Search results for: Two dimensional boundary value problems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3996

Search results for: Two dimensional boundary value problems

3876 Positive Solutions for Discrete Third-order Three-point Boundary Value Problem

Authors: Benshi Zhu

Abstract:

In this paper, the existence of multiple positive solutions for a class of third-order three-point discrete boundary value problem is studied by applying algebraic topology method.

Keywords: Positive solutions, Discrete boundary value problem, Third-order, Three-point, Algebraic topology

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1203
3875 Analyzing of Noise inside a Simple Vehicle Cabin using Boundary Element Method

Authors: A. Soltani, M. Karimi Demneh

Abstract:

In this paper, modeling of an acoustic enclosed vehicle cabin has been carried out by using boundary element method. Also, the second purpose of this study is analyzing of linear wave equation in an acoustic field. The resultants of this modeling consist of natural frequencies that have been compared with resultants derived from finite element method. By using numerical method (boundary element method) and after solution of wave equation inside an acoustic enclosed cabin, this method has been progressed to simulate noise inside a simple vehicle cabin.

Keywords: Boundary element method, natural frequency, noise, vehicle cabin.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2500
3874 A Boundary Fitted Nested Grid Model for Modelling Tsunami Propagation of 2004 Indonesian Tsunami along Southern Thailand

Authors: Md. Fazlul Karim, Esa Al-Islam

Abstract:

This paper describes the development of a boundary fitted nested grid (BFNG) model to compute tsunami propagation of 2004 Indonesian tsunami in Southern Thailand coastal waters. We develop a numerical model employing the shallow water nested model and an orthogonal boundary fitted grid to investigate the tsunami impact on the Southern Thailand due to the Indonesian tsunami of 2004. Comparisons of water surface elevation obtained from numerical simulations and field measurements are made.

Keywords: Boundary-fitted nested grid model, finite difference method, Indonesian tsunami of 2004, Southern Thailand.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1764
3873 Wall Pressure Fluctuations in Naturally Developing Boundary Layer Flows on Axisymmetric Bodies

Authors: Chinsuk Hong

Abstract:

This paper investigates the characteristics of wall pressure fluctuations in naturally developing boundary layer flows on axisymmetric bodies experimentally. The axisymmetric body has a modified ellipsoidal blunt nose. Flush-mounted microphones are used to measure the wall pressure fluctuations in the boundary layer flow over the body. The measurements are performed in a low noise wind tunnel. It is found that the correlation between the flow regime and the characteristics of the pressure fluctuations is distinct. The process from small fluctuation in laminar flow to large fluctuation in turbulent flow is investigated. Tollmien-Schlichting wave (T-S wave) is found to generate and develop in transition. Because of the T-S wave, the wall pressure fluctuations in the transition region are higher than those in the turbulent boundary layer.

Keywords: Wall Pressure Fluctuation, Boundary Layer Flow, Transition, Turbulent Flow, Axisymmetric Body, Flow Noise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1648
3872 Unsteady Free Convection Flow Over a Three-Dimensional Stagnation Point With Internal Heat Generation or Absorption

Authors: Mohd Ariff Admon, Abdul Rahman Mohd Kasim, Sharidan Shafie

Abstract:

This paper considers the effect of heat generation proportional l to (T - T∞ )p , where T is the local temperature and T∞ is the ambient temperature, in unsteady free convection flow near the stagnation point region of a three-dimensional body. The fluid is considered in an ambient fluid under the assumption of a step change in the surface temperature of the body. The non-linear coupled partial differential equations governing the free convection flow are solved numerically using an implicit finite-difference method for different values of the governing parameters entering these equations. The results for the flow and heat characteristics when p ≤ 2 show that the transition from the initial unsteady-state flow to the final steadystate flow takes place smoothly. The behavior of the flow is seen strongly depend on the exponent p.

