Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30222
Silver Nanoparticles-Enhanced Luminescence Spectra of Silicon Nanocrystals

Authors: Khamael M. Abualnaja, Lidija Šiller, Benjamin R. Horrocks

Abstract:

Metal-enhanced Luminescence of silicon nanocrystals (SiNCs) was determined using two different particle sizes of silver nanoparticles (AgNPs). SiNCs have been characterized by scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). It is found that the SiNCs are crystalline with an average diameter of 65 nm and FCC lattice. AgNPs were synthesized using photochemical reduction of AgNO3 with sodium dodecyl sulphate (SDS). The enhanced luminescence of SiNCs by AgNPs was evaluated by confocal Raman microspectroscopy. Enhancement up to x9 and x3 times were observed for SiNCs that mixed with AgNPs which have an average particle size of 100 nm and 30 nm, respectively. Silver NPs-enhanced luminescence of SiNCs occurs as a result of the coupling between the excitation laser light and the plasmon bands of AgNPs; thus this intense field at AgNPs surface couples strongly to SiNCs.

Keywords: Luminescence, silicon nanocrystals, surface enhanced raman spectroscopy (SERS), Silver Nanoparticles

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1096775

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2385

References:


[1] T.-H. Chen, K.-W. Kuo, W.-T. Kuo, H.-Y. Huang, Y.-Y. Huang, Quantum Dots Combined with Nanogold to Detect the Delivery Routes of Particles into Cells, Journal of Bionanoscience, 2 (2008) 109-113.
[2] R. Bakalova, Z. Zhelev, H. Ohba, Y. Baba, Quantum Dot-Conjugated Hybridization Probes for Preliminary Screening of siRNA Sequences, Journal of the American Chemical Society, 127 (2005) 11328-11335.
[3] Y. Fu, J. Zhang, J.R. Lakowicz, Silver-enhanced fluorescence emission of single quantum dot nanocomposites, Chemical Communications, (2009) 313-315.
[4] N.A. Harun, M.J. Benning, B.R. Horrocks, D.A. Fulton, Gold nanoparticle-enhanced luminescence of silicon quantum dots coencapsulated in polymer nanoparticles, Nanoscale, 5 (2013) 3817-3827.
[5] F. Erogbogbo, K.T. Yong, I. Roy, G.X. Xu, P.N. Prasad, M.T. Swihart, Biocompatible luminescent silicon quantum dots for imaging of cancer cells, ACS Nano, 2 (2008) 873-878.
[6] N.H. Alsharif, C.E.M. Berger, S.S. Varanasi, Y. Chao, B.R. Horrocks, H.K. Datta, Alkyl-Capped Silicon Nanocrystals Lack Cytotoxicity and have Enhanced Intracellular Accumulation in Malignant Cells via Cholesterol-Dependent Endocytosis, Small, 5 (2009) 221-228.
[7] L.T. Canham, Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers, Applied Physics Letters, 57 (1990) 1046-1048.
[8] A. Cullis, L.T. Canham, P. Calcott, The structural and luminescence properties of porous silicon, J. Appl. Phys., 82 (1997) 909-965.
[9] N. O'Farrell, A. Houlton, B.R. Horrocks, Silicon nanoparticles: applications in cell biology and medicine, Int. J. Nanomed., 1 (2006) 451-472.
[10] Y. Chao, A. Houlton, B.R. Horrocks, M.R.C. Hunt, N.R.J. Poolton, J. Yang, L. Siller, Optical luminescence from alkyl-passivated Si nanocrystals under vacuum ultraviolet excitation: Origin and temperature dependence of the blue and orange emissions, Applied Physics Letters, 88 (2006) 263119-263119-263113.
[11] Y. Chao, S. Krishnamurthy, M. Montalti, L.H. Lie, A. Houlton, B.R. Horrocks, L. Kjeldgaard, V.R. Dhanak, M.R.C. Hunt, L. Šiller, Reactions and luminescence in passivated Si nanocrystallites induced by vacuum ultraviolet and soft-x-ray photons, Journal of Applied Physics, 98 (2005) -.
