Search results for: Reactive generation capability curve and Reactive power ancillary service.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5702

Search results for: Reactive generation capability curve and Reactive power ancillary service.

32 In vitro Study of Laser Diode Radiation Effect on the Photo-Damage of MCF-7 and MCF-10A Cell Clusters

Authors: A. Dashti, M. Eskandari, L. Farahmand, P. Parvin, A. Jafargholi

Abstract:

Breast Cancer is one of the most considerable diseases in the United States and other countries and is the second leading cause of death in women. Common breast cancer treatments would lead to adverse side effects such as loss of hair, nausea, and weakness. These complications arise because these cancer treatments damage some healthy cells while eliminating the cancer cells. In an effort to address these complications, laser radiation was utilized and tested as a targeted cancer treatment for breast cancer. In this regard, tissue engineering approaches are being employed by using an electrospun scaffold in order to facilitate the growth of breast cancer cells. Polycaprolacton (PCL) was used as a material for scaffold fabricating because of its biocompatibility, biodegradability, and supporting cell growth. The specific breast cancer cells have the ability to create a three-dimensional cell cluster due to the spontaneous accumulation of cells in the porosity of the scaffold under some specific conditions. Therefore, we are looking for a higher density of porosity and larger pore size. Fibers showed uniform diameter distribution and final scaffold had optimum characteristics with approximately 40% porosity. The images were taken by SEM and the density and the size of the porosity were determined with the Image. After scaffold preparation, it has cross-linked by glutaraldehyde. Then, it has been washed with glycine and phosphate buffer saline (PBS), in order to neutralize the residual glutaraldehyde. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromidefor (MTT) results have represented approximately 91.13% viability of the scaffolds for cancer cells. In order to create a cluster, Michigan Cancer Foundation-7 (MCF-7, breast cancer cell line) and Michigan Cancer Foundation-10A (MCF-10A, human mammary epithelial cell line) cells were cultured on the scaffold in 24 well plate for five days. Then, we have exposed the cluster to the laser diode 808 nm radiation to investigate the effect of laser on the tumor with different power and time. Under the same conditions, cancer cells lost their viability more than the healthy ones. In conclusion, laser therapy is a viable method to destroy the target cells and has a minimum effect on the healthy tissues and cells and it can improve the other method of cancer treatments limitations.

Keywords: Breast cancer, electrospun scaffold, polycaprolacton, laser diode, cancer treatment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 752
31 Gamification of eHealth Business Cases to Enhance Rich Learning Experience

Authors: Kari Björn

Abstract:

Introduction of games has expanded the application area of computer-aided learning tools to wide variety of age groups of learners. Serious games engage the learners into a real-world -type of simulation and potentially enrich the learning experience. Institutional background of a Bachelor’s level engineering program in Information and Communication Technology is introduced, with detailed focus on one of its majors, Health Technology. As part of a Customer Oriented Software Application thematic semester, one particular course of “eHealth Business and Solutions” is described and reflected in a gamified framework. Learning a consistent view into vast literature of business management, strategies, marketing and finance in a very limited time enforces selection of topics relevant to the industry. Health Technology is a novel and growing industry with a growing sector in consumer wearable devices and homecare applications. The business sector is attracting new entrepreneurs and impatient investor funds. From engineering education point of view the sector is driven by miniaturizing electronics, sensors and wireless applications. However, the market is highly consumer-driven and usability, safety and data integrity requirements are extremely high. When the same technology is used in analysis or treatment of patients, very strict regulatory measures are enforced. The paper introduces a course structure using gamification as a tool to learn the most essential in a new market: customer value proposition design, followed by a market entry game. Students analyze the existing market size and pricing structure of eHealth web-service market and enter the market as a steering group of their company, competing against the legacy players and with each other. The market is growing but has its rules of demand and supply balance. New products can be developed with an R&D-investment, and targeted to market with unique quality- and price-combinations. Product cost structure can be improved by investing to enhanced production capacity. Investments can be funded optionally by foreign capital. Students make management decisions and face the dynamics of the market competition in form of income statement and balance sheet after each decision cycle. The focus of the learning outcome is to understand customer value creation to be the source of cash flow. The benefit of gamification is to enrich the learning experience on structure and meaning of financial statements. The paper describes the gamification approach and discusses outcomes after two course implementations. Along the case description of learning challenges, some unexpected misconceptions are noted. Improvements of the game or the semi-gamified teaching pedagogy are discussed. The case description serves as an additional support to new game coordinator, as well as helps to improve the method. Overall, the gamified approach has helped to engage engineering student to business studies in an energizing way.

Keywords: Engineering education, integrated curriculum, learning experience, learning outcomes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 915
30 Assessing the Theoretical Suitability of Sentinel-2 and WorldView-3 Data for Hydrocarbon Mapping of Spill Events, Using HYSS

Authors: K. Tunde Olagunju, C. Scott Allen, F.D. (Freek) van der Meer

Abstract:

Identification of hydrocarbon oil in remote sensing images is often the first step in monitoring oil during spill events. Most remote sensing methods adopt techniques for hydrocarbon identification to achieve detection in order to model an appropriate cleanup program. Identification on optical sensors does not only allow for detection but also for characterization and quantification. Until recently, in optical remote sensing, quantification and characterization were only potentially possible using high-resolution laboratory and airborne imaging spectrometers (hyperspectral data). Unlike multispectral, hyperspectral data are not freely available, as this data category is mainly obtained via airborne survey at present. In this research, two operational high-resolution multispectral satellites (WorldView-3 and Sentinel-2) are theoretically assessed for their suitability for hydrocarbon characterization, using the Hydrocarbon Spectra Slope model (HYSS). This method utilized the two most persistent hydrocarbon diagnostic/absorption features at 1.73 µm and 2.30 µm for hydrocarbon mapping on multispectral data. In this research, spectra measurement of seven different hydrocarbon oils (crude and refined oil) taken on 10 different substrates with the use of laboratory ASD Fieldspec were convolved to Sentinel-2 and WorldView-3 resolution, using their full width half maximum (FWHM) parameter. The resulting hydrocarbon slope values obtained from the studied samples enable clear qualitative discrimination of most hydrocarbons, despite the presence of different background substrates, particularly on WorldView-3. Due to close conformity of central wavelengths and narrow bandwidths to key hydrocarbon bands used in HYSS, the statistical significance for qualitative analysis on WorldView-3 sensors for all studied hydrocarbon oil returned with 95% confidence level (P-value ˂ 0.01), except for Diesel. Using multifactor analysis of variance (MANOVA), the discriminating power of HYSS is statistically significant for most hydrocarbon-substrate combinations on Sentinel-2 and WorldView-3 FWHM, revealing the potential of these two operational multispectral sensors as rapid response tools for hydrocarbon mapping. One notable exception is highly transmissive hydrocarbons on Sentinel-2 data due to the non-conformity of spectral bands with key hydrocarbon absorptions and the relatively coarse bandwidth (> 100 nm).

Keywords: hydrocarbon, oil spill, remote sensing, hyperspectral, multispectral, hydrocarbon – substrate combination, Sentinel-2, WorldView-3

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 630
29 Discrepant Views of Social Competence and Links with Social Phobia

Authors: Pamela-Zoe Topalli, Niina Junttila, Päivi M. Niemi, Klaus Ranta

Abstract:

Adolescents’ biased perceptions about their social competence (SC), whether negatively or positively, serve to influence their socioemotional adjustment such as early feelings of social phobia (nowadays referred to as Social Anxiety Disorder-SAD). Despite the importance of biased self-perceptions in adolescents’ psychosocial adjustment, the extent to which discrepancies between self- and others’ evaluations of one’s SC are linked to social phobic symptoms remains unclear in the literature. This study examined the perceptual discrepancy profiles between self- and peers’ as well as between self- and teachers’ evaluations of adolescents’ SC and the interrelations of these profiles with self-reported social phobic symptoms. The participants were 390 3rd graders (15 years old) of Finnish lower secondary school (50.8% boys, 49.2% girls). In contrast with variable-centered approaches that have mainly been used by previous studies when focusing on this subject, this study used latent profile analysis (LPA), a person-centered approach which can provide information regarding risk profiles by capturing the heterogeneity within a population and classifying individuals into groups. LPA revealed the following five classes of discrepancy profiles: i) extremely negatively biased perceptions of SC, ii) negatively biased perceptions of SC, iii) quite realistic perceptions of SC, iv) positively biased perceptions of SC, and v) extremely positively biased perceptions of SC. Adolescents with extremely negatively biased perceptions and negatively biased perceptions of their own SC reported the highest number of social phobic symptoms. Adolescents with quite realistic, positively biased and extremely positively biased perceptions reported the lowest number of socio-phobic symptoms. The results point out the negatively and the extremely negatively biased perceptions as possible contributors to social phobic symptoms. Moreover, the association of quite realistic perceptions with low number of social phobic symptoms indicates its potential protective power against social phobia. Finally, positively and extremely positively biased perceptions of SC are negatively associated with social phobic symptoms in this study. However, the profile of extremely positively biased perceptions might be linked as well with the existence of externalizing problems such as antisocial behavior (e.g. disruptive impulsivity). The current findings highlight the importance of considering discrepancies between self- and others’ perceptions of one’s SC in clinical and research efforts. Interventions designed to prevent or moderate social phobic symptoms need to take into account individual needs rather than aiming for uniform treatment. Implications and future directions are discussed.