Keywords: Free convection, Boundary layer flow, Stagnationpoint, Heat generation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2210
3871 An Optimization Algorithm Based on Dynamic Schema with Dissimilarities and Similarities of Chromosomes

Authors: Radhwan Yousif Sedik Al-Jawadi

Abstract:

Optimization is necessary for finding appropriate solutions to a range of real-life problems. In particular, genetic (or more generally, evolutionary) algorithms have proved very useful in solving many problems for which analytical solutions are not available. In this paper, we present an optimization algorithm called Dynamic Schema with Dissimilarity and Similarity of Chromosomes (DSDSC) which is a variant of the classical genetic algorithm. This approach constructs new chromosomes from a schema and pairs of existing ones by exploring their dissimilarities and similarities. To show the effectiveness of the algorithm, it is tested and compared with the classical GA, on 15 two-dimensional optimization problems taken from literature. We have found that, in most cases, our method is better than the classical genetic algorithm.

Keywords: Genetic algorithm, similarity and dissimilarity, chromosome injection, dynamic schema.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1255
3870 On Method of Fundamental Solution for Nondestructive Testing

Authors: Jieer Wu, Zheshu Ma

Abstract:

Nondestructive testing in engineering is an inverse Cauchy problem for Laplace equation. In this paper the problem of nondestructive testing is expressed by a Laplace-s equation with third-kind boundary conditions. In order to find unknown values on the boundary, the method of fundamental solution is introduced and realized. Because of the ill-posedness of studied problems, the TSVD regularization technique in combination with L-curve criteria and Generalized Cross Validation criteria is employed. Numerical results are shown that the TSVD method combined with L-curve criteria is more efficient than the TSVD method combined with GCV criteria. The abstract goes here.

Keywords: ill-posed, TSVD, Laplace's equation, inverse problem, L-curve, Generalized Cross Validation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1436
3869 Unsteady Laminar Boundary Layer Forced Flow in the Region of the Stagnation Point on a Stretching Flat Sheet

Authors: A. T. Eswara

Abstract:

This paper analyses the unsteady, two-dimensional stagnation point flow of an incompressible viscous fluid over a flat sheet when the flow is started impulsively from rest and at the same time, the sheet is suddenly stretched in its own plane with a velocity proportional to the distance from the stagnation point. The partial differential equations governing the laminar boundary layer forced convection flow are non-dimensionalised using semi-similar transformations and then solved numerically using an implicit finitedifference scheme known as the Keller-box method. Results pertaining to the flow and heat transfer characteristics are computed for all dimensionless time, uniformly valid in the whole spatial region without any numerical difficulties. Analytical solutions are also obtained for both small and large times, respectively representing the initial unsteady and final steady state flow and heat transfer. Numerical results indicate that the velocity ratio parameter is found to have a significant effect on skin friction and heat transfer rate at the surface. Furthermore, it is exposed that there is a smooth transition from the initial unsteady state flow (small time solution) to the final steady state (large time solution).

Keywords: Forced flow, Keller-box method, Stagnation point, Stretching flat sheet, Unsteady laminar boundary layer, Velocity ratio parameter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1649
3868 Comparison of Three Versions of Conjugate Gradient Method in Predicting an Unknown Irregular Boundary Profile

Authors: V. Ghadamyari, F. Samadi, F. Kowsary

Abstract:

An inverse geometry problem is solved to predict an unknown irregular boundary profile. The aim is to minimize the objective function, which is the difference between real and computed temperatures, using three different versions of Conjugate Gradient Method. The gradient of the objective function, considered necessary in this method, obtained as a result of solving the adjoint equation. The abilities of three versions of Conjugate Gradient Method in predicting the boundary profile are compared using a numerical algorithm based on the method. The predicted shapes show that due to its convergence rate and accuracy of predicted values, the Powell-Beale version of the method is more effective than the Fletcher-Reeves and Polak –Ribiere versions.

Keywords: Boundary elements, Conjugate Gradient Method, Inverse Geometry Problem, Sensitivity equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1790
3867 Tsunami Inundation Modeling in a Boundary Fitted Curvilinear Grid Model Using the Method of Lines Technique

Authors: M. Ashaque Meah, M. Shah Noor, M Asif Arefin, Md. Fazlul Karim

Abstract:

