Search results for: Scanning Electron Microscope- Energy Dispersive X-ray (SEMEDX).
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3458

Search results for: Scanning Electron Microscope- Energy Dispersive X-ray (SEMEDX).

3278 Switching Studies on Ge15In5Te56Ag24 Thin Films

Authors: Diptoshi Roy, G. Sreevidya Varma, S. Asokan, Chandasree Das

Abstract:

Germanium Telluride based quaternary thin film switching devices with composition Ge15In5Te56Ag24, have been deposited in sandwich geometry on glass substrate with aluminum as top and bottom electrodes. The bulk glassy form of the said composition is prepared by melt quenching technique. In this technique, appropriate quantity of elements with high purity are taken in a quartz ampoule and sealed under a vacuum of 10-5 mbar. Then, it is allowed to rotate in a horizontal rotary furnace for 36 hours to ensure homogeneity of the melt. After that, the ampoule is quenched into a mixture of ice - water and NaOH to get the bulk ingot of the sample. The sample is then coated on a glass substrate using flash evaporation technique at a vacuum level of 10-6 mbar. The XRD report reveals the amorphous nature of the thin film sample and Energy - Dispersive X-ray Analysis (EDAX) confirms that the film retains the same chemical composition as that of the base sample. Electrical switching behavior of the device is studied with the help of Keithley (2410c) source-measure unit interfaced with Lab VIEW 7 (National Instruments). Switching studies, mainly SET (changing the state of the material from amorphous to crystalline) operation is conducted on the thin film form of the sample. This device is found to manifest memory switching as the device remains 'ON' even after the removal of the electric field. Also it is found that amorphous Ge15In5Te56Ag24 thin film unveils clean memory type of electrical switching behavior which can be justified by the absence of fluctuation in the I-V characteristics. The I-V characteristic also reveals that the switching is faster in this sample as no data points could be seen in the negative resistance region during the transition to on state and this leads to the conclusion of fast phase change during SET process. Scanning Electron Microscopy (SEM) studies are performed on the chosen sample to study the structural changes at the time of switching. SEM studies on the switched Ge15In5Te56Ag24 sample has shown some morphological changes at the place of switching wherein it can be explained that a conducting crystalline channel is formed in the device when the device switches from high resistance to low resistance state. From these studies it can be concluded that the material may find its application in fast switching Non-Volatile Phase Change Memory (PCM) Devices.

Keywords: Chalcogenides, vapor deposition, electrical switching, PCM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1640
3277 The Impact of Surface Roughness and PTFE/TiF3/FeF3 Additives in Plain ZDDP Oil on the Friction and Wear Behavior Using Thermal and Tribological Analysis under Extreme Pressure Condition

Authors: Gabi N. Nehme, Saeed Ghalambor

Abstract:

The use of titanium fluoride and iron fluoride (TiF3/FeF3) catalysts in combination with polutetrafluoroethylene (PTFE) in plain zinc- dialkyldithiophosphate (ZDDP) oil is important for the study of engine tribocomponents and is increasingly a strategy to improve the formation of tribofilm and provide low friction and excellent wear protection in reduced phosphorus plain ZDDP oil. The influence of surface roughness and the concentration of TiF3/FeF3/PTFE were investigated using bearing steel samples dipped in lubricant solution at 100°C for two different heating time durations. This paper addresses the effects of water drop contact angle using different surface; finishes after treating them with different lubricant combination. The calculated water drop contact angles were analyzed using Design of Experiment software (DOE) and it was determined that a 0.05 μm Ra surface roughness would provide an excellent TiF3/FeF3/PTFE coating for antiwear resistance as reflected in the Scanning electron microscopy (SEM) images and the tribological testing under extreme pressure conditions. Both friction and wear performance depend greatly on the PTFE/and catalysts in plain ZDDP oil with 0.05 % phosphorous and on the surface finish of bearing steel. The friction and wear reducing effects, which was observed in the tribological tests, indicated a better micro lubrication effect of the 0.05 μm Ra surface roughness treated at 100°C for 24 hours when compared to the 0.1 μm Ra surface roughness with the same treatment.

