
 

 

 
Abstract—Accurate prediction of NOx emission is a continuous 

challenge in the field of diesel engine-out emission modeling. 
Performing experiments for each conditions and scenario cost 
significant amount of money and man hours, therefore model-based 
development strategy has been implemented in order to solve that 
issue. NOx formation is highly dependent on the burn gas 
temperature and the O2 concentration inside the cylinder. The current 
empirical models are developed by calibrating the parameters 
representing the engine operating conditions with respect to the 
measured NOx. This makes the prediction of purely empirical models 
limited to the region where it has been calibrated. An alternative 
solution to that is presented in this paper, which focus on the 
utilization of in-cylinder combustion parameters to form a predictive 
semi-empirical NOx model. The result of this work is shown by 
developing a fast and predictive NOx model by using the physical 
parameters and empirical correlation. The model is developed based 
on the steady state data collected at entire operating region of the 
engine and the predictive combustion model, which is developed in 
Gamma Technology (GT)-Power by using Direct Injected (DI)-Pulse 
combustion object. In this approach, temperature in both burned and 
unburnt zone is considered during the combustion period i.e. from 
Intake Valve Closing (IVC) to Exhaust Valve Opening (EVO). Also, 
the oxygen concentration consumed in burnt zone and trapped fuel 
mass is also considered while developing the reported model.  
Several statistical methods are used to construct the model, including 
individual machine learning methods and ensemble machine learning 
methods. A detailed validation of the model on multiple diesel 
engines is reported in this work. Substantial numbers of cases are 
tested for different engine configurations over a large span of speed 
and load points. Different sweeps of operating conditions such as 
Exhaust Gas Recirculation (EGR), injection timing and Variable 
Valve Timing (VVT) are also considered for the validation. Model 
shows a very good predictability and robustness at both sea level and 
altitude condition with different ambient conditions. The various 
advantages such as high accuracy and robustness at different 
operating conditions, low computational time and lower number of 
data points requires for the calibration establishes the platform where 
the model-based approach can be used for the engine calibration and 
development process. Moreover, the focus of this work is towards 
establishing a framework for the future model development for other 
various targets such as soot, Combustion Noise Level (CNL), 
NO2/NOx ratio etc.  
 

Keywords—Diesel engine, machine learning, NOx emission, 
semi-empirical.  

I. INTRODUCTION 

NE of the primary responsibilities while developing a 
diesel engine is the improvement in the emission 
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reduction from diesel engines along with the improvement in 
the fuel efficiency. Due to stringent emission norms OEMs 
have to focus on introducing new and better emission 
reduction techniques. As the US Environmental Protection 
Agency (EPA) and California Air Resources Board (CARB) 
are working towards low NOx regulation, which will lead to 
the 90% reduction in NOx regulatory limit from 0.2 g/bhp-hr 
to 0.02 g/bhp-hr. This will affect the OEMs very hard as they 
have to introduce latest technology in order to reach this goal. 
There is no doubt that the after-treatment systems are the most 
reliable and effective way to match the strict emission 
regulations, given that those systems are working in the region 
which is suitable for lit off and high conversion efficiency. But 
the high cost associated with these after-treatments incite 
OEMs to shift their focus on the pre-existing sophisticated 
advanced technology such as injection strategies, EGR process 
and turbocharging systems to reduce the engine-out emissions. 
In order to implement these technologies, model-based 
development (MBD) approach to perform the calibration has 
received lot of interest in past few years [1]. The reason for so 
much interest in the usage of MBD approach is that it requires 
fewer experimental efforts, hence reducing development time. 
Also, the MBD approach is capable of taking into the account 
of different ambient conditions (sea level, altitude levels etc.) 
and the variation in the parameters related to the engine 
operating conditions (EGR, injection timing, rail pressure 
etc.). These advantages provided by MBD approach drives the 
OEMs to use this approach to build 0D/1D predictive 
combustion and emissions model to perform future 
development work. 