A numerical technique in a boundary-fitted curvilinear grid model is developed to simulate the extent of inland inundation along the coastal belts of Peninsular Malaysia and Southern Thailand due to 2004 Indian ocean tsunami. Tsunami propagation and run-up are also studied in this paper. The vertically integrated shallow water equations are solved by using the method of lines (MOL). For this purpose the boundary-fitted grids are generated along the coastal and island boundaries and the other open boundaries of the model domain. A transformation is used to the governing equations so that the transformed physical domain is converted into a rectangular one. The MOL technique is applied to the transformed shallow water equations and the boundary conditions so that the equations are converted into ordinary differential equations initial value problem. Finally the 4th order Runge-Kutta method is used to solve these ordinary differential equations. The moving boundary technique is applied instead of fixed sea side wall or fixed coastal boundary to ensure the movement of the coastal boundary. The extent of intrusion of water and associated tsunami propagation are simulated for the 2004 Indian Ocean tsunami along the west coast of Peninsular Malaysia and southern Thailand. The simulated results are compared with the results obtained from a finite difference model and the data available in the USGS website. All simulations show better approximation than earlier research and also show excellent agreement with the observed data.

Keywords: Open boundary condition, moving boundary condition, boundary-fitted curvilinear grids, far field tsunami, Shallow Water Equations, tsunami source, Indonesian tsunami of 2004.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 815
3866 CFD Analysis of a Centrifugal Fan for Performance Enhancement using Converging Boundary Layer Suction Slots

Authors: K. Vasudeva Karanth, N. Yagnesh Sharma

Abstract:

Generally flow behavior in centrifugal fan is observed to be in a state of instability with flow separation zones on suction surface as well as near the front shroud. Overall performance of the diffusion process in a centrifugal fan could be enhanced by judiciously introducing the boundary layer suction slots. With easy accessibility of CFD as an analytical tool, an extensive numerical whole field analysis of the effect of boundary layer suction slots in discrete regions of suspected separation points is possible. This paper attempts to explore the effect of boundary layer suction slots corresponding to various geometrical locations on the impeller with converging configurations for the slots. The analysis shows that the converging suction slots located on the impeller blade about 25% from the trailing edge, significantly improves the static pressure recovery across the fan. Also it is found that Slots provided at a radial distance of about 12% from the leading and trailing edges marginally improve the static pressure recovery across the fan.

Keywords: Boundary layer suction converging slot, Flowseparation, Sliding mesh, Unsteady analysis, Recirculation zone, Jetsand wakes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2977
3865 The Effects of Plate-Support Condition on Buckling Strength of Rectangular Perforated Plates under Linearly Varying In-Plane Normal Load

Authors: M. Tajdari, A. R. Nezamabadi, M. Naeemi, P. Pirali

Abstract:

Mechanical buckling analysis of rectangular plates with central circular cutout is performed in this paper. The finiteelement method is used to study the effects of plate-support conditions, aspect ratio, and hole size on the mechanical buckling strength of the perforated plates subjected to linearly varying loading. Results show that increasing the hole size does not necessarily reduce the mechanical buckling strength of the perforated plates. It is also concluded that the clamped boundary condition increases the mechanical buckling strength of the perforated plates more than the simply-supported boundary condition and the free boundary conditions enhance the mechanical buckling strength of the perforated plates more effectively than the fixed boundary conditions. Furthermore, for the bending cases, the critical buckling load of perforated plates with free edges is less than perforated plates with fixed edges.

Keywords: Buckling, Perforated plates, Boundary condition, Rectangular plates

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3412
3864 Another Approach of Similarity Solution in Reversed Stagnation-point Flow

Authors: Vai Kuong Sin, Chon Kit Chio

Abstract:

In this paper, the two-dimensional reversed stagnationpoint flow is solved by means of an anlytic approach. There are similarity solutions in case the similarity equation and the boundary condition are modified. Finite analytic method are applied to obtain the similarity velocity function.

Keywords: reversed stagnation-point flow, similarity solutions, asymptotic solution

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1706
3863 Sensitivity Analysis during the Optimization Process Using Genetic Algorithms

Authors: M. A. Rubio, A. Urquia

Abstract:

Genetic algorithms (GA) are applied to the solution of high-dimensional optimization problems. Additionally, sensitivity analysis (SA) is usually carried out to determine the effect on optimal solutions of changes in parameter values of the objective function. These two analyses (i.e., optimization and sensitivity analysis) are computationally intensive when applied to high-dimensional functions. The approach presented in this paper consists in performing the SA during the GA execution, by statistically analyzing the data obtained of running the GA. The advantage is that in this case SA does not involve making additional evaluations of the objective function and, consequently, this proposed approach requires less computational effort than conducting optimization and SA in two consecutive steps.