Keywords: Scanning Electron Microscopy (SEM), ZDDP, catalysts, PTFE, friction, wear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1583
3276 Cadmium Filter Cake of a Hydrometallurgical Zinc Smelter as a New Source for the Biological Synthesis of CdS Quantum Dots

Authors: Mehran Bakhshi, Mohammad Raouf Hosseini, Mohammadhosein Rahimi

Abstract:

The cadmium sulfide nanoparticles were synthesized from the nickel-cadmium cake of a hydrometallurgical zinc producing plant and sodium sulfide as Cd2+ and S-2 sources, respectively. Also, the synthesis process was performed by using the secretions of Bacillus licheniformis as bio-surfactant. Initially, in order to obtain a cadmium rich solution, two following steps were carried out: 1) Alkaline leaching for the removal of zinc oxide from the cake, and 2) acidic leaching to dissolve cadmium from the remained solid residue. Afterward, the obtained CdSO4 solution was used for the nanoparticle biosynthesis. Nanoparticles were characterized by the energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) to confirm the formation of CdS crystals with cubic structure. Also, transmission electron microscopy (TEM) was applied to determine the particle sizes which were in 2-10 nm range. Moreover, the presence of the protein containing bio-surfactants was approved by using infrared analysis (FTIR). In addition, the absorbance below 400 nm confirms quantum particles’ size. Finally, it was shown that valuable CdS quantum dots could be obtained from the industrial waste products via environment-friendly biological approaches.

Keywords: Biosynthesis, cadmium cake, cadmium sulfide, nanoparticle, zinc smelter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1477
3275 The Effects of Increasing Unsaturation in Palm Oil and Incorporation of Carbon Nanotubes on Resinous Properties

Authors: Muhammad R. Islam, Mohammad Dalour H. Beg, Saidatul S. Jamari

Abstract:

Considering palm oil as non-drying oil owing to its low iodine value, an attempt was taken to increase the unsaturation in the fatty acid chains of palm oil for the preparation of alkyds. To increase the unsaturation in the palm oil, sulphuric acid (SA) and para-toluene sulphonic acid (PTSA) was used prior to alcoholysis for the dehydration process. The iodine number of the oil samples was checked for the unsaturation measurement by Wijs method. Alkyd resin was prepared using the dehydrated palm oil by following alcoholysis and esterification reaction. To improve the film properties 0.5wt.% multi-wall carbon nano tubes (MWCNTs) were used to manufacture polymeric film. The properties of the resins were characterized by various physico-chemical properties such as density, viscosity, iodine value, saponification value, etc. Structural elucidation was confirmed by Fourier transform of infrared spectroscopy and proton nuclear magnetic resonance; surfaces of the films were examined by field-emission scanning electron microscope. In addition, pencil hardness and chemical resistivity was also measured by using standard methods. The effect of enhancement of the unsaturation in the fatty acid chain found significant and motivational. The resin prepared with dehydrated palm oil showed improved properties regarding hardness and chemical resistivity testing. The incorporation of MWCNTs enhanced the thermal stability and hardness of the films as well.

Keywords: Alkyd resin, nano-coatings, dehydration, palm oil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2396
3274 Effect of Silver Nanoparticles Size Prepared by Photoreduction Method on Optical Absorption Spectra of TiO2/Ag/N719 Dye Composite Films

Authors: C. Photiphitak, P. Rakkwamsuk, P. Muthitamongkol, C. Sae-Kung, C. Thanachayanont

Abstract:

TiO2/Ag composite films were prepared by incorporating Ag in the pores of mesoporous TiO2 films using a photoreduction method. The Ag nanoparticle sizes were in a range of 3.66-38.56 nm. The TiO2/Ag composite films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscropy (TEM). The TiO2 films and TiO2/Ag composite films were immersed in a 0.3 mM N719 dye solution and characterized by UV-Vis spectrophotometer. The TiO2/Ag/N719 composite film showed that an optimal size of Ag nanoparticles was 19.12 nm and, hence, gave the maximum optical absorption spectra. The improved absorption was due to surface plasmon resonance induced by the Ag nanoparticles to enhance the absorption coefficient of the dye.

Keywords: Silver nanoparticle, TiO2/Ag composite films, Optical properties, surface plasmon resonance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2557
3273 Effect of Spray Stand-off on Hardness of Thermally Sprayed Coatings

Authors: M.Jalali Azizpour, S.Norouzi, H.Mohammadi Majd

Abstract:

The mechanical and tribological properties in WC-Co coatings are strongly affected by hardness and elasticity specifications. The results revealed the effect of spraying distance on microhardness and elasticity modulus of coatings. The metallurgical studies have been made on coated samples using optical microscopy, scanning electron microscopy (SEM).