[12] R.J. Rostron, Y. Chao, G. Roberts, B.R. Horrocks, Simultaneous photocharging and luminescence intermittency in silicon nanocrystals, Journal of Physics Condensed Matter, 21 (2009).
[13] A.M. Smith, S. Nie, Semiconductor Nanocrystals: Structure, Properties, and Band Gap Engineering, Accounts of Chemical Research, 43 (2009) 190-200.
[14] A.M. Hartel, S. Gutsch, D. Hiller, C. Kübel, N. Zakharov, P. Werner, M. Zacharias, Silicon nanocrystals prepared by plasma enhanced chemical vapor deposition: Importance of parasitic oxidation for third generation photovoltaic applications, Applied Physics Letters, 101 (2012) -.
[15] T. Fischer, V. Petrova-Koch, K. Shcheglov, M.S. Brandt, F. Koch, Continuously tunable photoluminescence from Si+-implanted and thermally annealed SiO2 films, Thin Solid Films, 276 (1996) 100-103.
[16] M.V. Wolkin, J. Jorne, P.M. Fauchet, G. Allan, C. Delerue, Electronic States and Luminescence in Porous Silicon Quantum Dots: The Role of Oxygen, Physical Review Letters, 82 (1999) 197-200.
[17] J.S. Biteen, N.S. Lewis, H.A. Atwater, H. Mertens, A. Polman, Spectral tuning of plasmon-enhanced silicon quantum dot luminescence, Applied Physics Letters, 88 (2006) 131109-131109-131103.
[18] J.S. Biteen, D. Pacifici, N.S. Lewis, H.A. Atwater, Enhanced Radiative Emission Rate and Quantum Efficiency in Coupled Silicon Nanocrystal- Nanostructured Gold Emitters, Nano Letters, 5 (2005) 1768-1773.
[19] J.S. Biteen, L.A. Sweatlock, H. Mertens, N.S. Lewis, A. Polman, H.A. Atwater, Plasmon-Enhanced Photoluminescence of Silicon Quantum Dots: Simulation and Experiment, The Journal of Physical Chemistry C, 111 (2007) 13372-13377.
[20] H. Li, D. Xu, G. Guo, L. Gui, Y. Tang, X. Ai, Z. Sun, X. Zhang, G.G. Qin, Intense and stable blue-violet emission from porous silicon modified with alkyls, Journal of Applied Physics, 88 (2000) 4446-4448.
[21] J.C. Vial, A. Bsiesy, F. Gaspard, R. Hérino, M. Ligeon, F. Muller, R. Romestain, R.M. Macfarlane, Mechanisms of visible-light emission from electro-oxidized porous silicon, Physical Review B, 45 (1992) 14171-14176.
[22] Y.H. Xie, W.L. Wilson, F.M. Ross, J.A. Mucha, E.A. Fitzgerald, J.M. Macaulay, T.D. Harris, Luminescence and structural study of porous silicon films, Journal of Applied Physics, 71 (1992) 2403-2407.
[23] D.I. Kovalev, I.D. Yaroshetzkii, T. Muschik, V. Petrova‐Koch, F. Koch, Fast and slow visible luminescence bands of oxidized porous Si, Applied Physics Letters, 64 (1994) 214-216.
[24] J. Linnros, N. Lalic, A. Galeckas, V. Grivickas, Analysis of the stretched exponential photoluminescence decay from nanometer-sized silicon crystals in SiO2, Journal of Applied Physics, 86 (1999) 6128-6134.
[25] G.M. Credo, M.D. Mason, S.K. Buratto, External quantum efficiency of single porous silicon nanoparticles, Applied Physics Letters, 74 (1999) 1978-1980.
[26] D.M. Schaadt, B. Feng, E.T. Yu, Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles, Applied Physics Letters, 86 (2005) -.
[27] H. Mertens, J.S. Biteen, H.A. Atwater, A. Polman, Polarization- Selective Plasmon-Enhanced Silicon Quantum-Dot Luminescence, Nano Letters, 6 (2006) 2622-2625.
[28] W. Trabesinger, A. Kramer, M. Kreiter, B. Hecht, U.P. Wild, Singlemolecule near-field optical energy transfer microscopy, Applied Physics Letters, 81 (2002) 2118-2120.