Keywords: Adolescence, latent profile analysis, perceptual discrepancies, social competence, social phobia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 846
28 Ethnic Andean Concepts of Health and Illness in the Post-Colombian World and Its Relevance Today

Authors: Elizabeth J. Currie, Fernando Ortega Perez

Abstract:

—‘MEDICINE’ is a new project funded under the EC Horizon 2020 Marie-Sklodowska Curie Actions, to determine concepts of health and healing from a culturally specific indigenous context, using a framework of interdisciplinary methods which integrates archaeological-historical, ethnographic and modern health sciences approaches. The study will generate new theoretical and methodological approaches to model how peoples survive and adapt their traditional belief systems in a context of alien cultural impacts. In the immediate wake of the conquest of Peru by invading Spanish armies and ideology, native Andeans responded by forming the Taki Onkoy millenarian movement, which rejected European philosophical and ontological teachings, claiming “you make us sick”. The study explores how people’s experience of their world and their health beliefs within it, is fundamentally shaped by their inherent beliefs about the nature of being and identity in relation to the wider cosmos. Cultural and health belief systems and related rituals or behaviors sustain a people’s sense of identity, wellbeing and integrity. In the event of dislocation and persecution these may change into devolved forms, which eventually inter-relate with ‘modern’ biomedical systems of health in as yet unidentified ways. The development of new conceptual frameworks that model this process will greatly expand our understanding of how people survive and adapt in response to cultural trauma. It will also demonstrate the continuing role, relevance and use of TM in present-day indigenous communities. Studies will first be made of relevant pre-Colombian material culture, and then of early colonial period ethnohistorical texts which document the health beliefs and ritual practices still employed by indigenous Andean societies at the advent of the 17th century Jesuit campaigns of persecution - ‘Extirpación de las Idolatrías’. Core beliefs drawn from these baseline studies will then be used to construct a questionnaire about current health beliefs and practices to be taken into the study population of indigenous Quechua peoples in the northern Andean region of Ecuador. Their current systems of knowledge and medicine have evolved within complex historical contexts of both the conquest by invading Inca armies in the late 15th century, followed a generation later by Spain, into new forms. A new model will be developed of contemporary  Andean concepts of health, illness and healing demonstrating  the way these have changed through time. With this, a ‘policy tool’ will be constructed as a bridhging facility into contemporary global scenarios relevant to other Indigenous, First Nations, and migrant peoples to provide a means through which their traditional health beliefs and current needs may be more appropriately understood and met. This paper presents findings from the first analytical phases of the work based upon the study of the literature and the archaeological records. The study offers a novel perspective and methods in the development policies sensitive to indigenous and minority people’s health needs.

Keywords: Andean ethnomedicine, andean health beliefs, health beliefs models, traditional medicine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1254
27 Thermal Evaluation of Printed Circuit Board Design Options and Voids in Solder Interface by a Simulation Tool

Authors: B. Arzhanov, A. Correia, P. Delgado, J. Meireles

Abstract:

Quad Flat No-Lead (QFN) packages have become very popular for turners, converters and audio amplifiers, among others applications, needing efficient power dissipation in small footprints. Since semiconductor junction temperature (TJ) is a critical parameter in the product quality. And to ensure that die temperature does not exceed the maximum allowable TJ, a thermal analysis conducted in an earlier development phase is essential to avoid repeated re-designs process with huge losses in cost and time. A simulation tool capable to estimate die temperature of components with QFN package was developed. Allow establish a non-empirical way to define an acceptance criterion for amount of voids in solder interface between its exposed pad and Printed Circuit Board (PCB) to be applied during industrialization process, and evaluate the impact of PCB designs parameters. Targeting PCB layout designer as an end user for the application, a user-friendly interface (GUI) was implemented allowing user to introduce design parameters in a convenient and secure way and hiding all the complexity of finite element simulation process. This cost effective tool turns transparent a simulating process and provides useful outputs after acceptable time, which can be adopted by PCB designers, preventing potential risks during the design stage and make product economically efficient by not oversizing it. This article gathers relevant information related to the design and implementation of the developed tool, presenting a parametric study conducted with it. The simulation tool was experimentally validated using a Thermal-Test-Chip (TTC) in a QFN open-cavity, in order to measure junction temperature (TJ) directly on the die under controlled and knowing conditions. Providing a short overview about standard thermal solutions and impacts in exposed pad packages (i.e. QFN), accurately describe the methods and techniques that the system designer should use to achieve optimum thermal performance, and demonstrate the effect of system-level constraints on the thermal performance of the design.

Keywords: Quad Flat No-Lead packages, exposed pads, junction temperature, thermal management and measurements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1870
26 Statistical Modeling of Constituents in Ash Evolved From Pulverized Coal Combustion

Authors: Esam Jassim

Abstract:

Industries using conventional fossil fuels have an  interest in better understanding the mechanism of particulate  formation during combustion since such is responsible for emission  of undesired inorganic elements that directly impact the atmospheric  pollution level. Fine and ultrafine particulates have tendency to  escape the flue gas cleaning devices to the atmosphere. They also  preferentially collect on surfaces in power systems resulting in  ascending in corrosion inclination, descending in the heat transfer  thermal unit, and severe impact on human health. This adverseness  manifests particularly in the regions of world where coal is the  dominated source of energy for consumption.  This study highlights the behavior of calcium transformation as  mineral grains verses organically associated inorganic components  during pulverized coal combustion. The influence of existing type of  calcium on the coarse, fine and ultrafine mode formation mechanisms  is also presented. The impact of two sub-bituminous coals on particle  size and calcium composition evolution during combustion is to be  assessed. Three mixed blends named Blends 1, 2, and 3 are selected  according to the ration of coal A to coal B by weight. Calcium  percentage in original coal increases as going from Blend 1 to 3.  A mathematical model and a new approach of describing  constituent distribution are proposed. Analysis of experiments of  calcium distribution in ash is also modeled using Poisson distribution.  A novel parameter, called elemental index λ, is introduced as a  measuring factor of element distribution.  Results show that calcium in ash that originally in coal as mineral  grains has index of 17, whereas organically associated calcium  transformed to fly ash shown to be best described when elemental  index λ is 7.  As an alkaline-earth element, calcium is considered the  fundamental element responsible for boiler deficiency since it is the  major player in the mechanism of ash slagging process. The  mechanism of particle size distribution and mineral species of ash  particles are presented using CCSEM and size-segregated ash  characteristics. Conclusions are drawn from the analysis of  pulverized coal ash generated from a utility-scale boiler.

 

Keywords: Calcium transformation, Coal Combustion, Inorganic Element, Poisson distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1921
25 Vibroacoustic Modulation of Wideband Vibrations and Its Possible Application for Windmill Blade Diagnostics

Authors: Abdullah Alnutayfat, Alexander Sutin, Dong Liu

Abstract:

Wind turbine has become one of the most popular energy production methods. However, failure of blades and maintenance costs evolve into significant issues in the wind power industry, so it is essential to detect the initial blade defects to avoid the collapse of the blades and structure. This paper aims to apply modulation of high-frequency blade vibrations by low-frequency blade rotation, which is close to the known Vibro-Acoustic Modulation (VAM) method. The high-frequency wideband blade vibration is produced by the interaction of the surface blades with the environment air turbulence, and the low-frequency modulation is produced by alternating bending stress due to gravity. The low-frequency load of rotational wind turbine blades ranges between 0.2-0.4 Hz and can reach up to 2 Hz for strong wind. The main difference between this study and previous ones on VAM methods is the use of a wideband vibration signal from the blade's natural vibrations. Different features of the VAM are considered using a simple model of breathing crack. This model considers the simple mechanical oscillator, where the parameters of the oscillator are varied due to low-frequency blade rotation. During the blade's operation, the internal stress caused by the weight of the blade modifies the crack's elasticity and damping. The laboratory experiment using steel samples demonstrates the possibility of VAM using a probe wideband noise signal. A cycle load with a small amplitude was used as a pump wave to damage the tested sample, and a small transducer generated a wideband probe wave. The received signal demodulation was conducted using the Detecting of Envelope Modulation on Noise (DEMON) approach. In addition, the experimental results were compared with the modulation index (MI) technique regarding the harmonic pump wave. The wideband and traditional VAM methods demonstrated similar sensitivity for earlier detection of invisible cracks. Importantly, employing a wideband probe signal with the DEMON approach speeds up and simplifies testing since it eliminates the need to conduct tests repeatedly for various harmonic probe frequencies and to adjust the probe frequency.