Keywords: HVOF, Micro-indentation, Thermal spray, WC-Co.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2292
3272 Replacing MOSFETs with Single Electron Transistors (SET) to Reduce Power Consumption of an Inverter Circuit

Authors: Ahmed Shariful Alam, Abu Hena M. Mustafa Kamal, M. Abdul Rahman, M. Nasmus Sakib Khan Shabbir, Atiqul Islam

Abstract:

According to the rules of quantum mechanics there is a non-vanishing probability of for an electron to tunnel through a thin insulating barrier or a thin capacitor which is not possible according to the laws of classical physics. Tunneling of electron through a thin insulating barrier or tunnel junction is a random event and the magnitude of current flowing due to the tunneling of electron is very low. As the current flowing through a Single Electron Transistor (SET) is the result of electron tunneling through tunnel junctions of its source and drain the supply voltage requirement is also very low. As a result, the power consumption across a Single Electron Transistor is ultra-low in comparison to that of a MOSFET. In this paper simulations have been done with PSPICE for an inverter built with both SETs and MOSFETs. 35mV supply voltage was used for a SET built inverter circuit and the supply voltage used for a CMOS inverter was 3.5V.

Keywords: ITRS, enhancement type MOSFET, island, DC analysis, transient analysis, power consumption, background charge co-tunneling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1745
3271 Performance of Membrane Bioreactor (MBR) in High Phosphate Wastewater

Authors: Aida Isma M. I., Putri Razreena A. R., Rozita Omar, Azni Idris

Abstract:

This study presents the performance of membrane bioreactor in treating high phosphate wastewater. The laboratory scale MBR was operated at permeate flux of 25 L/m2.h with a hollow fiber membrane (polypropylene, approx. pore size 0.01 - 0.2 μm) at hydraulic retention time (HRT) of 12 hrs. Scanning electron microscopy (SEM) and energy diffusive X-ray (EDX) analyzer were used to characterize the membrane foulants. Results showed that the removal efficiencies of COD, TSS, NH3-N and PO4 3- were 93, 98, 80 and 30% respectively. On average 91% of influent soluble microbial products (SMP) were eliminated, with the eliminations of polysaccharides mostly above 80%. The main fouling resistance was cake resistance. It should be noted that SMP were found in major portions of mixed liquor that played a relatively significant role in membrane fouling. SEM and EDX analyses indicated that the foulants covering the membrane surfaces comprises not only organic substances but also inorganic elements including Mg, Ca, Al, K and P.

Keywords: Membrane bioreactor (MBR), membrane fouling, phosphates, soluble microbial products (SMP).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3321
3270 Dominant Correlation Effects in Atomic Spectra

Authors: Hubert Klar

Abstract:

High double excitation of two-electron atoms has been investigated using hyperpherical coordinates within a modified adiabatic expansion technique. This modification creates a novel fictitious force leading to a spontaneous exchange symmetry breaking at high double excitation. The Pauli principle must therefore be regarded as approximation valid only at low excitation energy. Threshold electron scattering from high Rydberg states shows an unexpected time reversal symmetry breaking. At threshold for double escape we discover a broad (few eV) Cooper pair.

Keywords: Correlation, resonances, threshold ionization, Cooper pair.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1740
3269 Bond Strength in Thermally Sprayed Gas Turbine Shafts

Authors: M.Jalali Azizpour, S.Norouzi, D.Sajedipour, H.Mohammadi majd, S.A.Hosseini, H.Talebi, A.Ghamari

Abstract:

In this paper, the bond strength of thermal spray coatings in high speed shafts has been studied. The metallurgical and mechanical studies has been made on the coated samples and shaft using optical microscopy, scanning electron microscopy (SEM).

Keywords: Thermal spray, Residual stress, Wear mechanism, HVOF, Gas compressor shafts

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1750
3268 Preserved Relative Differences between Regions of Different Thermal Scans

Authors: Tahir Majeed, Michael Handschuh, René Meier

Abstract:

Rheumatoid Arthritis patients have swelling and pain in joints of the hand. The regions where the patient feels pain also show increased body temperature. Thermal cameras can be used to detect the rise in temperature of the affected regions. To monitor the progression of Rheumatoid Arthritis, patients must visit the clinic regularly for scanning and examination. After scanning and evaluation, the dosage of the medicine is regulated accordingly. To monitor the disease progression over time, the correlation of the images between different visits must be established. It has been observed that the thermal measurements do not remain the same over time, even within a single scanning, when low-cost thermal cameras are used. In some situations, temperatures can vary as much as 2◦C within the same scanning sequence. In this paper, it has been shown that although the absolute temperature varies over time, the relative difference between different regions remains similar. Results have been computed over four scanning sequences and are presented.