The presented work in this paper is a part of an MBD 
approach project focusing on the prediction of engine out NOx 
by developing a semi-empirical 0D model which requires in-
cylinder combustion parameters. This model is built basically 
to reduce both the cost and test cell timing, by requiring a 
smaller number of test data, while maintaining the 
predictability of the model at wider range of operating points, 
for the development and control purposes. In general, the NOx 
emission model can be developed in different degrees of 
detail. The main approaches include 3D Computational Fluid 
Dynamics (CFD), 1D and 0D methods that can be classified 
by different degrees of detail and computational efforts. 3D 
CFD model [2]-[5] although predicts the NOx emissions with 
high accuracy but requires a lot of computational time which 
is not suitable for developing models to focus on calibration 
and controls work. On the other hand, there are empirical 
models [6]-[9] which correlates NOx emissions with the 
engine operating parameters, which are external to in-cylinder 
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combustion, to generate a map-based model. These models are 
usually valid only for a narrow engine operating conditions at 
which they were fit with no predictive capability because they 
can interpolate but no extrapolate although these models take 
less computational time but require lot of test data points in 
order to calibrate the model. This provides a clear problem 
statement to answer how the model predictability can be 
increased while reducing the number of test points required to 
calibrate the model. The solution for this problem has been 
developed in this paper by considering the in-cylinder 
combustion physical parameter rather than looking at 
parameters which are outside combustion zone. By including 
these physical parameters, an effort has been made to capture 
the physics behind the NOx formation. Therefore, in this 
paper, an alternative solution has been used which accounts 
for the physics behind the NOx formation by choosing the in-
cylinder combustion parameters and fitting them with the 
experimentally measured engine out NOx. The gist of this 
semi-empirical model is to estimate NOx emissions for a wide 
range of combustion and operating points and engine 
configuration with different hardware.  

In order to choose the in-cylinder combustion parameters, it 
is necessary to understand the physics and chemistry involved 
in the NOx formation. NOx emissions are comprised of two 
chemical components: NO (70-95%) [10] and NO2. Several 
mechanisms have been developed to explain the NO formation 
process by several ways: thermal path, NO-prompt, N2O and 
NNH mechanisms. Among all the paths, thermal path is 
considered as main source of NO production by previous 
researchers. It is represented by Extended Zeldovich 
mechanism (EZM) reactions [11]: 

 
N O ↔ NO N                               (1) 

 
N O ↔ NO O                               (2) 

 
N OH ↔ NO H                               (3) 

 
The overall expression for the rate of NO formation results 

into the following equation [12]: 
 

. exp .  O .  N                 (4) 

 
where T is burn gas temperature (K), and [O ] e and [N ] e are 
the equilibrium concentration (mole/cm3) of oxygen and 
nitrogen respectively.  

Equation (4) indicates that NOx formation is mainly 
dependent on the burn gas temperature and the oxygen 
concentration inside the combustion chamber, which means 
parameters related to equilibrium oxygen concentration and 
required temperature profile, should be important to build a 
model to predict engine-out NOx. Along with the high 
temperature, lean mixture region is also an important factor 
for the NOx formation [10]. Several semi-empirical models 
[13], [14] divided the combustion chamber into two zones 
which are burned and unburned zones and used the burned gas 
temperature for forming the NOx model, whereas Hegarty et 

al. [15] focused on the temperature profile which is a function 
of mean in-cylinder combustion chamber temperature, 
adiabatic temperature and the heat release rate. Querel et al. 
[16], [17] estimated the temperature delta of burned and 
unburned regions and these models also examine the empirical 
sensitivity of NOx emissions to EGR and swirl in combustion 
chamber. The similar approach has been adopted by Savva et 
al. [18]. These models have shown a good correlation for the 
engine-out NOx but along with the high dependency on the 
input parameters.  