Keywords: Damage detection, turbine blades, Vibro-Acoustic Structural Health Monitoring, SHM, Detecting of Envelope Modulation on Noise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 359
24 A Comparison of Inverse Simulation-Based Fault Detection in a Simple Robotic Rover with a Traditional Model-Based Method

Authors: Murray L. Ireland, Kevin J. Worrall, Rebecca Mackenzie, Thaleia Flessa, Euan McGookin, Douglas Thomson

Abstract:

Robotic rovers which are designed to work in extra-terrestrial environments present a unique challenge in terms of the reliability and availability of systems throughout the mission. Should some fault occur, with the nearest human potentially millions of kilometres away, detection and identification of the fault must be performed solely by the robot and its subsystems. Faults in the system sensors are relatively straightforward to detect, through the residuals produced by comparison of the system output with that of a simple model. However, faults in the input, that is, the actuators of the system, are harder to detect. A step change in the input signal, caused potentially by the loss of an actuator, can propagate through the system, resulting in complex residuals in multiple outputs. These residuals can be difficult to isolate or distinguish from residuals caused by environmental disturbances. While a more complex fault detection method or additional sensors could be used to solve these issues, an alternative is presented here. Using inverse simulation (InvSim), the inputs and outputs of the mathematical model of the rover system are reversed. Thus, for a desired trajectory, the corresponding actuator inputs are obtained. A step fault near the input then manifests itself as a step change in the residual between the system inputs and the input trajectory obtained through inverse simulation. This approach avoids the need for additional hardware on a mass- and power-critical system such as the rover. The InvSim fault detection method is applied to a simple four-wheeled rover in simulation. Additive system faults and an external disturbance force and are applied to the vehicle in turn, such that the dynamic response and sensor output of the rover are impacted. Basic model-based fault detection is then employed to provide output residuals which may be analysed to provide information on the fault/disturbance. InvSim-based fault detection is then employed, similarly providing input residuals which provide further information on the fault/disturbance. The input residuals are shown to provide clearer information on the location and magnitude of an input fault than the output residuals. Additionally, they can allow faults to be more clearly discriminated from environmental disturbances.

Keywords: Fault detection, inverse simulation, rover, ground robot.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 903
23 Detailed Sensitive Detection of Impurities in Waste Engine Oils Using Laser Induced Breakdown Spectroscopy, Rotating Disk Electrode Optical Emission Spectroscopy and Surface Plasmon Resonance

Authors: Cherry Dhiman, Ayushi Paliwal, Mohd. Shahid Khan, M. N. Reddy, Vinay Gupta, Monika Tomar

Abstract:

The laser based high resolution spectroscopic experimental techniques such as Laser Induced Breakdown Spectroscopy (LIBS), Rotating Disk Electrode Optical Emission spectroscopy (RDE-OES) and Surface Plasmon Resonance (SPR) have been used for the study of composition and degradation analysis of used engine oils. Engine oils are mainly composed of aliphatic and aromatics compounds and its soot contains hazardous components in the form of fine, coarse and ultrafine particles consisting of wear metal elements. Such coarse particulates matter (PM) and toxic elements are extremely dangerous for human health that can cause respiratory and genetic disorder in humans. The combustible soot from thermal power plants, industry, aircrafts, ships and vehicles can lead to the environmental and climate destabilization. It contributes towards global pollution for land, water, air and global warming for environment. The detection of such toxicants in the form of elemental analysis is a very serious issue for the waste material management of various organic, inorganic hydrocarbons and radioactive waste elements. In view of such important points, the current study on used engine oils was performed. The fundamental characterization of engine oils was conducted by measuring water content and kinematic viscosity test that proves the crude analysis of the degradation of used engine oils samples. The microscopic quantitative and qualitative analysis was presented by RDE-OES technique which confirms the presence of elemental impurities of Pb, Al, Cu, Si, Fe, Cr, Na and Ba lines for used waste engine oil samples in few ppm. The presence of such elemental impurities was confirmed by LIBS spectral analysis at various transition levels of atomic line. The recorded transition line of Pb confirms the maximum degradation which was found in used engine oil sample no. 3 and 4. Apart from the basic tests, the calculations for dielectric constants and refractive index of the engine oils were performed via SPR analysis.

Keywords: Laser induced breakdown spectroscopy, rotating disk electrode optical emission spectroscopy, surface plasmon resonance, ICCD spectrometer, Nd:YAG laser, engine oil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 703
22 Recycling of Sintered NdFeB Magnet Waste via Oxidative Roasting and Selective Leaching

Authors: W. Kritsarikan, T. Patcharawit, T. Yingnakorn, S. Khumkoa

Abstract:

Neodymium-iron-boron (NdFeB) magnets classified as high-power magnets are widely used in various applications such as automotive, electrical and medical devices. Because significant amounts of rare earth metals will be subjected to shortages in the future, therefore domestic NdFeB magnet waste recycling should therefore be developed in order to reduce social and environmental impacts towards a circular economy. Each type of wastes has different characteristics and compositions. As a result, these directly affect recycling efficiency as well as types and purity of the recyclable products. This research, therefore, focused on the recycling of manufacturing NdFeB magnet waste obtained from the sintering stage of magnet production and the waste contained 23.6% Nd, 60.3% Fe and 0.261% B in order to recover high purity neodymium oxide (Nd2O3) using hybrid metallurgical process via oxidative roasting and selective leaching techniques. The sintered NdFeB waste was first ground to under 70 mesh prior to oxidative roasting at 550–800 oC to enable selective leaching of neodymium in the subsequent leaching step using H2SO4 at 2.5 M over 24 h. The leachate was then subjected to drying and roasting at 700–800 oC prior to precipitation by oxalic acid and calcination to obtain Nd2O3 as the recycling product. According to XRD analyses, it was found that increasing oxidative roasting temperature led to an increasing amount of hematite (Fe2O3) as the main composition with a smaller amount of magnetite (Fe3O4) found. Peaks of Nd2O3 were also observed in a lesser amount. Furthermore, neodymium iron oxide (NdFeO3) was present and its XRD peaks were pronounced at higher oxidative roasting temperatures. When proceeded to acid leaching and drying, iron sulfate and neodymium sulfate were mainly obtained. After the roasting step prior to water leaching, iron sulfate was converted to form Fe2O3 as the main compound, while neodymium sulfate remained in the ingredient. However, a small amount of Fe3O4 was still detected by XRD. The higher roasting temperature at 800 oC resulted in a greater Fe2O3 to Nd2(SO4)3 ratio, indicating a more effective roasting temperature. Iron oxides were subsequently water leached and filtered out while the solution contained mainly neodymium sulfate. Therefore, low oxidative roasting temperature not exceeding 600 oC followed by acid leaching and roasting at 800 oC gave the optimum condition for further steps of precipitation and calcination to finally achieve Nd2O3.

Keywords: NdFeB magnet waste, oxidative roasting, recycling, selective leaching

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 617
21 Comparison of Traditional and Green Building Designs in Egypt: Energy Saving

Authors: Hala M. Abdel Mageed, Ahmed I. Omar, Shady H. E. Abdel Aleem

Abstract:

This paper describes in details a commercial green building that has been designed and constructed in Marsa Matrouh, Egypt. The balance between homebuilding and the sustainable environment has been taken into consideration in the design and construction of this building. The building consists of one floor with 3 m height and 2810 m2 area while the envelope area is 1400 m2. The building construction fulfills the natural ventilation requirements. The glass curtain walls are about 50% of the building and the windows area is 300 m2. 6 mm greenish gray tinted temper glass as outer board lite, 6 mm safety glass as inner board lite and 16 mm thick dehydrated air spaces are used in the building. Visible light with 50% transmission, 0.26 solar factor, 0.67 shading coefficient and 1.3 W/m2.K thermal insulation U-value are implemented to realize the performance requirements. Optimum electrical distribution for lighting system, air conditions and other electrical loads has been carried out. Power and quantity of each type of the lighting system lamps and the energy consumption of the lighting system are investigated. The design of the air conditions system is based on summer and winter outdoor conditions. Ventilated, air conditioned spaces and fresh air rates are determined. Variable Refrigerant Flow (VRF) is the air conditioning system used in this building. The VRF outdoor units are located on the roof of the building and connected to indoor units through refrigerant piping. Indoor units are distributed in all building zones through ducts and air outlets to ensure efficient air distribution. The green building energy consumption is evaluated monthly all over one year and compared with the consumed energy in the non-green conditions using the Hourly Analysis Program (HAP) model. The comparison results show that the total energy consumed per year in the green building is about 1,103,221 kWh while the non-green energy consumption is about 1,692,057 kWh. In other words, the green building total annual energy cost is reduced from 136,581 $ to 89,051 $. This means that, the energy saving and consequently the money-saving of this green construction is about 35%. In addition, 13 points are awarded by applying one of the most popular worldwide green energy certification programs (Leadership in Energy and Environmental Design “LEED”) as a rating system for the green construction. It is concluded that this green building ensures sustainability, saves energy and offers an optimum energy performance with minimum cost.