Keywords: Relative thermal difference, rheumatoid arthritis, thermal imaging, thermal sensors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 437
3267 Thermal and Flammability Properties of Paraffin/Nanoclay Composite Phase Change Materials Incorporated in Building Materials for Thermal Energy Storage

Authors: Awni H. Alkhazaleh, Baljinder K. Kandola

Abstract:

In this study, a form-stable composite Paraffin/Nanoclay (PA-NC) has been prepared by absorbing PA into porous particles of NC to be used for low-temperature latent heat thermal energy storage. The leakage test shows that the maximum mass fraction of PA that can be incorporated in NC without leakage is 60 wt.%. Differential scanning calorimetry (DSC) has been used to measure the thermal properties of the PA and PA-NC both before and after incorporation in plasterboard (PL). The mechanical performance of the samples has been evaluated in flexural mode. The thermal energy storage performance has been studied using a small test chamber (100 mm × 100 mm × 100 mm) made from 10 mm thick PL and measuring the temperatures using thermocouples. The flammability of the PL+PL-NC has been discussed using a cone calorimeter. The results indicate that the form composite PA has good potential for use as thermal energy storage materials in building applications.

Keywords: Flammability, paraffin, plasterboard, thermal energy storage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 983
3266 The Principle Probabilities of Space-Distance Resolution for a Monostatic Radar and Realization in Cylindrical Array

Authors: Anatoly D. Pluzhnikov, Elena N. Pribludova, Alexander G. Ryndyk

Abstract:

In conjunction with the problem of the target selection on a clutter background, the analysis of the scanning rate influence on the spatial-temporal signal structure, the generalized multivariate correlation function and the quality of the resolution with the increase pulse repetition frequency is made. The possibility of the object space-distance resolution, which is conditioned by the range-to-angle conversion with an increased scanning rate, is substantiated. The calculations for the real cylindrical array at high scanning rate are presented. The high scanning rate let to get the signal to noise improvement of the order of 10 dB for the space-time signal processing.

Keywords: Antenna pattern, array, signal processing, spatial resolution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1004
3265 Porous Ni and Ni-Co Electrodeposits for Alkaline Water Electrolysis – Energy Saving

Authors: I. Herraiz-Cardona, C. González-Buch, E. Ortega, V. Pérez-Herranz, J. García-Antón

Abstract:

Hydrogen is considered to be the most promising candidate as a future energy carrier. One of the most used technologies for the electrolytic hydrogen production is alkaline water electrolysis. However, due to the high energy requirements, the cost of hydrogen produced in such a way is high. In continuous search to improve this process using advanced electrocatalytic materials for the hydrogen evolution reaction (HER), Ni type Raney and macro-porous Ni-Co electrodes were prepared on AISI 304 stainless steel substrates by electrodeposition. The developed electrodes were characterized by SEM and confocal laser scanning microscopy. HER on these electrodes was evaluated in 30 wt.% KOH solution by means of hydrogen discharge curves and galvanostatic tests. Results show that the developed electrodes present a most efficient behaviour for HER when comparing with the smooth Ni cathode. It has been reported a reduction in the energy consumption of the electrolysis cell of about 25% by using the developed coatings as cathodes.

Keywords: Alkaline water electrolysis, energy efficiency, porous nickel electrodes

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3183
3264 Enzymatic Saccharification of Dilute Alkaline Pre-treated Microalgal (Tetraselmis suecica) Biomass for Biobutanol Production

Authors: M. A. Kassim, R. Potumarthi, A. Tanksale, S. C. Srivatsa, S. Bhattacharya

Abstract:

Enzymatic saccharification of biomass for reducing sugar production is one of the crucial processes in biofuel production through biochemical conversion. In this study, enzymatic saccharification of dilute potassium hydroxide (KOH) pre-treated Tetraselmis suecica biomass was carried out by using cellulase enzyme obtained from Trichoderma longibrachiatum. Initially, the pre-treatment conditions were optimised by changing alkali reagent concentration, retention time for reaction, and temperature. The T. suecica biomass after pre-treatment was also characterized using Fourier Transform Infrared Spectra and Scanning Electron Microscope. These analyses revealed that the functional group such as acetyl and hydroxyl groups, structure and surface of T. suecica biomass were changed through pre-treatment, which is favourable for enzymatic saccharification process. Comparison of enzymatic saccharification of untreated and pre-treated microalgal biomass indicated that higher level of reducing sugar can be obtained from pre-treated T. suecica. Enzymatic saccharification of pre-treated T. suecica biomass was optimised by changing temperature, pH, and enzyme concentration to solid ratio ([E]/[S]). Highest conversion of carbohydrate into reducing sugar of 95% amounted to reducing sugar yield of 20 (wt%) from pre-treated T. suecica was obtained from saccharification, at temperature: 40°C, pH: 4.5 and [E]/[S] of 0.1 after 72 h of incubation. Hydrolysate obtained from enzymatic saccharification of pretreated T. suecica biomass was further fermented into biobutanol using Clostridium saccharoperbutyliticum as biocatalyst. The results from this study demonstrate a positive prospect of application of dilute alkaline pre-treatment to enhance enzymatic saccharification and biobutanol production from microalgal biomass.