Keywords: Optimization, sensitivity, genetic algorithms, model calibration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1425
3862 One-Dimensional Numerical Investigation of a Cylindrical Micro-Combustor Applying Electrohydrodynamics Effect

Authors: Behrouzinia P., Irani R. A., Saidi M.H.

Abstract:

In this paper, a one-dimensional numerical approach is used to study the effect of applying electrohydrodynamics on the temperature and species mass fraction profiles along the microcombustor. Premixed mixture is H2-Air with a multi-step chemistry (9 species and 19 reactions). In the micro-scale combustion because of the increasing ratio of area-to-volume, thermal and radical quenching mechanisms are important. Also, there is a significant heat loss from the combustor walls. By inserting a number of electrodes into micro-combustor and applying high voltage to them corona discharge occurs. This leads in moving of induced ions toward natural molecules and colliding with them. So this phenomenon causes the movement of the molecules and reattaches the flow to the walls. It increases the velocity near the walls that reduces the wall boundary layer. Consequently, applying electrohydrodynamics mechanism can enhance the temperature profile in the microcombustor. Ultimately, it prevents the flame quenching in microcombustor.

Keywords: micro-combustor, electrohydrodynamics, temperature profile, wall quenching

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1765
3861 Dynamic Analysis of Nonlinear Models with Infinite Extension by Boundary Elements

Authors: Delfim Soares Jr., Webe J. Mansur

Abstract:

The Time-Domain Boundary Element Method (TDBEM) is a well known numerical technique that handles quite properly dynamic analyses considering infinite dimension media. However, when these analyses are also related to nonlinear behavior, very complex numerical procedures arise considering the TD-BEM, which may turn its application prohibitive. In order to avoid this drawback and model nonlinear infinite media, the present work couples two BEM formulations, aiming to achieve the best of two worlds. In this context, the regions expected to behave nonlinearly are discretized by the Domain Boundary Element Method (D-BEM), which has a simpler mathematical formulation but is unable to deal with infinite domain analyses; the TD-BEM is employed as in the sense of an effective non-reflexive boundary. An iterative procedure is considered for the coupling of the TD-BEM and D-BEM, which is based on a relaxed renew of the variables at the common interfaces. Elastoplastic models are focused and different time-steps are allowed to be considered by each BEM formulation in the coupled analysis.

Keywords: Boundary Element Method, Dynamic Elastoplastic Analysis, Iterative Coupling, Multiple Time-Steps.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1500
3860 Numerical Simulation of the Turbulent Flow over a Three-Dimensional Flat Roof

Authors: M. Raciti Castelli, A. Castelli, E. Benini

Abstract:

The flow field over a flat roof model building has been numerically investigated in order to determine threedimensional CFD guidelines for the calculation of the turbulent flow over a structure immersed in an atmospheric boundary layer. To this purpose, a complete validation campaign has been performed through a systematic comparison of numerical simulations with wind tunnel experimental data. Wind tunnel measurements and numerical predictions have been compared for five different vertical positions, respectively from the upstream leading edge to the downstream bottom edge of the analyzed model. Flow field characteristics in the neighborhood of the building model have been numerically investigated, allowing a quantification of the capabilities of the CFD code to predict the flow separation and the extension of the recirculation regions. The proposed calculations have allowed the development of a preliminary procedure to be used as guidance in selecting the appropriate grid configuration and corresponding turbulence model for the prediction of the flow field over a three-dimensional roof architecture dominated by flow separation.