Keywords: Energy consumption, energy saving, green building, leadership in energy and environmental design, sustainability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1484
20 Surface Topography Assessment Techniques based on an In-process Monitoring Approach of Tool Wear and Cutting Force Signature

Authors: A. M. Alaskari, S. E. Oraby

Abstract:

The quality of a machined surface is becoming more and more important to justify the increasing demands of sophisticated component performance, longevity, and reliability. Usually, any machining operation leaves its own characteristic evidence on the machined surface in the form of finely spaced micro irregularities (surface roughness) left by the associated indeterministic characteristics of the different elements of the system: tool-machineworkpart- cutting parameters. However, one of the most influential sources in machining affecting surface roughness is the instantaneous state of tool edge. The main objective of the current work is to relate the in-process immeasurable cutting edge deformation and surface roughness to a more reliable easy-to-measure force signals using a robust non-linear time-dependent modeling regression techniques. Time-dependent modeling is beneficial when modern machining systems, such as adaptive control techniques are considered, where the state of the machined surface and the health of the cutting edge are monitored, assessed and controlled online using realtime information provided by the variability encountered in the measured force signals. Correlation between wear propagation and roughness variation is developed throughout the different edge lifetimes. The surface roughness is further evaluated in the light of the variation in both the static and the dynamic force signals. Consistent correlation is found between surface roughness variation and tool wear progress within its initial and constant regions. At the first few seconds of cutting, expected and well known trend of the effect of the cutting parameters is observed. Surface roughness is positively influenced by the level of the feed rate and negatively by the cutting speed. As cutting continues, roughness is affected, to different extents, by the rather localized wear modes either on the tool nose or on its flank areas. Moreover, it seems that roughness varies as wear attitude transfers from one mode to another and, in general, it is shown that it is improved as wear increases but with possible corresponding workpart dimensional inaccuracy. The dynamic force signals are found reasonably sensitive to simulate either the progressive or the random modes of tool edge deformation. While the frictional force components, feeding and radial, are found informative regarding progressive wear modes, the vertical (power) components is found more representative carrier to system instability resulting from the edge-s random deformation.

Keywords: Dynamic force signals, surface roughness (finish), tool wear and deformation, tool wear modes (nose, flank)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1316
19 An Improved Adaptive Dot-Shape Beamforming Algorithm Research on Frequency Diverse Array

Authors: Yanping Liao, Zenan Wu, Ruigang Zhao

Abstract:

Frequency diverse array (FDA) beamforming is a technology developed in recent years, and its antenna pattern has a unique angle-distance-dependent characteristic. However, the beam is always required to have strong concentration, high resolution and low sidelobe level to form the point-to-point interference in the concentrated set. In order to eliminate the angle-distance coupling of the traditional FDA and to make the beam energy more concentrated, this paper adopts a multi-carrier FDA structure based on proposed power exponential frequency offset to improve the array structure and frequency offset of the traditional FDA. The simulation results show that the beam pattern of the array can form a dot-shape beam with more concentrated energy, and its resolution and sidelobe level performance are improved. However, the covariance matrix of the signal in the traditional adaptive beamforming algorithm is estimated by the finite-time snapshot data. When the number of snapshots is limited, the algorithm has an underestimation problem, which leads to the estimation error of the covariance matrix to cause beam distortion, so that the output pattern cannot form a dot-shape beam. And it also has main lobe deviation and high sidelobe level problems in the case of limited snapshot. Aiming at these problems, an adaptive beamforming technique based on exponential correction for multi-carrier FDA is proposed to improve beamforming robustness. The steps are as follows: first, the beamforming of the multi-carrier FDA is formed under linear constrained minimum variance (LCMV) criteria. Then the eigenvalue decomposition of the covariance matrix is ​​performed to obtain the diagonal matrix composed of the interference subspace, the noise subspace and the corresponding eigenvalues. Finally, the correction index is introduced to exponentially correct the small eigenvalues ​​of the noise subspace, improve the divergence of small eigenvalues ​​in the noise subspace, and improve the performance of beamforming. The theoretical analysis and simulation results show that the proposed algorithm can make the multi-carrier FDA form a dot-shape beam at limited snapshots, reduce the sidelobe level, improve the robustness of beamforming, and have better performance.

Keywords: Multi-carrier frequency diverse array, adaptive beamforming, correction index, limited snapshot, robust.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 626
18 Analyzing Political Cartoons in Arabic-Language Media after Trump's Jerusalem Move: A Multimodal Discourse Perspective

Authors: Inas Hussein

Abstract:

Communication in the modern world is increasingly becoming multimodal due to globalization and the digital space we live in which have remarkably affected how people communicate. Accordingly, Multimodal Discourse Analysis (MDA) is an emerging paradigm in discourse studies with the underlying assumption that other semiotic resources such as images, colours, scientific symbolism, gestures, actions, music and sound, etc. combine with language in order to  communicate meaning. One of the effective multimodal media that combines both verbal and non-verbal elements to create meaning is political cartoons. Furthermore, since political and social issues are mirrored in political cartoons, these are regarded as potential objects of discourse analysis since they not only reflect the thoughts of the public but they also have the power to influence them. The aim of this paper is to analyze some selected cartoons on the recognition of Jerusalem as Israel's capital by the American President, Donald Trump, adopting a multimodal approach. More specifically, the present research examines how the various semiotic tools and resources utilized by the cartoonists function in projecting the intended meaning. Ten political cartoons, among a surge of editorial cartoons highlighted by the Anti-Defamation League (ADL) - an international Jewish non-governmental organization based in the United States - as publications in different Arabic-language newspapers in Egypt, Saudi Arabia, UAE, Oman, Iran and UK, were purposively selected for semiotic analysis. These editorial cartoons, all published during 6th–18th December 2017, invariably suggest one theme: Jewish and Israeli domination of the United States. The data were analyzed using the framework of Visual Social Semiotics. In accordance with this methodological framework, the selected visual compositions were analyzed in terms of three aspects of meaning: representational, interactive and compositional. In analyzing the selected cartoons, an interpretative approach is being adopted. This approach prioritizes depth to breadth and enables insightful analyses of the chosen cartoons. The findings of the study reveal that semiotic resources are key elements of political cartoons due to the inherent political communication they convey. It is proved that adequate interpretation of the three aspects of meaning is a prerequisite for understanding the intended meaning of political cartoons. It is recommended that further research should be conducted to provide more insightful analyses of political cartoons from a multimodal perspective.

Keywords: Multimodal discourse analysis, multimodal text, political cartoons, visual modality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1499
17 Collaboration versus Cooperation: Grassroots Activism in Divided Cities and Communication Networks

Authors: R. Barbour

Abstract:

Peace-building organisations act as a network of information for communities. Through fieldwork, it was highlighted that grassroots organisations and activists may cooperate with each other in their actions of peace-building; however, they would not collaborate. Within two divided societies; Nicosia in Cyprus and Jerusalem in Israel, there is a distinction made by organisations and activists with regards to activities being more ‘co-operative’ than ‘collaborative’. This theme became apparent when having informal conversations and semi-structured interviews with various members of the activist communities. This idea needs further exploration as these distinctions could impact upon the efficiency of peacebuilding activities within divided societies. Civil societies within divided landscapes, both physically and socially, play an important role in conflict resolution. How organisations and activists interact with each other has the possibility to be very influential with regards to peacebuilding activities. Working together sets a positive example for divided communities. Cooperation may be considered a primary level of interaction between CSOs. Therefore, at the beginning of a working relationship, organisations cooperate over basic agendas, parallel power structures and focus, which led to the same objective. Over time, in some instances, due to varying factors such as funding, more trust and understanding within the relationship, it could be seen that processes progressed to more collaborative ways. It is evident to see that NGOs and activist groups are highly independent and focus on their own agendas before coming together over shared issues. At this time, there appears to be more collaboration in Nicosia among CSOs and activists than Jerusalem. The aims and objectives of agendas also influence how organisations work together. In recent years, Nicosia, and Cyprus in general, have perhaps changed their focus from peace-building initiatives to more environmental issues which have become new-age reconciliation topics. Civil society does not automatically indicate like-minded organisations however solidarity within social groups can create ties that bring people and resources together. In unequal societies, such as those in Nicosia and Jerusalem, it is these ties that cut across groups and are essential for social cohesion. Societies are a collection of social groups; individuals who have come together over common beliefs. These groups in turn shape the identities and determine the values and structures within societies. At many different levels and stages, social groups work together through cooperation and collaboration. These structures in turn have the capabilities to open up networks to less powerful or excluded groups, with the aim to produce social cohesion which may contribute social stability and economic welfare over any extended period.