Keywords: Microalgal biomass, enzymatic saccharification, biobutanol, fermentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2853
3263 Growing Zeolite Y on FeCrAlloy Metal

Authors: Rana Th. A. Al-Rubaye, Burcin Atilgan, Richard J. Holmes, Arthur A. Garforth

Abstract:

Structured catalysts formed from the growth of zeolites on substrates is an area of increasing interest due to the increased efficiency of the catalytic process, and the ability to provide superior heat transfer and thermal conductivity for both exothermic and endothermic processes. However, the generation of structured catalysts represents a significant challenge when balancing the relationship variables between materials properties and catalytic performance, with the Na2O, H2O and Al2O3 gel composition paying a significant role in this dynamic, thereby affecting the both the type and range of application. The structured catalyst films generated as part of this investigation have been characterised using a range of techniques, including X-ray diffraction (XRD), Electron microscopy (SEM), Energy Dispersive X-ray analysis (EDX) and Thermogravimetric Analysis (TGA), with the transition from oxide-on-alloy wires to hydrothermally synthesised uniformly zeolite coated surfaces being demonstrated using both SEM and XRD. The robustness of the coatings has been ascertained by subjecting these to thermal cycling (ambient to 550oC), with the results indicating that the synthesis time and gel compositions have a crucial effect on the quality of zeolite growth on the FeCrAlloy wires. Finally, the activity of the structured catalyst was verified by a series of comparison experiments with standard zeolite Y catalysts in powdered pelleted forms.

Keywords: FeCrAlloy, Structured catalyst, and Zeolite Y.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2408
3262 Induction Melting as a Fabrication Route for Aluminum-Carbon Nanotubes Nanocomposite

Authors: Muhammad Shahid, Muhammad Mansoor

Abstract:

Increasing demands of contemporary applications for high strength and lightweight materials prompted the development of metal-matrix composites (MMCs). After the discovery of carbon nanotubes (CNTs) in 1991 (revealing an excellent set of mechanical properties) became one of the most promising strengthening materials for MMC applications. Additionally, the relatively low density of the nanotubes imparted high specific strengths, making them perfect strengthening material to reinforce MMCs. In the present study, aluminum-multiwalled carbon nanotubes (Al-MWCNTs) composite was prepared in an air induction furnace. The dispersion of the nanotubes in molten aluminum was assisted by inherent string action of induction heating at 790°C. During the fabrication process, multifunctional fluxes were used to avoid oxidation of the nanotubes and molten aluminum. Subsequently, the melt was cast in to a copper mold and cold rolled to 0.5 mm thickness. During metallographic examination using a scanning electron microscope, it was observed that the nanotubes were effectively dispersed in the matrix. The mechanical properties of the composite were significantly increased as compared to pure aluminum specimen i.e. the yield strength from 65 to 115 MPa, the tensile strength from 82 to 125 MPa and hardness from 27 to 30 HV for pure aluminum and Al-CNTs composite, respectively. To recognize the associated strengthening mechanisms in the nanocomposites, three foremost strengthening models i.e. shear lag model, Orowan looping and Hall-Petch have been critically analyzed; experimental data were found to be closely satisfying the shear lag model.

Keywords: Carbon nanotubes, induction melting, nanocomposite, strengthening mechanism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1446
3261 Influence of Sr(BO2)2 Doping on Superconducting Properties of (Bi,Pb)-2223 Phase

Authors: N. G. Margiani, I. G. Kvartskhava, G. A. Mumladze, Z. A. Adamia

Abstract:

Chemical doping with different elements and compounds at various amounts represents the most suitable approach to improve the superconducting properties of bismuth-based superconductors for technological applications. In this paper, the influence of partial substitution of Sr(BO2)2 for SrO on the phase formation kinetics and transport properties of (Bi,Pb)-2223 HTS has been studied for the first time. Samples with nominal composition Bi1.7Pb0.3Sr2-xCa2Cu3Oy[Sr(BO2)2]x, x=0, 0.0375, 0.075, 0.15, 0.25, were prepared by the standard solid state processing. The appropriate mixtures were calcined at 845 oC for 40 h. The resulting materials were pressed into pellets and annealed at 837 oC for 30 h in air. Superconducting properties of undoped (reference) and Sr(BO2)2-doped (Bi,Pb)-2223 compounds were investigated through X-ray diffraction (XRD), resistivity (ρ) and transport critical current density (Jc) measurements. The surface morphology changes in the prepared samples were examined by scanning electron microscope (SEM). XRD and Jc studies have shown that the low level Sr(BO2)2 doping (x=0.0375-0.075) to the Sr-site promotes the formation of high-Tc phase and leads to the enhancement of current carrying capacity in (Bi,Pb)-2223 HTS. The doped sample with x=0.0375 has the best performance compared to other prepared samples. The estimated volume fraction of (Bi,Pb)-2223 phase increases from ~25 % for reference specimen to ~70 % for x=0.0375. Moreover, strong increase in the self-field Jc value was observed for this dopant amount (Jc=340 A/cm2), compared to an undoped sample (Jc=110 A/cm2). Pronounced enhancement of superconducting properties of (Bi,Pb)-2223 superconductor can be attributed to the acceleration of high-Tc phase formation as well as the improvement of inter-grain connectivity by small amounts of Sr(BO2)2 dopant.