There are several approaches which focus on developing 
correlations based on the measured NOx values on diesel 
engines. One of them is Wang et al. [19] where neural network 
models are developed by finding the empirical correlation 
between the parameters like engine speed, EGR rate, rail 
pressure, in-cylinder combustion temperature and air to fuel 
ratio. Saravanam et al. [20] studied the effect of fuel density, 
ignition delay and intake oxygen concentration. A polynomial 
model was developed between the parameters and the 
measured NOx emissions. Similar model structure was 
observed in Singh et al. [21] using a logarithmic correlation. 
They also studied the effects of fuel injection timing, quantity 
and pressure. Such kinds of models are used in control 
strategies and for OBD as virtual engine-out NOx sensor. 

Based on this literature study, it is clear that the in-cylinder 
NOx formation is highly attached to the burned gas zone. 
Also, the EZM is a prominent model to measure physical NOx 
formation. But the non-linearity of equations and uncertainty 
in tabulated equilibrium concentrations complicate the 
construction of EZM model. Also, the Zeldovich mechanism 
only considers the thermal route and not the prompt NOx 
route. Therefore, a semi-empirical model is much easier to 
build, but that is only possible if right parameters are chosen. 
To fix these problems, the proposed model will replace the 
standard extended zeldovich model by a semi-empirical 
correlation between the in-cylinder combustion parameters 
and the measured NOx values. The proposed model highlights 
the necessary parameters which corresponds to the NOx 
formation and will also be attached to the key elements in the 
Zeldovich mechanism. The proposed model is the initial step 
of the development of the engine-out NOx model. The idea 
behind the building this model is to continuously develop the 
model as the engine development phase continues as shown in 
Fig. 1. Initially a small set of experimental data, traditionally 
from 3D CFD model, is used to build the cylinder level 
calibrated model. This cylinder level calibrated model is 
further developed to have a platform to perform component 
level validation and develop the base combustion and 
emission models. The developed combustion model is later 
converted to a multi-cylinder DI-pulse 1D-combustion model 
and at this point enough data points are collected to build and 
develop a semi-empirical model based on the physical in-
cylinder combustion parameters. After validating the model at 
those available data sets, data from those operating points are 
then used to improve the model to predict the large set of DOE 
data. Therefore, it is a continuous development work with no 
termination point. 
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Fig. 1 V-cycle for the model development 
 

II. ENGINE SETUP AND EXPERIMENTAL DATA 

A medium heavy duty inline 4-cylinder diesel engine has 
been used to gather the engine-out NOx data. It is equipped 
with single stage variable geometry turbocharger, charge air 
cooler, high pressure EGR, DOC, DPF, SCR and ASC 
systems. Data has been collected at various operating 
conditions as shown in Table I. 

 
TABLE I 

ENGINE DATA COLLECTED AT VARIOUS OPERATING CONDITIONS 

Sno Operation Number of test points 

1 Entire operating region data with EGR  138 

2 Entire operating region data without EGR 123 

3 EGR Sweep 39 

4 Injection Sweep 77 

5 VGT Sweep 48 

6 VVT Sweep 21 

 

 

Fig. 2 Operating points at which data has been collected 
 

Test points in Table I covered entire engine operating range 
and were represented regards to speed and fuel flow rate in 
Fig. 2. AVL CAMEO was used for test designs, automation 

and data post-processing. To mimic the back pressure increase 
due to soot loading in DPF systems, all tests were performed 
with simulated back pressure in test cell using butterfly valve. 
Engine out emissions were measured using Horiba MEXA-
7100 DEGR motor exhaust gas analyzer system; soot was 
measured by AVL MSS+. In-cylinder pressure trace, intake 
manifold pressure, exhaust manifold pressure and injection 
current signal were measured with respect to crank angle using 
AVL Indicom 621 system. EGR percentage was estimated 
with intake manifold CO2 and O2 measurement. AVL 300 kW 
AC dynamometer was used for all tests. 

III. COMBUSTION MODEL 

Before the emission model can be build, it is necessary to 
have a predictive cycle resolved combustion model which can 
simulate multiple combustion phases. This combustion model 
is required to provide all the relevant physical parameters that 
represent the physics behind the NOx formation. It should be 
noted that the development of the combustion model was not 
the part of this work but a brief description and validation for 
the model will be provided in this work.  