Keywords: Collaboration, cooperation, grassroots activism, networks of communication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 876
16 Application of Metarhizium anisopliae against Meloidogyne javanica in Soil Amended with Oak Debris

Authors: Mohammad Abdollahi

Abstract:

Tomato (Lycopersicon esculentum Mill.) is one of the most popular, widely grown and the second most important vegetable crop, after potatoes. Nematodes have been identified as one of the major pests affecting tomato production throughout the world. The most destructive nematodes are the genus Meloidogyne. Most widespread and devastating species of this genus are M. incognita, M. javanica, and M. arenaria. These species can cause complete crop loss under adverse growing conditions. There are several potential methods for management of the root knot nematodes. Although the chemicals are widely used against the phytonematodes, because of hazardous effects of these compounds on non-target organisms and on the environment, there is a need to develop other control strategies. Nowadays, non-chemical measures are widely used to control the plant parasitic nematodes. Biocontrol of phytonematodes is an important method among environment-friendly measures of nematode management. There are some soil-inhabiting fungi that have biocontrol potential on phytonematodes, which can be used in nematode management program. The fungus Metarhizium anisopliae, originally is an entomopathogenic bioagent. Biocontrol potential of this fungus on some phytonematodes has been reported earlier. Recently, use of organic soil amendments as well as the use of bioagents is under special attention in sustainable agriculture. This research aimed to reduce the pesticide use in control of root-knot nematode, Meloidogyne javanica in tomato. The effects of M. anisopliae IMI 330189 and different levels of oak tree debris on M. javanica were determined. The combination effect of the fungus as well as the different rates of soil amendments was determined. Pots were filled with steam pasteurized soil mixture and the six leaf tomato seedlings were inoculated with 3000 second stage larvae of M. javanica/kg of soil. After eight weeks, plant growth parameters and nematode reproduction factors were compared. Based on the results of our experiment, combination of M. anisopliae IMI 330189 and oak debris caused more than 90% reduction in reproduction factor of nematode, at the rates of 100 and 150 g/kg soil (P ≤ 0.05). As compared to control, the reduction in number of galls was 76%. It was 86% for nematode reproduction factor, showing the significance of combined effect of both tested agents. Our results showed that plant debris can increase the biological activity of the tested bioagent. It was also proved that there was no adverse effect of oak debris, which potentially has antimicrobial activity, on antagonistic power of applied bioagent.

Keywords: Biological control, nematode management, organic soil, Quercus branti, root knot nematode, soil amendment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1182
15 A Comparison of Tsunami Impact to Sydney Harbour, Australia at Different Tidal Stages

Authors: Olivia A. Wilson, Hannah E. Power, Murray Kendall

Abstract:

Sydney Harbour is an iconic location with a dense population and low-lying development. On the east coast of Australia, facing the Pacific Ocean, it is exposed to several tsunamigenic trenches. This paper presents a component of the most detailed assessment of the potential for earthquake-generated tsunami impact on Sydney Harbour to date. Models in this study use dynamic tides to account for tide-tsunami interaction. Sydney Harbour’s tidal range is 1.5 m, and the spring tides from January 2015 that are used in the modelling for this study are close to the full tidal range. The tsunami wave trains modelled include hypothetical tsunami generated from earthquakes of magnitude 7.5, 8.0, 8.5, and 9.0 MW from the Puysegur and New Hebrides trenches as well as representations of the historical 1960 Chilean and 2011 Tohoku events. All wave trains are modelled for the peak wave to coincide with both a low tide and a high tide. A single wave train, representing a 9.0 MW earthquake at the Puysegur trench, is modelled for peak waves to coincide with every hour across a 12-hour tidal phase. Using the hydrodynamic model ANUGA, results are compared according to the impact parameters of inundation area, depth variation and current speeds. Results show that both maximum inundation area and depth variation are tide dependent. Maximum inundation area increases when coincident with a higher tide, however, hazardous inundation is only observed for the larger waves modelled: NH90high and P90high. The maximum and minimum depths are deeper on higher tides and shallower on lower tides. The difference between maximum and minimum depths varies across different tidal phases although the differences are slight. Maximum current speeds are shown to be a significant hazard for Sydney Harbour; however, they do not show consistent patterns according to tide-tsunami phasing. The maximum current speed hazard is shown to be greater in specific locations such as Spit Bridge, a narrow channel with extensive marine infrastructure. The results presented for Sydney Harbour are novel, and the conclusions are consistent with previous modelling efforts in the greater area. It is shown that tide must be a consideration for both tsunami modelling and emergency management planning. Modelling with peak tsunami waves coinciding with a high tide would be a conservative approach; however, it must be considered that maximum current speeds may be higher on other tides.

Keywords: Emergency management, Sydney, tide-tsunami interaction, tsunami impact.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1163
14 Civic E-Participation in Central and Eastern Europe: A Comparative Analysis

Authors: Izabela Kapsa

Abstract:

Civic participation is an important aspect of democracy. The contemporary model of democracy is based on citizens' participation in political decision-making (deliberative democracy, participatory democracy). This participation takes many forms of activities like display of slogans and symbols, voting, social consultations, political demonstrations, membership in political parties or organizing civil disobedience. The countries of Central and Eastern Europe after 1989 are characterized by great social, economic and political diversity. Civil society is also part of the process of democratization. Civil society, funded by the rule of law, civil rights, such as freedom of speech and association and private ownership, was to play a central role in the development of liberal democracy. Among the many interpretations of concepts, defining the concept of contemporary democracy, one can assume that the terms civil society and democracy, although different in meaning, nowadays overlap. In the post-communist countries, the process of shaping and maturing societies took place in the context of a struggle with a state governed by undemocratic power. State fraud or repudiation of the institution is a representative state, which in the past was the only way to manifest and defend its identity, but after the breakthrough became one of the main obstacles to the development of civil society. In Central and Eastern Europe, there are many obstacles to the development of civil society, for example, the elimination of economic poverty, the implementation of educational campaigns, consciousness-related obstacles, the formation of social capital and the deficit of social activity. Obviously, civil society does not only entail an electoral turnout but a broader participation in the decision-making process, which is impossible without direct and participative democratic institutions. This article considers such broad forms of civic participation and their characteristics in Central and Eastern Europe. The paper is attempts to analyze the functioning of electronic forms of civic participation in Central and Eastern European states. This is not accompanied by a referendum or a referendum initiative, and other forms of political participation, such as public consultations, participative budgets, or e-Government. However, this paper will broadly present electronic administration tools, the application of which results from both legal regulations and increasingly common practice in state and city management. In the comparative analysis, the experiences of post-communist bloc countries will be summed up to indicate the challenges and possible goals for further development of this form of citizen participation in the political process. The author argues that for to function efficiently and effectively, states need to involve their citizens in the political decision-making process, especially with the use of electronic tools.