[29] A. Kramer, W. Trabesinger, B. Hecht, U. Wild, Optical near-field enhancement at a metal tip probed by a single fluorophore, Applied Physics Letters, 80 (2002) 1652-1654.
[30] E. Dulkeith, M. Ringler, T.A. Klar, J. Feldmann, A. Muñoz Javier, W.J. Parak, Gold Nanoparticles Quench Fluorescence by Phase Induced Radiative Rate Suppression, Nano Letters, 5 (2005) 585-589.
[31] P. Anger, P. Bharadwaj, L. Novotny, Enhancement and Quenching of Single-Molecule Fluorescence, Physical Review Letters, 96 (2006) 113002.
[32] K. Ray, R. Badugu, J.R. Lakowicz, Metal-Enhanced Fluorescence from CdTe Nanocrystals: A Single-Molecule Fluorescence Study, Journal of the American Chemical Society, 128 (2006) 8998-8999.
[33] K. Okamoto, S. Vyawahare, A. Scherer, Surface-plasmon enhanced bright emission from CdSe quantum-dot nanocrystals, Journal of the Optical Society of America B, 23 (2006) 1674-1678.
[34] O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Nabiev, U. Woggon, M. Artemyev, Enhanced Luminescence of CdSe Quantum Dots on Gold Colloids, Nano Letters, 2 (2002) 1449-1452.
[35] M. Rycenga, C.M. Cobley, J. Zeng, W. Li, C.H. Moran, Q. Zhang, D. Qin, Y. Xia, Controlling the Synthesis and Assembly of Silver Nanostructures for Plasmonic Applications, Chemical Reviews, 111 (2011) 3669-3712.
[36] J. Gersten, A. Nitzan, Spectroscopic properties of molecules interacting with small dielectric particles, The Journal of Chemical Physics, 75 (1981) 1139-1152.
[37] A.D. McFarland, M.A. Young, J.A. Dieringer, R.P. Van Duyne, Wavelength-Scanned Surface-Enhanced Raman Excitation Spectroscopy, The Journal of Physical Chemistry B, 109 (2005) 11279- 11285.
[38] B. Wiley, Y. Sun, B. Mayers, Y. Xia, Shape-Controlled Synthesis of Metal Nanostructures: The Case of Silver, Chemistry – A European Journal, 11 (2005) 454-463.
[39] A.M. Schwartzberg, J.Z. Zhang, Novel Optical Properties and Emerging Applications of Metal Nanostructures†, The Journal of Physical Chemistry C, 112 (2008) 10323-10337.
[40] W.L. Barnes, A. Dereux, T.W. Ebbesen, Surface plasmon subwavelength optics, Nature, 424 (2003) 824-830.
[41] W.A. Murray, W.L. Barnes, Plasmonic Materials, Advanced Materials, 19 (2007) 3771-3782.
[42] S. Link, M.B. Mohamed, M.A. El-Sayed, Simulation of the Optical Absorption Spectra of Gold Nanorods as a Function of Their Aspect Ratio and the Effect of the Medium Dielectric Constant, The Journal of Physical Chemistry B, 103 (1999) 3073-3077.
[43] S. Lal, S. Link, N.J. Halas, Nano-optics from sensing to waveguiding, Nat Photon, 1 (2007) 641-648.
[44] B. Wiley, Y. Sun, Y. Xia, Synthesis of Silver Nanostructures with Controlled Shapes and Properties, Accounts of Chemical Research, 40 (2007) 1067-1076.
[45] A.L. Pyayt, B. Wiley, Y. Xia, A. Chen, L. Dalton, Integration of photonic and silver nanowire plasmonic waveguides, Nat Nano, 3 (2008) 660-665.
[46] M. Rang, A.C. Jones, F. Zhou, Z.-Y. Li, B.J. Wiley, Y. Xia, M.B. Raschke, Optical Near-Field Mapping of Plasmonic Nanoprisms, Nano Letters, 8 (2008) 3357-3363.
[47] E.L. Ru, P. Etchegoin, Principles of Surface-Enhanced Raman Spectroscopy: and related plasmonic effects, Elsevier Science, 2008.
[48] G.A. Bhaduri, R. Little, R.B. Khomane, S.U. Lokhande, B.D. Kulkarni, B.G. Mendis, L. Šiller, Green synthesis of silver nanoparticles using sunlight, Journal of Photochemistry and Photobiology A: Chemistry, 258 (2013) 1-9.
[49] L.H. Lie, M. Duerdin, E.M. Tuite, A. Houlton, B.R. Horrocks, Preparation and characterisation of luminescent alkylated-silicon quantum dots, Journal of Electroanalytical Chemistry, 538–539 (2002) 183-190.
