exhibit inelastic behavior and are taller.

Keywords: Inelastic behavior, non-linear dynamic analysis, steel structure, vertical component.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1756
557 Dynamic Performances of Tubular Linear Induction Motor for Pneumatic Capsule Pipeline System

Authors: Wisuwat Plodpradista

Abstract:

Tubular linear induction motor (TLIM) can be used as a capsule pump in a large pneumatic capsule pipeline (PCP) system. Parametric performance evaluation of the designed 1-meter diameter PCP-TLIM system yields encouraging results for practical implementation. The capsule thrust and speed inside the TLIM pump can be calculated from the combination of the PCP fluid mechanics and the TLIM equations. The TLIM equivalent circuits derived from those of the conventional three-phase induction motor are used as a model to predict the static test results of a small-scale PCP-TLIM system. In this paper, additional dynamic tests are performed on the same small-scale PCP-TLIM system with two capsules of different diameters. The behaviors of the capsule inside the pump are observed and analyzed. The dynamic performances from the dynamic tests are compared with the theoretical predictions based on the TLIM equivalent circuit model.

Keywords: Pneumatic capsule pipeline, Tubular linear induction motor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2034
556 The Shaping of a Triangle Steel Plate into an Equilateral Vertical Steel by Finite-Element Modeling

Authors: Tsung-Chia Chen

Abstract:

The orthogonal processes to shape the triangle steel plate into a equilateral vertical steel are examined by an incremental elasto-plastic finite-element method based on an updated Lagrangian formulation. The highly non-linear problems due to the geometric changes, the inelastic constitutive behavior and the boundary conditions varied with deformation are taken into account in an incremental manner. On the contact boundary, a modified Coulomb friction mode is specially considered. A weighting factor r-minimum is employed to limit the step size of loading increment to linear relation. In particular, selective reduced integration was adopted to formulate the stiffness matrix. The simulated geometries of verticality could clearly demonstrate the vertical processes until unloading. A series of experiments and simulations were performed to validate the formulation in the theory, leading to the development of the computer codes. The whole deformation history and the distribution of stress, strain and thickness during the forming process were obtained by carefully considering the moving boundary condition in the finite-element method. Therefore, this modeling can be used for judging whether a equilateral vertical steel can be shaped successfully. The present work may be expected to improve the understanding of the formation of the equilateral vertical steel.

Keywords: Elasto-plastic, finite element, orthogonal pressing process, vertical steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1313
555 Numerical Investigation of Embankment Settlement Improved by Method of Preloading by Vertical Drains

Authors: Seyed Abolhasan Naeini, Saeideh Mohammadi

Abstract:

Time dependent settlement due to loading on soft saturated soils produces many problems such as high consolidation settlements and low consolidation rates. Also, long term consolidation settlement of soft soil underlying the embankment leads to unpredicted settlements and cracks on soil surface. Preloading method is an effective improvement method to solve this problem. Using vertical drains in preloading method is an effective method for improving soft soils. Applying deep soil mixing method on soft soils is another effective method for improving soft soils. There are little studies on using two methods of preloading and deep soil mixing simultaneously. In this paper, the concurrent effect of preloading with deep soil mixing by vertical drains is investigated through a finite element code, Plaxis2D. The influence of parameters such as deep soil mixing columns spacing, existence of vertical drains and distance between them, on settlement and stability factor of safety of embankment embedded on soft soil is investigated in this research.

Keywords: Preloading, soft soil, vertical drains, deep soil mixing, consolidation settlement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 669
554 Selection of Material for Gear Used in Fuel Pump Using Graph Theory and Matrix Approach

Authors: Sahil, Rajeev Saha, Sanjeev Kumar

Abstract:

Material selection is one of the key issues for the production of reliable and quality products in industries. A number of materials are available for a single product due to which material selection become a difficult task. The aim of this paper is to select appropriate material for gear used in fuel pump by using Graph Theory and Matrix Approach (GTMA). GTMA is a logical and systematic approach that can be used to model and analyze various engineering systems. In present work, four alternative material and their seven attributes are used to identify the best material for given product.

Keywords: Material, GTMA, MADM, digraph, decision making.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 972
553 Analyzing Methods of the Relation between Concepts based on a Concept Hierarchy

Authors: Ke Lu, Tetsuya Furukawa

Abstract:

Data objects are usually organized hierarchically, and the relations between them are analyzed based on a corresponding concept hierarchy. The relation between data objects, for example how similar they are, are usually analyzed based on the conceptual distance in the hierarchy. If a node is an ancestor of another node, it is enough to analyze how close they are by calculating the distance vertically. However, if there is not such relation between two nodes, the vertical distance cannot express their relation explicitly. This paper tries to fill this gap by improving the analysis method for data objects based on hierarchy. The contributions of this paper include: (1) proposing an improved method to evaluate the vertical distance between concepts; (2) defining the concept horizontal distance and a method to calculate the horizontal distance; and (3) discussing the methods to confine a range by the horizontal distance and the vertical distance, and evaluating the relation between concepts.