Keywords: Central and Eastern Europe, e-participation, e-government, post-communism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 902
13 Leading, Teaching and Learning “in the Middle”: Experiences, Beliefs, and Values of Instructional Leaders, Teachers, and Students in Finland, Germany, and Canada

Authors: Brandy Yee, Dianne Yee

Abstract:

Through the exploration of the lived experiences, beliefs and values of instructional leaders, teachers and students in Finland, Germany and Canada, we investigated the factors which contribute to developmentally responsive, intellectually engaging middle-level learning environments for early adolescents. Student-centred leadership dimensions, effective instructional practices and student agency were examined through the lens of current policy and research on middle-level learning environments emerging from the Canadian province of Manitoba. Consideration of these three research perspectives in the context of early adolescent learning, placed against an international backdrop, provided a previously undocumented perspective on leading, teaching and learning in the middle years. Aligning with a social constructivist, qualitative research paradigm, the study incorporated collective case study methodology, along with constructivist grounded theory methods of data analysis. Data were collected through semi-structured individual and focus group interviews and document review, as well as direct and participant observation. Three case study narratives were developed to share the rich stories of study participants, who had been selected using maximum variation and intensity sampling techniques. Interview transcript data were coded using processes from constructivist grounded theory. A cross-case analysis yielded a conceptual framework highlighting key factors that were found to be significant in the establishment of developmentally responsive, intellectually engaging middle-level learning environments. Seven core categories emerged from the cross-case analysis as common to all three countries. Within the visual conceptual framework (which depicts the interconnected nature of leading, teaching and learning in middle-level learning environments), these seven core categories were grouped into Essential Factors (student agency, voice and choice), Contextual Factors (instructional practices; school culture; engaging families and the community), Synergistic Factors (instructional leadership) and Cornerstone Factors (education as a fundamental cultural value; preservice, in-service and ongoing teacher development). In addition, sub-factors emerged from recurring codes in the data and identified specific characteristics and actions found in developmentally responsive, intellectually engaging middle-level learning environments. Although this study focused on 12 schools in Finland, Germany and Canada, it informs the practice of educators working with early adolescent learners in middle-level learning environments internationally. The authentic voices of early adolescent learners are the most important resource educators have to gauge if they are creating effective learning environments for their students. Ongoing professional dialogue and learning is essential to ensure teachers are supported in their work and develop the pedagogical practices needed to meet the needs of early adolescent learners. It is critical to balance consistency, coherence and dependability in the school environment with the necessary flexibility in order to support the unique learning needs of early adolescents. Educators must intentionally create a school culture that unites teachers, students and their families in support of a common purpose, as well as nurture positive relationships between the school and its community. A large, urban school district in Canada has implemented a school cohort-based model to begin to bring developmentally responsive, intellectually engaging middle-level learning environments to scale.

Keywords: Developmentally responsive learning environments, early adolescents, middle-level learning, middle years, instructional leadership, instructional practices, intellectually engaging learning environments, leadership dimensions, student agency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1447
12 Predictive Semi-Empirical NOx Model for Diesel Engine

Authors: Saurabh Sharma, Yong Sun, Bruce Vernham

Abstract:

Accurate prediction of NOx emission is a continuous challenge in the field of diesel engine-out emission modeling. Performing experiments for each conditions and scenario cost significant amount of money and man hours, therefore model-based development strategy has been implemented in order to solve that issue. NOx formation is highly dependent on the burn gas temperature and the O2 concentration inside the cylinder. The current empirical models are developed by calibrating the parameters representing the engine operating conditions with respect to the measured NOx. This makes the prediction of purely empirical models limited to the region where it has been calibrated. An alternative solution to that is presented in this paper, which focus on the utilization of in-cylinder combustion parameters to form a predictive semi-empirical NOx model. The result of this work is shown by developing a fast and predictive NOx model by using the physical parameters and empirical correlation. The model is developed based on the steady state data collected at entire operating region of the engine and the predictive combustion model, which is developed in Gamma Technology (GT)-Power by using Direct Injected (DI)-Pulse combustion object. In this approach, temperature in both burned and unburnt zone is considered during the combustion period i.e. from Intake Valve Closing (IVC) to Exhaust Valve Opening (EVO). Also, the oxygen concentration consumed in burnt zone and trapped fuel mass is also considered while developing the reported model.  Several statistical methods are used to construct the model, including individual machine learning methods and ensemble machine learning methods. A detailed validation of the model on multiple diesel engines is reported in this work. Substantial numbers of cases are tested for different engine configurations over a large span of speed and load points. Different sweeps of operating conditions such as Exhaust Gas Recirculation (EGR), injection timing and Variable Valve Timing (VVT) are also considered for the validation. Model shows a very good predictability and robustness at both sea level and altitude condition with different ambient conditions. The various advantages such as high accuracy and robustness at different operating conditions, low computational time and lower number of data points requires for the calibration establishes the platform where the model-based approach can be used for the engine calibration and development process. Moreover, the focus of this work is towards establishing a framework for the future model development for other various targets such as soot, Combustion Noise Level (CNL), NO2/NOx ratio etc.

Keywords: Diesel engine, machine learning, NOx emission, semi-empirical.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 801
11 Utilization of Process Mapping Tool to Enhance Production Drilling in Underground Metal Mining Operations

Authors: Sidharth Talan, Sanjay Kumar Sharma, Eoin Joseph Wallace, Nikita Agrawal

Abstract:

Underground mining is at the core of rapidly evolving metals and minerals sector due to the increasing mineral consumption globally. Even though the surface mines are still more abundant on earth, the scales of industry are slowly tipping towards underground mining due to rising depth and complexities of orebodies. Thus, the efficient and productive functioning of underground operations depends significantly on the synchronized performance of key elements such as operating site, mining equipment, manpower and mine services. Production drilling is the process of conducting long hole drilling for the purpose of charging and blasting these holes for the production of ore in underground metal mines. Thus, production drilling is the crucial segment in the underground metal mining value chain. This paper presents the process mapping tool to evaluate the production drilling process in the underground metal mining operation by dividing the given process into three segments namely Input, Process and Output. The three segments are further segregated into factors and sub-factors. As per the study, the major input factors crucial for the efficient functioning of production drilling process are power, drilling water, geotechnical support of the drilling site, skilled drilling operators, services installation crew, oils and drill accessories for drilling machine, survey markings at drill site, proper housekeeping, regular maintenance of drill machine, suitable transportation for reaching the drilling site and finally proper ventilation. The major outputs for the production drilling process are ore, waste as a result of dilution, timely reporting and investigation of unsafe practices, optimized process time and finally well fragmented blasted material within specifications set by the mining company. The paper also exhibits the drilling loss matrix, which is utilized to appraise the loss in planned production meters per day in a mine on account of availability loss in the machine due to breakdowns, underutilization of the machine and productivity loss in the machine measured in drilling meters per unit of percussion hour with respect to its planned productivity for the day. The given three losses would be essential to detect the bottlenecks in the process map of production drilling operation so as to instigate the action plan to suppress or prevent the causes leading to the operational performance deficiency. The given tool is beneficial to mine management to focus on the critical factors negatively impacting the production drilling operation and design necessary operational and maintenance strategies to mitigate them. 

Keywords: Process map, drilling loss matrix, availability, utilization, productivity, percussion rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1031
10 Diagnosis of Intermittent High Vibration Peaks in Industrial Gas Turbine Using Advanced Vibrations Analysis

Authors: Abubakar Rashid, Muhammad Saad, Faheem Ahmed

Abstract:

This paper provides a comprehensive study pertaining to diagnosis of intermittent high vibrations on an industrial gas turbine using detailed vibrations analysis, followed by its rectification. Engro Polymer & Chemicals Limited, a Chlor-Vinyl complex located in Pakistan has a captive combined cycle power plant having two 28 MW gas turbines (make Hitachi) & one 15 MW steam turbine. In 2018, the organization faced an issue of high vibrations on one of the gas turbines. These high vibration peaks appeared intermittently on both compressor’s drive end (DE) & turbine’s non-drive end (NDE) bearing. The amplitude of high vibration peaks was between 150-170% on the DE bearing & 200-300% on the NDE bearing from baseline values. In one of these episodes, the gas turbine got tripped on “High Vibrations Trip” logic actuated at 155µm. Limited instrumentation is available on the machine, which is monitored with GE Bently Nevada 3300 system having two proximity probes installed at Turbine NDE, Compressor DE &at Generator DE & NDE bearings. Machine’s transient ramp-up & steady state data was collected using ADRE SXP & DSPI 408. Since only 01 key phasor is installed at Turbine high speed shaft, a derived drive key phasor was configured in ADRE to obtain low speed shaft rpm required for data analysis. By analyzing the Bode plots, Shaft center line plot, Polar plot & orbit plots; rubbing was evident on Turbine’s NDE along with increased bearing clearance of Turbine’s NDE radial bearing. The subject bearing was then inspected & heavy deposition of carbonized coke was found on the labyrinth seals of bearing housing with clear rubbing marks on shaft & housing covering at 20-25 degrees on the inner radius of labyrinth seals. The collected coke sample was tested in laboratory & found to be the residue of lube oil in the bearing housing. After detailed inspection & cleaning of shaft journal area & bearing housing, new radial bearing was installed. Before assembling the bearing housing, cleaning of bearing cooling & sealing air lines was also carried out as inadequate flow of cooling & sealing air can accelerate coke formation in bearing housing. The machine was then taken back online & data was collected again using ADRE SXP & DSPI 408 for health analysis. The vibrations were found in acceptable zone as per ISO standard 7919-3 while all other parameters were also within vendor defined range. As a learning from subject case, revised operating & maintenance regime has also been proposed to enhance machine’s reliability.