[50] Y. Mochizuki, M. Fujii, S. Hayashi, T. Tsuruoka, K. Akamatsu, Enhancement of photoluminescence from silicon nanocrystals by metal nanostructures made by nanosphere lithography, J. Appl. Phys., 106 (2009).
[51] N.A. Harun, B.R. Horrocks, D.A. Fulton, Enhanced Raman and luminescence spectra from co-encapsulated silicon quantum dots and Au-Ag nanoalloys, Chemical Communications, (2014).
[52] M. Picquart, Vibrational model behavior of SDS aqueous solutions studied by Raman scattering, The Journal of Physical Chemistry, 90 (1986) 243-250.
[53] CDS. Chemical Database Service, Daresbury, in, 2014.
[54] D.A. Shirley, High-Resolution X-Ray Photoemission Spectrum of the Valence Bands of Gold, Physical Review B, 5 (1972) 4709-4714.
[55] S.M. Barnett, N. Harris, J.J. Baumberg, Molecules in the mirror: how SERS backgrounds arise from the quantum method of images, Physical Chemistry Chemical Physics, 16 (2014) 6544-6549.
[56] L.J. Bellamy, The Infra-red Spectra of Complex Molecules, Chapman and Hall, 1975.
[57] Y. Chao, L. Siller, S. Krishnamurthy, P.R. Coxon, U. Bangert, M. Gass, L. Kjeldgaard, S.N. Patole, L.H. Lie, N. O'Farrell, T.A. Alsop, A. Houlton, B.R. Horrocks, Evaporation and deposition of alkyl-capped silicon nanocrystals in ultrahigh vacuum, Nat Nano, 2 (2007) 486-489.
[58] K.A. Littau, P.J. Szajowski, A.J. Muller, A.R. Kortan, L.E. Brus, A luminescent silicon nanocrystal colloid via a high-temperature aerosol reaction, The Journal of Physical Chemistry, 97 (1993) 1224-1230.
[59] T. Mohanty, N.C. Mishra, A. Pradhan, D. Kanjilal, Luminescence from Si nanocrystal grown in fused silica using keV and MeV beam, Surface and Coatings Technology, 196 (2005) 34-38.
[60] G. Faraci, S. Gibilisco, P. Russo, A.R. Pennisi, S. La Rosa, Modified Raman confinement model for Si nanocrystals, Physical Review B, 73 (2006).
[61] Y. Duan, J.F. Kong, W.Z. Shen, Raman investigation of silicon nanocrystals: quantum confinement and laser-induced thermal effects, Journal of Raman Spectroscopy, 43 (2012) 756-760.
[62] L.V. Mercaldo, E.M. Esposito, P.D. Veneri, G. Fameli, S. Mirabella, G. Nicotra, First and second-order Raman scattering in Si nanostructures within silicon nitride, Applied Physics Letters, 97 (2010).
[63] G. Cazzolli, S. Caponi, A. Defant, C.M.C. Gambi, S. Marchetti, M. Mattarelli, M. Montagna, B. Rossi, F. Rossi, G. Viliani, Aggregation processes in micellar solutions: a Raman study, Journal of Raman Spectroscopy, 43 (2012) 1877-1883.
[64] F.M. Dickinson, T.A. Alsop, N. Al-Sharif, C.E.M. Berger, H.K. Datta, L. Siller, Y. Chao, E.M. Tuite, A. Houlton, B.R. Horrocks, Dispersions of alkyl-capped silicon nanocrystals in aqueous media: photoluminescence and ageing, Analyst, 133 (2008) 1573-1580.
[65] K. Žídek, I. Pelant, F. Trojánek, P. Malý, P. Gilliot, B. Hönerlage, J. Oberlé, L. Šiller, R. Little, B.R. Horrocks, Ultrafast stimulated emission due to quasidirect transitions in silicon nanocrystals, Physical Review B, 84 (2011) 085321.
[66] K. ídek, F. Trojánek, P. Malý, L. Ondi, I. Pelant, K. Dohnalová, L. iller, R. Little, B.R. Horrocks, Femtosecond luminescence spectroscopy of core states in silicon nanocrystals, Optics Express, 18 (2010) 25241- 25249.
[67] S. Chandra, J. Doran, S.J. McCormack, M. Kennedy, A.J. Chatten, Enhanced quantum dot emission for luminescent solar concentrators using plasmonic interaction, Sol. Energy Mater. Sol. Cells, 98 (2012) 385-390.