Keywords: Concept Hierarchy, Horizontal Distance, Relation Analysis, Vertical Distance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1189
552 Small Scale Solar-Photovoltaic and Wind Pump-Storage Hydroelectric System for Remote Residential Applications

Authors: Seshi Reddy Kasu, Florian Misoc

Abstract:

The use of hydroelectric pump-storage system at large scale, MW-size systems, is already widespread around the world. Designed for large scale applications, pump-storage station can be scaled-down for small, remote residential applications. Given the cost and complexity associated with installing a substation further than 100 miles from the main transmission lines, a remote, independent and self-sufficient system is by far the most feasible solution. This article is aiming at the design of wind and solar power generating system, by means of pumped-storage to replace the wind and /or solar power systems with a battery bank energy storage. Wind and solar pumped-storage power generating system can reduce the cost of power generation system, according to the user's electricity load and resource condition and also can ensure system reliability of power supply. Wind and solar pumped-storage power generation system is well suited for remote residential applications with intermittent wind and/or solar energy. This type of power systems, installed in these locations, could be a very good alternative, with economic benefits and positive social effects. The advantage of pumped storage power system, where wind power regulation is calculated, shows that a significant smoothing of the produced power is obtained, resulting in a power-on-demand system’s capability, concomitant to extra economic benefits.

Keywords: Battery bank, photo-voltaic, pump-storage, wind energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4067
551 Effect of Runup over a Vertical Pile Supported Caisson Breakwater and Quarter Circle Pile Supported Caisson Breakwater

Authors: T. J. Jemi Jeya, V. Sriram

Abstract:

Pile Supported Caisson breakwater is an ecofriendly breakwater very useful in coastal zone protection. The model is developed by considering the advantages of both caisson breakwater and pile supported breakwater, where the top portion is a vertical or quarter circle caisson and the bottom portion consists of a pile supported breakwater defined as Vertical Pile Supported Breakwater (VPSCB) and Quarter-circle Pile Supported Breakwater (QPSCB). The study mainly focuses on comparison of run up over VPSCB and QPSCB under oblique waves. The experiments are carried out in a shallow wave basin under different water depths (d = 0.5 m & 0.55 m) and under different oblique regular waves (00, 150, 300). The run up over the surface is measured by placing two run up probes over the surface at 0.3 m on both sides from the centre of the model. The results show that the non-dimensional shoreward run up shows slight decrease with respect to increase in angle of wave attack.

Keywords: Caisson breakwater, pile supported breakwater, quarter circle breakwater, vertical breakwater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 632
550 Prediction of Product Size Distribution of a Vertical Stirred Mill Based on Breakage Kinetics

Authors: C. R. Danielle, S. Erik, T. Patrick, M. Hugh

Abstract:

In the last decade there has been an increase in demand for fine grinding due to the depletion of coarse-grained orebodies and an increase of processing fine disseminated minerals and complex orebodies. These ores have provided new challenges in concentrator design because fine and ultra-fine grinding is required to achieve acceptable recovery rates. Therefore, the correct design of a grinding circuit is important for minimizing unit costs and increasing product quality. The use of ball mills for grinding in fine size ranges is inefficient and, therefore, vertical stirred grinding mills are becoming increasingly popular in the mineral processing industry due to its already known high energy efficiency. This work presents a hypothesis of a methodology to predict the product size distribution of a vertical stirred mill using a Bond ball mill. The Population Balance Model (PBM) was used to empirically analyze the performance of a vertical mill and a Bond ball mill. The breakage parameters obtained for both grinding mills are compared to determine the possibility of predicting the product size distribution of a vertical mill based on the results obtained from the Bond ball mill. The biggest advantage of this methodology is that most of the minerals processing laboratories already have a Bond ball mill to perform the tests suggested in this study. Preliminary results show the possibility of predicting the performance of a laboratory vertical stirred mill using a Bond ball mill.

Keywords: Bond ball mill, population balance model, product size distribution, vertical stirred mill.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1112
549 Robust Cerebellar Model Articulation Controller Design for Flight Control Systems

Authors: Y. J. Huang, T. C. Kuo, B. W. Hong, B. C. Wu

Abstract:

This paper presents a robust proportionalderivative (PD) based cerebellar model articulation controller (CMAC) for vertical take-off and landing flight control systems. Successful on-line training and recalling process of CMAC accompanying the PD controller is developed. The advantage of the proposed method is mainly the robust tracking performance against aerodynamic parametric variation and external wind gust. The effectiveness of the proposed algorithm is validated through the application of a vertical takeoff and landing aircraft control system.