Keywords: ADRE, bearing, gas turbine, GE Bently Nevada, Hitachi, vibration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 623
9 Nature of Cities: Ontological Dimension of the Urban

Authors: Ana Cristina García-Luna Romero

Abstract:

This document seeks to reflect on the urban project from its conceptual identity root. In the first instance, a proposal is made on how the city project is sustained from the conceptual root, from the logos: it opens a way to assimilate the imagination; what we imagine becomes a reality. In this way, firstly, the need to use language as a vehicle for transmitting the stories that sustain us as humanity can be deemed as an important social factor that enables us to social behavior. Secondly, the need to attend to the written language as a mechanism of power, as a means to consolidate a dominant ideology or a political position, is raised; as it served to carry out the modernization project, it is therefore addressed differences between the real and the literate city. Thus, the consolidated urban-architectural project is based on logos, the project, and planning. Considering the importance of materiality and its relation to subjective well-being contextualized from a socio-urban approach, we question ourselves into how we can look at something that is doubtful. From a philosophy perspective, the truth is considered to be nothing more than a matter of correspondence between the observer and the observed. To understand beyond the relative of the gaze, it is necessary to expose different perspectives since it depends on the understanding of what is observed and how it is critically analyzed. Therefore, the analysis of materiality, as a political field, takes a proposal based on this research in the principles in transgenesis: principle of communication, representativeness, security, health, malleability, availability of potentiality or development, conservation, sustainability, economy, harmony, stability, accessibility, justice, legibility, significance, consistency, joint responsibility, connectivity, beauty, among others. The (urban) human being acts because he wants to live in a certain way: in a community, in a fair way, with opportunity for development, with the possibility of managing the environment according to their needs, etc. In order to comply with this principle, it is necessary to design strategies from the principles in transgenesis, which must be named, defined, understood, and socialized by the urban being, the companies, and from themselves. In this way, the technical status of the city in the neoliberal present determines extraordinary conditions for reflecting on an almost emergency scenario created by the impact of cities that, far from being limited to resilient proposals, must aim at the reflection of the urban process that the present social model has generated. Therefore, can we rethink the paradigm of the perception of life quality in the current neoliberal model in the production of the character of public space related to the practices of being urban. What we are trying to do within this document is to build a framework to study under what logic the practices of the social system that make sense of the public space are developed, what the implications of the phenomena of the inscription of action and materialization (and its results over political action between the social and the technical system) are and finally, how we can improve the quality of life of individuals from the urban space.

Keywords: Cities, nature, society, urban quality of life.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 496
8 Seismic Response of Reinforced Concrete Buildings: Field Challenges and Simplified Code Formulas

Authors: Michel Soto Chalhoub

Abstract:

Building code-related literature provides recommendations on normalizing approaches to the calculation of the dynamic properties of structures. Most building codes make a distinction among types of structural systems, construction material, and configuration through a numerical coefficient in the expression for the fundamental period. The period is then used in normalized response spectra to compute base shear. The typical parameter used in simplified code formulas for the fundamental period is overall building height raised to a power determined from analytical and experimental results. However, reinforced concrete buildings which constitute the majority of built space in less developed countries pose additional challenges to the ones built with homogeneous material such as steel, or with concrete under stricter quality control. In the present paper, the particularities of reinforced concrete buildings are explored and related to current methods of equivalent static analysis. A comparative study is presented between the Uniform Building Code, commonly used for buildings within and outside the USA, and data from the Middle East used to model 151 reinforced concrete buildings of varying number of bays, number of floors, overall building height, and individual story height. The fundamental period was calculated using eigenvalue matrix computation. The results were also used in a separate regression analysis where the computed period serves as dependent variable, while five building properties serve as independent variables. The statistical analysis shed light on important parameters that simplified code formulas need to account for including individual story height, overall building height, floor plan, number of bays, and concrete properties. Such inclusions are important for reinforced concrete buildings of special conditions due to the level of concrete damage, aging, or materials quality control during construction. Overall results of the present analysis show that simplified code formulas for fundamental period and base shear may be applied but they require revisions to account for multiple parameters. The conclusion above is confirmed by the analytical model where fundamental periods were computed using numerical techniques and eigenvalue solutions. This recommendation is particularly relevant to code upgrades in less developed countries where it is customary to adopt, and mildly adapt international codes. We also note the necessity of further research using empirical data from buildings in Lebanon that were subjected to severe damage due to impulse loading or accelerated aging. However, we excluded this study from the present paper and left it for future research as it has its own peculiarities and requires a different type of analysis.

Keywords: Seismic behavior, reinforced concrete, simplified code formulas, equivalent static analysis, base shear, response spectra.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2644
7 Developing Three-Dimensional Digital Image Correlation Method to Detect the Crack Variation at the Joint of Weld Steel Plate

Authors: Ming-Hsiang Shih, Wen-Pei Sung, Shih-Heng Tung

Abstract:

The purposes of hydraulic gate are to maintain the functions of storing and draining water. It bears long-term hydraulic pressure and earthquake force and is very important for reservoir and waterpower plant. The high tensile strength of steel plate is used as constructional material of hydraulic gate. The cracks and rusts, induced by the defects of material, bad construction and seismic excitation and under water respectively, thus, the mechanics phenomena of gate with crack are probing into the cause of stress concentration, induced high crack increase rate, affect the safety and usage of hydroelectric power plant. Stress distribution analysis is a very important and essential surveying technique to analyze bi-material and singular point problems. The finite difference infinitely small element method has been demonstrated, suitable for analyzing the buckling phenomena of welding seam and steel plate with crack. Especially, this method can easily analyze the singularity of kink crack. Nevertheless, the construction form and deformation shape of some gates are three-dimensional system. Therefore, the three-dimensional Digital Image Correlation (DIC) has been developed and applied to analyze the strain variation of steel plate with crack at weld joint. The proposed Digital image correlation (DIC) technique is an only non-contact method for measuring the variation of test object. According to rapid development of digital camera, the cost of this digital image correlation technique has been reduced. Otherwise, this DIC method provides with the advantages of widely practical application of indoor test and field test without the restriction on the size of test object. Thus, the research purpose of this research is to develop and apply this technique to monitor mechanics crack variations of weld steel hydraulic gate and its conformation under action of loading. The imagines can be picked from real time monitoring process to analyze the strain change of each loading stage. The proposed 3-Dimensional digital image correlation method, developed in the study, is applied to analyze the post-buckling phenomenon and buckling tendency of welded steel plate with crack. Then, the stress intensity of 3-dimensional analysis of different materials and enhanced materials in steel plate has been analyzed in this paper. The test results show that this proposed three-dimensional DIC method can precisely detect the crack variation of welded steel plate under different loading stages. Especially, this proposed DIC method can detect and identify the crack position and the other flaws of the welded steel plate that the traditional test methods hardly detect these kind phenomena. Therefore, this proposed three-dimensional DIC method can apply to observe the mechanics phenomena of composite materials subjected to loading and operating.

Keywords: Welded steel plate, crack variation, three-dimensional Digital Image Correlation (DIC).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1560
6 A Design Methodology and Tool to Support Ecodesign Implementation in Induction Hobs

Authors: Anna Costanza Russo, Daniele Landi, Michele Germani

Abstract:

Nowadays, the European Ecodesign Directive has emerged as a new approach to integrate environmental concerns into the product design and related processes. Ecodesign aims to minimize environmental impacts throughout the product life cycle, without compromising performances and costs. In addition, the recent Ecodesign Directives require products which are increasingly eco-friendly and eco-efficient, preserving high-performances. It is very important for producers measuring performances, for electric cooking ranges, hobs, ovens, and grills for household use, and a low power consumption of appliances represents a powerful selling point, also in terms of ecodesign requirements. The Ecodesign Directive provides a clear framework about the sustainable design of products and it has been extended in 2009 to all energy-related products, or products with an impact on energy consumption during the use. The European Regulation establishes measures of ecodesign of ovens, hobs, and kitchen hoods, and domestic use and energy efficiency of a product has a significant environmental aspect in the use phase which is the most impactful in the life cycle. It is important that the product parameters and performances are not affected by ecodesign requirements from a user’s point of view, and the benefits of reducing energy consumption in the use phase should offset the possible environmental impact in the production stage. Accurate measurements of cooking appliance performance are essential to help the industry to produce more energy efficient appliances. The development of ecodriven products requires ecoinnovation and ecodesign tools to support the sustainability improvement. The ecodesign tools should be practical and focused on specific ecoobjectives in order to be largely diffused. The main scope of this paper is the development, implementation, and testing of an innovative tool, which could be an improvement for the sustainable design of induction hobs. In particular, a prototypical software tool is developed in order to simulate the energy performances of the induction hobs. The tool is focused on a multiphysics model which is able to simulate the energy performances and the efficiency of induction hobs starting from the design data. The multiphysics model is composed by an electromagnetic simulation and a thermal simulation. The electromagnetic simulation is able to calculate the eddy current induced in the pot, which leads to the Joule heating of material. The thermal simulation is able to measure the energy consumption during the operational phase. The Joule heating caused from the eddy currents is the output of electromagnetic simulation and the input of thermal ones. The aims of the paper are the development of integrated tools and methodologies of virtual prototyping in the context of the ecodesign. This tool could be a revolutionary instrument in the field of industrial engineering and it gives consideration to the environmental aspects of product design and focus on the ecodesign of energy-related products, in order to achieve a reduced environmental impact.