Keywords: Bismuth-based superconductor, critical current density, phase formation, Sr(BO2)2 doping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 681
3260 Silver Nanoparticles-Enhanced Luminescence Spectra of Silicon Nanocrystals

Authors: Khamael M. Abualnaja, Lidija Šiller, Benjamin R. Horrocks

Abstract:

Metal-enhanced Luminescence of silicon nanocrystals (SiNCs) was determined using two different particle sizes of silver nanoparticles (AgNPs). SiNCs have been characterized by scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). It is found that the SiNCs are crystalline with an average diameter of 65 nm and FCC lattice. AgNPs were synthesized using photochemical reduction of AgNO3 with sodium dodecyl sulphate (SDS). The enhanced luminescence of SiNCs by AgNPs was evaluated by confocal Raman microspectroscopy. Enhancement up to x9 and x3 times were observed for SiNCs that mixed with AgNPs which have an average particle size of 100 nm and 30 nm, respectively. Silver NPs-enhanced luminescence of SiNCs occurs as a result of the coupling between the excitation laser light and the plasmon bands of AgNPs; thus this intense field at AgNPs surface couples strongly to SiNCs.

Keywords: Luminescence, Silicon Nanocrystals, Silver Nanoparticles, Surface Enhanced Raman Spectroscopy (SERS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2773
3259 Mechanical and Thermal Properties Characterisation of Vinyl Ester Matrix Nanocomposites Based On Layered Silicate

Authors: A. I. Alateyah, H. N. Dhakal, Z. Y. Zhang

Abstract:

The mechanical properties including flexural and tensile of neat vinyl ester and polymer based on layered silicate nanocomposite materials are discussed. The addition of layered silicate into the polymer matrix increased the tensile and flexural modulus up to 1 wt.% clay loading. The incorporation of more clay resulted in decreasing the mechanical properties which was traced to the existence of aggregation layers. Likewise, up to 1 wt.% clay loading, the thermal behaviour showed significant improvements and at higher clay loading the thermal pattern was reduced. The aggregation layers imparted a negative impact on the overall mechanical and thermal properties. Wide Angle X-ray Diffraction, Scanning Electron Microscopy and Transmission Electron Microscopy were utilised in order to characterise the interlamellar structure of nanocomposites.

Keywords: Vinyl ester, nanocomposites, layered silicate, mechanical properties, thermal analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3954
3258 Three-Dimensional Simulation of Free Electron Laser with Prebunching and Efficiency Enhancement

Authors: M. Chitsazi, B. Maraghechi, M. H. Rouhani

Abstract:

Three-dimensional simulation of harmonic up generation in free electron laser amplifier operating simultaneously with a cold and relativistic electron beam is presented in steady-state regime where the slippage of the electromagnetic wave with respect to the electron beam is ignored. By using slowly varying envelope approximation and applying the source-dependent expansion to wave equations, electromagnetic fields are represented in terms of the Hermit Gaussian modes which are well suited for the planar wiggler configuration. The electron dynamics is described by the fully threedimensional Lorentz force equation in presence of the realistic planar magnetostatic wiggler and electromagnetic fields. A set of coupled nonlinear first-order differential equations is derived and solved numerically. The fundamental and third harmonic radiation of the beam is considered. In addition to uniform beam, prebunched electron beam has also been studied. For this effect of sinusoidal distribution of entry times for the electron beam on the evolution of radiation is compared with uniform distribution. It is shown that prebunching reduces the saturation length substantially. For efficiency enhancement the wiggler is set to decrease linearly when the radiation of the third harmonic saturates. The optimum starting point of tapering and the slope of radiation in the amplitude of wiggler are found by successive run of the code.