Keywords: CFD, roof, building, wind

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1691
3859 Transient Combined Conduction and Radiation in a Two-Dimensional Participating Cylinder in Presence of Heat Generation

Authors: Raoudha Chaabane, Faouzi Askri, Sassi Ben Nasrallah

Abstract:

Simultaneous transient conduction and radiation heat transfer with heat generation is investigated. Analysis is carried out for both steady and unsteady situations. two-dimensional gray cylindrical enclosure with an absorbing, emitting, and isotropically scattering medium is considered. Enclosure boundaries are assumed at specified temperatures. The heat generation rate is considered uniform and constant throughout the medium. The lattice Boltzmann method (LBM) was used to solve the energy equation of a transient conduction-radiation heat transfer problem. The control volume finite element method (CVFEM) was used to compute the radiative information. To study the compatibility of the LBM for the energy equation and the CVFEM for the radiative transfer equation, transient conduction and radiation heat transfer problems in 2-D cylindrical geometries were considered. In order to establish the suitability of the LBM, the energy equation of the present problem was also solved using the the finite difference method (FDM) of the computational fluid dynamics. The CVFEM used in the radiative heat transfer was employed to compute the radiative information required for the solution of the energy equation using the LBM or the FDM (of the CFD). To study the compatibility and suitability of the LBM for the solution of energy equation and the CVFEM for the radiative information, results were analyzed for the effects of various parameters such as the boundary emissivity. The results of the LBMCVFEM combination were found to be in excellent agreement with the FDM-CVFEM combination. The number of iterations and the steady state temperature in both of the combinations were found comparable. Results are found for situations with and without heat generation. Heat generation is found to have significant bearing on temperature distribution.

Keywords: heat generation, cylindrical coordinates; RTE;transient; coupled conduction radiation; heat transfer; CVFEM; LBM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2164
3858 New Exact Solutions for the (3+1)-Dimensional Breaking Soliton Equation

Authors: Mohammad Taghi Darvishi, Maliheh Najafi, Mohammad Najafi

Abstract:

In this work, we obtain some analytic solutions for the (3+1)-dimensional breaking soliton after obtaining its Hirota-s bilinear form. Our calculations show that, three-wave method is very easy and straightforward to solve nonlinear partial differential equations.

Keywords: (3+1)-dimensional breaking soliton equation, Hirota'sbilinear form.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1617
3857 Unsteady Boundary Layer Flow over a Stretching Sheet in a Micropolar Fluid

Authors: Roslinda Nazar, Anuar Ishak, Ioan Pop

Abstract:

Unsteady boundary layer flow of an incompressible micropolar fluid over a stretching sheet when the sheet is stretched in its own plane is studied in this paper. The stretching velocity is assumed to vary linearly with the distance along the sheet. Two equal and opposite forces are impulsively applied along the x-axis so that the sheet is stretched, keeping the origin fixed in a micropolar fluid. The transformed unsteady boundary layer equations are solved numerically using the Keller-box method for the whole transient from the initial state to final steady-state flow. Numerical results are obtained for the velocity and microrotation distributions as well as the skin friction coefficient for various values of the material parameter K. It is found that there is a smooth transition from the small-time solution to the large-time solution.

Keywords: Boundary layer, micropolar fluid, stretching surface, unsteady flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2300
3856 An Efficient and Generic Hybrid Framework for High Dimensional Data Clustering

Authors: Dharmveer Singh Rajput , P. K. Singh, Mahua Bhattacharya

Abstract:

Clustering in high dimensional space is a difficult problem which is recurrent in many fields of science and engineering, e.g., bioinformatics, image processing, pattern reorganization and data mining. In high dimensional space some of the dimensions are likely to be irrelevant, thus hiding the possible clustering. In very high dimensions it is common for all the objects in a dataset to be nearly equidistant from each other, completely masking the clusters. Hence, performance of the clustering algorithm decreases. In this paper, we propose an algorithmic framework which combines the (reduct) concept of rough set theory with the k-means algorithm to remove the irrelevant dimensions in a high dimensional space and obtain appropriate clusters. Our experiment on test data shows that this framework increases efficiency of the clustering process and accuracy of the results.

Keywords: High dimensional clustering, sub-space, k-means, rough set, discernibility matrix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1885
3855 Effect of Model Dimension in Numerical Simulation on Assessment of Water Inflow to Tunnel in Discontinues Rock

Authors: Hadi Farhadian, Homayoon Katibeh

Abstract:

Groundwater inflow to the tunnels is one of the most important problems in tunneling operation. The objective of this study is the investigation of model dimension effects on tunnel inflow assessment in discontinuous rock masses using numerical modeling. In the numerical simulation, the model dimension has an important role in prediction of water inflow rate. When the model dimension is very small, due to low distance to the tunnel border, the model boundary conditions affect the estimated amount of groundwater flow into the tunnel and results show a very high inflow to tunnel. Hence, in this study, the two-dimensional universal distinct element code (UDEC) used and the impact of different model parameters, such as tunnel radius, joint spacing, horizontal and vertical model domain extent has been evaluated. Results show that the model domain extent is a function of the most significant parameters, which are tunnel radius and joint spacing.

