Strengthening and Toughening of Dental Porcelain by the Inclusion of an Yttria-Stabilized Zirconia Reinforcing Phase
Authors: Bruno Henriques, Rafaela Santos, Mihaela Buciumeanu, Júlio Matias de Souza, Filipe Silva, Rubens Nascimento, Márcio Fredel
Abstract:
Dental porcelain composites reinforced and toughened by 20 wt.% tetragonal zirconia (3Y-TZP) were processed by hot pressing at 1000°C. Two types of particles were tested: yttriastabilized zirconia (ZrO2–3%Y2O3) agglomerates and pre-sintered yttria-stabilized zirconia (ZrO2–3%Y2O3) particles. The composites as well as the reinforcing particles were analyzed by the means of optical and Scanning Electron Microscopy (SEM), Energy Dispersion Spectroscopy (EDS) and X-Ray Diffraction (XRD). The mechanical properties were obtained by the transverse rupture strength test. Wear tests were also performed on the composites and monolithic porcelain. The best mechanical results were displayed by the porcelain reinforced with the pre-sintered ZrO2–3%Y2O3 agglomerates.
Keywords: Composite, dental restoration, porcelain, strengthening, toughening, wear, zirconia.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1100653
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2112References:
[1] Z. Jing, Z. Ke, L. Yihong, S. Zhijian, “Effect of multistep processing techniques on the formation of micro-defects and residual stresses in zirconia dental restoration,” J Prosthodontics, vol. 23, pp.206–210, 2014.
[2] J. Chevalier, L. Gremillard, A.V. Virkar, D.R. Clarke, “The tetragonalmonoclinic transformation in zirconia: lessons learned and future trends”, J Am CeramSoc, vol. 92, no.9, pp. 1901–1920, 2009.
[3] M. Ferraris, P. Rabajoli, F. Brossa, L. Paracchini, “Vacuum plasma spray deposition of titanium particle/glass-ceramic matrix biocomposites,” J. Am. Ceram. Soc. vol.79, no. 6, pp.1515–1520, 1996.
[4] E. Verné, M. Ferraris, A. Ventrella, L. Paracchini, A. Krajewski, A. Ravaglioli, “Sintering and plasma-spray deposition of bioactive glassmatrix composites for biomedical applications”, J. Eur. Ceram. Soc. vol. 18, no. 4, pp. 363–372, 1998.
[5] E. Verné, M. Ferraris, C. Jana, “Pressureless sintering of Bioverit1III/Ti particle biocomposites” J. Eur. Ceram. Soc., vol. 19, pp. 2039–2047, 1999.
[6] E. Verné, M. Ferraris, C. Jana, L. Paracchini, “Bioverit1I base glass/Ti particulate biocomposite: ‘‘in situ’’ vacuum plasma spray deposition”, J. Eur. Ceram. Soc., vol. 20, pp. 473–479, 2000.
[7] T. Kasuga, K. Nakajima, T. Uno, M. Yoshida, Preparation of zirconiatoughened bioactive glass-ceramic composite by sinter-hot isostatic pressing. J. Am. Ceram. Soc., vol. 75, no. 5, 1992.
[8] T. Kasuga, M. Yoshida, T. Uno, K. Nakajima, Preparation of zirconiatoughened bioactive glass-ceramics. J. Mater. Sci., vol. 23, pp. 2255– 2258, 1988.
[9] T. Fusayama, T. Katayoi, S. Nomoto, Corrosion of gold and amalgam placed in contact with each other. J. Dent. Res., vol. 42, pp. 1183–1197, 1963.
[10] E. Verné, R. Defilippi, G Carl, C. Vitale Brovarone, P. Appendino, Viscous flow sintering of bioactive glass-ceramic composites toughened by zirconia particles, J. Eur. Cer. Soc., vol. 23, no. 5, pp. 675-683, 2003.