Keywords: Free electron laser, Prebunching, Undulator, Wiggler.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1422
3257 The Effect of Chemical Treatment on TL Glow Curves of CdS/ZnS Thin Films Deposited by Vacuum Deposition Method

Authors: N. Dahbi, D-E. Arafah

Abstract:

The effect of chemical treatment in CdCl2 and thermal annealing in 400°C, on the defect structures of potentially useful ZnS\CdS solar cell thin films deposited onto quartz substrate and prepared by vacuum deposition method was studied using the Thermoluminesence (TL) techniques. A series of electron and hole traps are found in the various deposited samples studied. After annealing, however, it was observed that the intensity and activation energy of TL signal increases with loss of the low temperature electron traps.

Keywords: CdS, chemical treatment, heat treatment, Thermoluminescence, trapping parameters, thin film, vacuumdeposition, ZnS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1473
3256 Effect of Spray Stand-off on Elasticity Modulus of Thermally Sprayed Coatings

Authors: M.Jalali Azizpour, S.Norouzi, H.mohammadi Majd, M.M.Rabieh, D.Sajedipour, A. Jaderi

Abstract:

The mechanical and tribological properties in WC-Co coatings are strongly affected by hardness and elasticity specifications. The results revealed the effect of spraying distance on microhardness and elasticity modulus of coatings. The metallurgical studies have been made on coated samples using optical microscopy, scanning electron microscopy (SEM).

Keywords: Elasticity modulus, HVOF, Micro-indentation, Thermal spray, WC-Co

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1649
3255 Properties of Bio-Phenol Formaldehyde Composites Filled with Empty Fruit Bunch Fiber

Authors: Sharifah Nabihah Syed Jaafar, Umar Adli Amran, Rasidi Roslan, Chia Chin Hua, Sarani Zakaria

Abstract:

Bio-composites derived from plant fiber and/or bioderived polymer, are likely more ecofriendly and demonstrate competitive performance with petroleum based composites. In this research, the bio phenol-formaldehyde (bio-PF) was used as a matrix and oil palm empty fruit bunch fiber (EFB) as reinforcement. The matrix was synthesized via liquefaction and condensation to enhance the combination of phenol and formaldehyde, during the process. Then, the bio-PF was mixed with different percentage of EFB (5%, 10%, 15% and 20%) and molded at 180oC. The samples that viewed under scanning electron microscopy (SEM) showed an excellent wettability and interaction between EFB and matrix. Samples of 10% EFB gave the optimum properties of impact and hardness meanwhile sample 15% of EFB gave the highest reading of flexural modulus (MOE) and flexural strength (MOR). For thermal stability analysis, it was found that the weight loss and the activation energy (Ea) of the bio-composites samples were decreased as the filler content increased.

Keywords: EFB, liquefaction, phenol formaldehyde, lignin.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2062
3254 Strengthening and Toughening of Dental Porcelain by the Inclusion of an Yttria-Stabilized Zirconia Reinforcing Phase

Authors: Bruno Henriques, Rafaela Santos, Mihaela Buciumeanu, Júlio Matias de Souza, Filipe Silva, Rubens Nascimento, Márcio Fredel

Abstract:

Dental porcelain composites reinforced and toughened by 20 wt.% tetragonal zirconia (3Y-TZP) were processed by hot pressing at 1000°C. Two types of particles were tested: yttriastabilized zirconia (ZrO2–3%Y2O3) agglomerates and pre-sintered yttria-stabilized zirconia (ZrO2–3%Y2O3) particles. The composites as well as the reinforcing particles were analyzed by the means of optical and Scanning Electron Microscopy (SEM), Energy Dispersion Spectroscopy (EDS) and X-Ray Diffraction (XRD). The mechanical properties were obtained by the transverse rupture strength test. Wear tests were also performed on the composites and monolithic porcelain. The best mechanical results were displayed by the porcelain reinforced with the pre-sintered ZrO2–3%Y2O3 agglomerates.

Keywords: Composite, dental restoration, porcelain, strengthening, toughening, wear, zirconia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2068
3253 Mechanical and Thermal Properties Characterisation of Vinyl Ester Matrix Nanocomposites Based On Layered Silicate: Effect of Processing Parameters

Authors: A. I. Alateyah, H. N. Dhakal, Z. Y. Zhang

Abstract:

The mechanical properties including flexural and tensile of neat vinyl ester and polymer based on layered silicate nanocomposite materials of two different methodologies are discussed. Methodology 1 revealed that the addition of layered silicate into the polymer matrix increased the mechanical and thermal properties up to 1 wt.% clay loading. The incorporation of more clay resulted in decreasing the properties which was traced to the existence of aggregation layers. The aggregation layers imparted a negative impact on the overall mechanical and thermal properties. On the other hand, methodology 2 increased the mechanical and thermal properties up to 4 wt.% clay loading. The different amounts of improvements were assigned to the various preparation parameters. Wide Angle X-ray Diffraction, Scanning Electron Microscopy and Transmission Electron Microscopy were utilized in order to characterize the interlamellar structure of nanocomposites.