Keywords: Water inflow, Tunnel, Discontinues rock, Numerical simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2465
3854 The Boundary Element Method in Excel for Teaching Vector Calculus and Simulation

Authors: Stephen Kirkup

Abstract:

This paper discusses the implementation of the boundary element method (BEM) on an Excel spreadsheet and how it can be used in teaching vector calculus and simulation. There are two separate spreadheets, within which Laplace equation is solved by the BEM in two dimensions (LIBEM2) and axisymmetric three dimensions (LBEMA). The main algorithms are implemented in the associated programming language within Excel, Visual Basic for Applications (VBA). The BEM only requires a boundary mesh and hence it is a relatively accessible method. The BEM in the open spreadsheet environment is demonstrated as being useful as an aid to teaching and learning. The application of the BEM implemented on a spreadsheet for educational purposes in introductory vector calculus and simulation is explored. The development of assignment work is discussed, and sample results from student work are given. The spreadsheets were found to be useful tools in developing the students’ understanding of vector calculus and in simulating heat conduction.

Keywords: Boundary element method, laplace equation, vector calculus, simulation, education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 933
3853 Simulation of Laser Structuring by Three Dimensional Heat Transfer Model

Authors: Bassim Bachy, Joerg Franke

Abstract:

In this study, a three dimensional numerical heat transfer model has been used to simulate the laser structuring of polymer substrate material in the Three-Dimensional Molded Interconnect Device (3D MID) which is used in the advanced multifunctional applications. A finite element method (FEM) transient thermal analysis is performed using APDL (ANSYS Parametric Design Language) provided by ANSYS. In this model, the effect of surface heat source was modeled with Gaussian distribution, also the effect of the mixed boundary conditions which consist of convection and radiation heat transfers have been considered in this analysis. The model provides a full description of the temperature distribution, as well as calculates the depth and the width of the groove upon material removal at different set of laser parameters such as laser power and laser speed. This study also includes the experimental procedure to study the effect of laser parameters on the depth and width of the removal groove metal as verification to the modeled results. Good agreement between the experimental and the model results is achieved for a wide range of laser powers. It is found that the quality of the laser structure process is affected by the laser scan speed and laser power. For a high laser structured quality, it is suggested to use laser with high speed and moderate to high laser power.

Keywords: Laser Structuring, Simulation, Finite element analysis, Thermal modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4301
3852 MHD Natural Convection Flow of Tangent Hyperbolic Nanofluid Past a Vertical Permeable Cone

Authors: A. Mahdy

Abstract:

In this paper, a non-similraity analysis has been presented to exhibit the two-dimensional boundary layer flow of magnetohydrodynamic (MHD) natural convection of tangent hyperbolic nanofluid nearby a vertical permeable cone in the presence of variable wall temperature impact. The mutated boundary layer nonlinear governing equations are solved numerically by the an efficient implicit finite difference procedure. For both nanofluid effective viscosity and nanofluid thermal conductivity, a number of experimental relations have been recognized. For characterizing the nanofluid, the compatible nanoparticle volume fraction model has been used. Nusselt number and skin friction coefficient are calculated for some values of Weissenberg number W, surface temperature exponent n, magnetic field parameter Mg, power law index m and Prandtl number Pr as functions of suction parameter. The rate of heat transfer from a vertical permeable cone in a regular fluid is less than that in nanofluids. A best convection has been presented by Copper nanoparticle among all the used nanoparticles.

Keywords: Tangent hyperbolic nanofluid, finite difference, non-similarity, isothermal cone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 724
3851 Solving Inhomogeneous Wave Equation Cauchy Problems using Homotopy Perturbation Method

Authors: Mohamed M. Mousa, Aidarkhan Kaltayev

Abstract:

In this paper, He-s homotopy perturbation method (HPM) is applied to spatial one and three spatial dimensional inhomogeneous wave equation Cauchy problems for obtaining exact solutions. HPM is used for analytic handling of these equations. The results reveal that the HPM is a very effective, convenient and quite accurate to such types of partial differential equations (PDEs).