Keywords: Ecodesign, induction hobs, virtual prototyping, energy efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1199
5 Exploring the Role of Private Commercial Banks in Increasing Small and Medium Size Enterprises’ Financial Accessibility in Developing Countries: A Study in Bangladesh

Authors: Khondokar Farid Ahmmed, Robin Bown

Abstract:

It is widely recognized that the formal financing of Small and Medium Size Enterprises (SMEs) by Private Commercial Banks (PCBs) is restricted. Due to changing financial market competition, SMEs are now important customers to PCBs in the member countries of the Asian Development Bank (ADB). Various initiatives in enhancing the efficiency of risk assessment of PCBs have failed in increasing financing accessibility in the traditional financing system where information asymmetry is a key constraint. In this circumstance, PCBs need to undertake a holistic approach. Holistic approach refers to methods that attempt to fundamentally change established traditions. To undertake holistic approach, this study intends to find the entire established financing culture between PCBs and SMEs in a new lens beyond the tradition on the basis of two basic questions: “What is the traditional lending culture between PCBs and SMEs” and “What could be potential role of PCBs to develop that culture where focusing on SME financing to PCBs". This study considered formal SME financing in Bangladesh by focusing on SMEs applying for their first loan. Bangladesh is a member country of ADB. The data collection method is semi-structured and we utilized face-to-face interviews with in-depth branch managers, higher officials and owner-managers of SME customers of PCBs and higher officials of SME Foundation and the Bangladesh central bank. Discourse analysis method was used for data analysis on the frame of thematic discussion fully based on participants’ views. The research found that branch managers and loan officers have a high level of power in assessing and financing decision-making. There is a changing attitude in PCB sector in requiring flexible collateral assets. Branch managers (Loan Officers) consider value of business prospect of owner-mangers as complementary of collateral assets. However, the study found the assessment process of business prospect is entirely unstructured and linked with socio-cultural settings that does not support PCBs’ changing manner in terms of collateral requirement. The study redefined and classified collateral assets to include all financing constructs in a structure. The degree of value of the collateral assets determines the degree of business prospects. This study suggested applying an outside classroom-learning paradigm such as “knowledge tour” to enhance the value of the kinds of collateral assets. This is the scope of PCBs in increasing SMEs’ financing eligibility in win-win basis. The findings and proposition could be effective in other ADB member countries and audiences in the field.

Keywords: CCA, financing, information asymmetry, PCA, PCB, financing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1473
4 Review of Carbon Materials: Application in Alternative Energy Sources and Catalysis

Authors: Marita Pigłowska, Beata Kurc, Maciej Galiński

Abstract:

The application of carbon materials in the branches of the electrochemical industry shows an increasing tendency each year due to the many interesting properties they possess. These are, among others, a well-developed specific surface, porosity, high sorption capacity, good adsorption properties, low bulk density, electrical conductivity and chemical resistance. All these properties allow for their effective use, among others in supercapacitors, which can store electric charges of the order of 100 F due to carbon electrodes constituting the capacitor plates. Coals (including expanded graphite, carbon black, graphite carbon fibers, activated carbon) are commonly used in electrochemical methods of removing oil derivatives from water after tanker disasters, e.g., phenols and their derivatives by their electrochemical anodic oxidation. Phenol can occupy practically the entire surface of carbon material and leave the water clean of hydrophobic impurities. Regeneration of such electrodes is also not complicated, it is carried out by electrochemical methods consisting in unblocking the pores and reducing resistances, and thus their reactivation for subsequent adsorption processes. Graphite is commonly used as an anode material in lithium-ion cells, while due to the limited capacity it offers (372 mAh g-1), new solutions are sought that meet both capacitive, efficiency and economic criteria. Increasingly, biodegradable materials, green materials, biomass, waste (including agricultural waste) are used in order to reuse them and reduce greenhouse effects and, above all, to meet the biodegradability criterion necessary for the production of lithium-ion cells as chemical power sources. The most common of these materials are cellulose, starch, wheat, rice, and corn waste, e.g., from agricultural, paper and pharmaceutical production. Such products are subjected to appropriate treatments depending on the desired application (including chemical, thermal, electrochemical). Starch is a biodegradable polysaccharide that consists of polymeric units such as amylose and amylopectin that build an ordered (linear) and amorphous (branched) structure of the polymer. Carbon is also used as a catalyst. Elemental carbon has become available in many nano-structured forms representing the hybridization combinations found in the primary carbon allotropes, and the materials can be enriched with a large number of surface functional groups. There are many examples of catalytic applications of coal in the literature, but the development of this field has been hampered by the lack of a conceptual approach combining structure and function and a lack of understanding of material synthesis. In the context of catalytic applications, the integrity of carbon environmental management properties and parameters such as metal conductivity range and bond sequence management should be characterized. Such data, along with surface and textured information, can form the basis for the provision of network support services.

Keywords: carbon materials, catalysis, BET, capacitors, lithium ion cell

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1058
3 Measuring Enterprise Growth: Pitfalls and Implications

Authors: N. Šarlija, S. Pfeifer, M. Jeger, A. Bilandžić

Abstract:

Enterprise growth is generally considered as a key driver of competitiveness, employment, economic development and social inclusion. As such, it is perceived to be a highly desirable outcome of entrepreneurship for scholars and decision makers. The huge academic debate resulted in the multitude of theoretical frameworks focused on explaining growth stages, determinants and future prospects. It has been widely accepted that enterprise growth is most likely nonlinear, temporal and related to the variety of factors which reflect the individual, firm, organizational, industry or environmental determinants of growth. However, factors that affect growth are not easily captured, instruments to measure those factors are often arbitrary, causality between variables and growth is elusive, indicating that growth is not easily modeled. Furthermore, in line with heterogeneous nature of the growth phenomenon, there is a vast number of measurement constructs assessing growth which are used interchangeably. Differences among various growth measures, at conceptual as well as at operationalization level, can hinder theory development which emphasizes the need for more empirically robust studies. In line with these highlights, the main purpose of this paper is twofold. Firstly, to compare structure and performance of three growth prediction models based on the main growth measures: Revenues, employment and assets growth. Secondly, to explore the prospects of financial indicators, set as exact, visible, standardized and accessible variables, to serve as determinants of enterprise growth. Finally, to contribute to the understanding of the implications on research results and recommendations for growth caused by different growth measures. The models include a range of financial indicators as lag determinants of the enterprises’ performances during the 2008-2013, extracted from the national register of the financial statements of SMEs in Croatia. The design and testing stage of the modeling used the logistic regression procedures. Findings confirm that growth prediction models based on different measures of growth have different set of predictors. Moreover, the relationship between particular predictors and growth measure is inconsistent, namely the same predictor positively related to one growth measure may exert negative effect on a different growth measure. Overall, financial indicators alone can serve as good proxy of growth and yield adequate predictive power of the models. The paper sheds light on both methodology and conceptual framework of enterprise growth by using a range of variables which serve as a proxy for the multitude of internal and external determinants, but are unlike them, accessible, available, exact and free of perceptual nuances in building up the model. Selection of the growth measure seems to have significant impact on the implications and recommendations related to growth. Furthermore, the paper points out to potential pitfalls of measuring and predicting growth. Overall, the results and the implications of the study are relevant for advancing academic debates on growth-related methodology, and can contribute to evidence-based decisions of policy makers.

Keywords: Growth measurement constructs, logistic regression, prediction of growth potential, small and medium-sized enterprises.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2430