Keywords: Vinyl ester, nanocomposites, layered silicate, mechanical properties, thermal analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1682
3252 Electrophoretic Deposition of p-Type Bi2Te3 for Thermoelectric Applications

Authors: Tahereh Talebi, Reza Ghomashchi, Pejman Talemi, Sima Aminorroaya

Abstract:

Electrophoretic deposition (EPD) of p-type Bi2Te3 material has been accomplished, and a high quality crack-free thick film has been achieved for thermoelectric (TE) applications. TE generators (TEG) can convert waste heat into electricity, which can potentially solve global warming problems. However, TEG is expensive due to the high cost of materials, as well as the complex and expensive manufacturing process. EPD is a simple and cost-effective method which has been used recently for advanced applications. In EPD, when a DC electric field is applied to the charged powder particles suspended in a suspension, they are attracted and deposited on the substrate with the opposite charge. In this study, it has been shown that it is possible to prepare a TE film using the EPD method and potentially achieve high TE properties at low cost. The relationship between the deposition weight and the EPD-related process parameters, such as applied voltage and time, has been investigated and a linear dependence has been observed, which is in good agreement with the theoretical principles of EPD. A stable EPD suspension of p-type Bi2Te3 was prepared in a mixture of acetone-ethanol with triethanolamine as a stabilizer. To achieve a high quality homogenous film on a copper substrate, the optimum voltage and time of the EPD process was investigated. The morphology and microstructures of the green deposited films have been investigated using a scanning electron microscope (SEM). The green Bi2Te3 films have shown good adhesion to the substrate. In summary, this study has shown that not only EPD of p-type Bi2Te3 material is possible, but its thick film is of high quality for TE applications.

Keywords: Electrical conductivity, electrophoretic deposition, p-type Bi2Te3, thermoelectric materials, thick films.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 953
3251 Absolute Cross Sections of Multi-Photon Ionization of Xenon by the Comparison with Process of its Electron-Impact Ionization

Authors: A. A. Mityureva, A. A. Pastor, P. Yu. Serdobintsev, N. A. Timofeev

Abstract:

Comparison of electron- and photon-impact processes as a method for determination of photo-ionization cross sections is described, discussed and shown to have many attractive features.

Keywords: Transition probability, cross section, photo-ionization, electron-ionization, multi-photon process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2189
3250 Contact Angle Measurement of the Vinyl Ester Matrix Nanocomposites Based On Layered Silicate

Authors: A. I. Alateyah, H. N. Dhakal, Z. Y. Zhang

Abstract:

Contact angle measurement was utilized in order to study the subject of the wettability and surface chemistry of the nanocomposites materials. Water and glycerol droplets were used in this study. The incorporation of layered silicate into the vinyl ester matrix helped to improve the wettability and reduced the θ values of both liquids used. The addition of 2 wt.% clay loading reduced the θ values of water and glycerol by up to 21% and 6% respectively. Likewise, the incorporation of 4 wt.% clay loading reduced the water and glycerol θ values by 49% and 38% respectively. Also this study confirms the findings in the literature regarding the relationship between the intercalation nanocomposites level and the wettability. Wide Angle X-ray Diffraction, Scanning Electron Microscopy and Transmission Electron Microscopy were utilised in order to characterise the interlamellar structure of nanocomposites.

Keywords: Vinyl ester, nanocomposites, layered silicate, characterisations, contact angle measurement, wettability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2067
3249 Nitrogen and Phosphorus Removal from Livestock Wastewater by Zeolite Ion Exchange and Ionizing Radiation

Authors: Tak-Hyun Kim, Youn-Ku Nam, Myunjoo Lee

Abstract:

The ionizing radiation of livestock wastewater for the removal of nitrogen and phosphorus was studied in the presence of a natural zeolite. The feasibility of a combined process of zeolite ion exchange and electron beam irradiation of livestock wastewater was also investigated. The removal efficiencies of NH4 +-N, T-N and T-P were significantly enhanced by electron beam irradiation after zeolite ion exchange as a pre-treatment. The presence of silica zeolite accelerated the decomposition rate of livestock wastewater in the electron beam irradiation process. These results indicate that the combined process of zeolite ion exchange and electron beam irradiation has the potential for the treatment of livestock wastewater

Keywords: Zeolite, electron beam, livestock wastewater, ammonia nitrogen, phosphorus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2514