Keywords: Homotopy perturbation method, Exact solution, Cauchy problem, inhomogeneous wave equation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1762
3850 An Expansion Method for Schrödinger Equation of Quantum Billiards with Arbitrary Shapes

Authors: İnci M. Erhan

Abstract:

A numerical method for solving the time-independent Schrödinger equation of a particle moving freely in a three-dimensional axisymmetric region is developed. The boundary of the region is defined by an arbitrary analytic function. The method uses a coordinate transformation and an expansion in eigenfunctions. The effectiveness is checked and confirmed by applying the method to a particular example, which is a prolate spheroid.

Keywords: Bessel functions, Eigenfunction expansion, Quantum billiard, Schrödinger equation, Spherical harmonics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5162
3849 Existence of Solution for Singular Two-point Boundary Value Problem of Second-order Differential Equation

Authors: Xiguang Li

Abstract:

In this paper, by constructing a special set and utilizing fixed point theory in coin, we study the existence of solution of singular two point’s boundary value problem for second-order differential equation, which improved and generalize the result of related paper.

Keywords: Singular differential equation, boundary value problem, coin, fixed point theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1088
3848 Dimensional Modeling of HIV Data Using Open Source

Authors: Charles D. Otine, Samuel B. Kucel, Lena Trojer

Abstract:

Selecting the data modeling technique for an information system is determined by the objective of the resultant data model. Dimensional modeling is the preferred modeling technique for data destined for data warehouses and data mining, presenting data models that ease analysis and queries which are in contrast with entity relationship modeling. The establishment of data warehouses as components of information system landscapes in many organizations has subsequently led to the development of dimensional modeling. This has been significantly more developed and reported for the commercial database management systems as compared to the open sources thereby making it less affordable for those in resource constrained settings. This paper presents dimensional modeling of HIV patient information using open source modeling tools. It aims to take advantage of the fact that the most affected regions by the HIV virus are also heavily resource constrained (sub-Saharan Africa) whereas having large quantities of HIV data. Two HIV data source systems were studied to identify appropriate dimensions and facts these were then modeled using two open source dimensional modeling tools. Use of open source would reduce the software costs for dimensional modeling and in turn make data warehousing and data mining more feasible even for those in resource constrained settings but with data available.

Keywords: About Database, Data Mining, Data warehouse, Dimensional Modeling, Open Source.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1912
3847 An Identification Method of Geological Boundary Using Elastic Waves

Authors: Masamitsu Chikaraishi, Mutsuto Kawahara

Abstract:

This paper focuses on a technique for identifying the geological boundary of the ground strata in front of a tunnel excavation site using the first order adjoint method based on the optimal control theory. The geological boundary is defined as the boundary which is different layers of elastic modulus. At tunnel excavations, it is important to presume the ground situation ahead of the cutting face beforehand. Excavating into weak strata or fault fracture zones may cause extension of the construction work and human suffering. A theory for determining the geological boundary of the ground in a numerical manner is investigated, employing excavating blasts and its vibration waves as the observation references. According to the optimal control theory, the performance function described by the square sum of the residuals between computed and observed velocities is minimized. The boundary layer is determined by minimizing the performance function. The elastic analysis governed by the Navier equation is carried out, assuming the ground as an elastic body with linear viscous damping. To identify the boundary, the gradient of the performance function with respect to the geological boundary can be calculated using the adjoint equation. The weighed gradient method is effectively applied to the minimization algorithm. To solve the governing and adjoint equations, the Galerkin finite element method and the average acceleration method are employed for the spatial and temporal discretizations, respectively. Based on the method presented in this paper, the different boundary of three strata can be identified. For the numerical studies, the Suemune tunnel excavation site is employed. At first, the blasting force is identified in order to perform the accuracy improvement of analysis. We identify the geological boundary after the estimation of blasting force. With this identification procedure, the numerical analysis results which almost correspond with the observation data were provided.

Keywords: Parameter identification, finite element method, average acceleration method, first order adjoint equation method, weighted gradient method, geological boundary, navier equation, optimal control theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1544