Keywords: vertical takeoff and landing, cerebellar modelarticulation controller, proportional-derivative control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1586
548 Dynamic Model and Control of a New Quadrotor Unmanned Aerial Vehicle with Tilt-Wing Mechanism

Authors: Kaan T. Oner, Ertugrul Cetinsoy, Mustafa Unel, Mahmut F. Aksit, Ilyas Kandemir, Kayhan Gulez

Abstract:

In this work a dynamic model of a new quadrotor aerial vehicle that is equipped with a tilt-wing mechanism is presented. The vehicle has the capabilities of vertical take-off/landing (VTOL) like a helicopter and flying horizontal like an airplane. Dynamic model of the vehicle is derived both for vertical and horizontal flight modes using Newton-Euler formulation. An LQR controller for the vertical flight mode has also been developed and its performance has been tested with several simulations.

Keywords: Control, Dynamic model, LQR, Quadrotor, Tilt-wing, VTOL.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4265
547 Performance Enhancement Employing Vertical Beamforming for FFR Technique

Authors: P. Chaipanya, P. Uthansakul, M. Uthansakul

Abstract:

This paper proposes a vertical beamforming concept to a cellular network employing Fractional Frequency Reuse technique including with cell sectorization. Two different beams are utilized in cell-center and cell-edge, separately. The proposed concept is validated through computer simulation in term of SINR and channel capacity. Also, comparison when utilizing horizontal and vertical beam formation is in focus. The obtained results indicate that the proposed concept can improve the performance of the cellular networks comparing with the one using horizontal beamforming.

Keywords: Beamforming, Fractional Frequency Reuse, Inter- Cell Interference, cell sectorization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2127
546 Clean Sky 2 – Project PALACE: Aeration’s Experimental Sound Velocity Investigations for High-Speed Gerotor Simulations

Authors: Benoît Mary, Thibaut Gras, Gaëtan Fagot, Yvon Goth, Ilyes Mnassri-Cetim

Abstract:

A Gerotor pump is composed of an external and internal gear with conjugate cycloidal profiles. From suction to delivery ports, the fluid is transported inside cavities formed by teeth and driven by the shaft. From a geometric and conceptional side it is worth to note that the internal gear has one tooth less than the external one. Simcenter Amesim v.16 includes a new submodel for modelling the hydraulic Gerotor pumps behavior (THCDGP0). This submodel considers leakages between teeth tips using Poiseuille and Couette flows contributions. From the 3D CAD model of the studied pump, the “CAD import” tool takes out the main geometrical characteristics and the submodel THCDGP0 computes the evolution of each cavity volume and their relative position according to the suction or delivery areas. This module, based on international publications, presents robust results up to 6 000 rpm for pressure greater than atmospheric level. For higher rotational speeds or lower pressures, oil aeration and cavitation effects are significant and highly drop the pump’s performance. The liquid used in hydraulic systems always contains some gas, which is dissolved in the liquid at high pressure and tends to be released in a free form (i.e. undissolved as bubbles) when pressure drops. In addition to gas release and dissolution, the liquid itself may vaporize due to cavitation. To model the relative density of the equivalent fluid, modified Henry’s law is applied in Simcenter Amesim v.16 to predict the fraction of undissolved gas or vapor. Three parietal pressure sensors have been set up upstream from the pump to estimate the sound speed in the oil. Analytical models have been compared with the experimental sound speed to estimate the occluded gas content. Simcenter Amesim v.16 model was supplied by these previous analyses marks which have successfully improved the simulations results up to 14 000 rpm. This work provides a sound foundation for designing the next Gerotor pump generation reaching high rotation range more than 25 000 rpm. This improved module results will be compared to tests on this new pump demonstrator.

Keywords: Gerotor pump, high speed, simulations, aeronautic, aeration, cavitation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 509
545 Impact of Process Variations on the Vertical Silicon Nanowire Tunneling FET (TFET)

Authors: Z. X. Chen, T. S. Phua, X. P. Wang, G. -Q. Lo, D. -L. Kwong

Abstract:

This paper presents device simulations on the vertical silicon nanowire tunneling FET (VSiNW TFET). Simulations show that a narrow nanowire and thin gate oxide is required for good performance, which is expected even for conventional MOSFETs. The gate length also needs to be more than the nanowire diameter to prevent short channel effects. An effect more unique to TFET is the need for abrupt source to channel junction, which is shown to improve the performance. The ambipolar effect suppression by reducing drain doping concentration is also explored and shown to have little or no effect on performance.

Keywords: Device simulation, MEDICI, tunneling FET (TFET), vertical silicon nanowire.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2582
544 Vertical Silicon Nanowire MOSFET With A Fully-Silicided (FUSI) NiSi2 Gate

Authors: Z. X. Chen, N. Singh, D.-L. Kwong

Abstract:

This paper presents a vertical silicon nanowire n- MOSFET integrated with a CMOS-compatible fully-silicided (FUSI) NiSi2 gate. Devices with nanowire diameter of 50nm show good electrical performance (SS < 70mV/dec, DIBL < 30mV/V, Ion/Ioff > 107). Most significantly, threshold voltage tunability of about 0.2V is shown. Although threshold voltage remains low for the 50nm diameter device, it is expected to become more positive as nanowire diameter reduces.

Keywords: NiSi , fully-silicided (FUSI) gate, vertical siliconnanowire (SiNW), CMOS compatible.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1831