1D predictive engine models were developed using 
commercially available software GT-SUITE by Gamma 
Technologies Inc. The 1D detailed model development took 4 
months to finish with time counting for data collection, 
components model development and validation. Faghani et al. 
[22] and Imran et al. [23] provided detailed explanation of 
model development and usage applications. Fig. 3 shows an 
overview of the detailed 1D engine model. Multi zone 
physical based combustion model, DI-Pulse, was used to 
accurately predict combustion physics [24], [25]. Multi-
cylinder Three Pressure Analysis (TPA) approach was 
performed to calibrate and validate in-cylinder heat transfer, 
engine breathing and valve events [24], [26]. Woschni heat 
transfer model was setup in GT-Suite to capture in-cylinder 
heat transfer [10]. Map based friction model was implemented 
as function of engine speed and load. Detailed geometry-based 
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cylinder wall temperature solver was implemented to calculate 
heat losses to walls, liners, valves, cylinder block, oil and 
coolant. EGR valve position was controlled to target EGR 
percentage estimated from intake manifold CO2 concentration 
measurement. Turbo vane position was controlled based on 
boost pressure target.  

 

 

Fig. 3 Overview of detailed 1D engine model 
 

TABLE II 
ENGINE MODEL ACCURACY TARGETS 

Sno Parameter Accuracy Targets 

1 Brake Torque ± 5 % 

2 EGR Percentage ± 1 % absolute difference 

3 Brake Specific Fuel Consumption ± 5 g/kW-h 

4 Air flow Rate ± 3 % 

5 Peak Cylinder Pressure ± 5 Bar 

6 Turbine Speed ± 5000 rpm 

7 Exhaust side pressures ± 10 kPa 

8 Exhaust side temperatures ± 20 ° C 

9 Intake side pressures ± 3 kPa 

10 Intake side temperatures ± 5 ° C 

11 EGR valve position ± 5 % opening absolute difference

12 Turbo vane position ± 5 % opening absolute difference

 
For combustion modeling, 64 points from the operating 

region with EGR operation were picked to calibrate 
combustion rate and associated emissions. The predictive 
combustion calibration was carried out to minimize the RMS 
Error between simulated combustion burning rates and 
measured combustion burning rates. The burn rate RMS Error 
is defined as: 

 

𝐵𝑅 𝑅𝑀𝑆𝐸  
∗                (5) 

 
Table II illustrates other model accuracy targets. 

Turbocharger maps were implemented, and air path 

predictions were validated using data of entire engine 
operation range without EGR. High pressure EGR path 
predictions were validated using EGR valve sweeps data. 

Figs. 4-10 show detailed engine model validation plots for 
some important parameters. Accuracy bandwidth lines were 
shown correlating to those in Table II for better understanding 
of 1D detailed model accuracy validation plots. 

 

 

Fig. 4 Brake Torque prediction comparison 
 

 

Fig. 5 EGR valve opening prediction comparison 
 

In Fig. 4, the prediction trends were good for brake torque. 
Low brake torque was difficult to match due to solver 
instability and variation in EGR mixing between cylinders. Air 
mass flow rate in Fig. 6 was over-predicting because 
turbocharger efficiency maps were collected from gas benches 
and cannot fully replicate engine dyno operating heat transfer 
between turbine and compressor. Additionally, high speed and 
load intake charge air reheated the intake manifold and caused 
slight impact on volumetric efficiency and intake air charge 
temperature at low speed-low load conditions. Fig. 5 showed 
difference between intake throttle out temperature and intake 
manifold temperature measured on engine during low speed 
and load operating conditions for without EGR condition. 

As observed in Fig. 8, for low load and speed points, intake 
manifold temperature was higher than intake throttle out 
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temperature, and the temperature difference between two 
locations became less for higher speed and load conditions. 
However, the prediction error of air mass flow rate remained 
within 5% error band. 

 

 

Fig. 6 Air mass flow rate prediction comparison 
 

 

Fig. 7 Turbo speed prediction comparison 
 

 

Fig. 8 Temperature difference Between Intake Throttle Out and 
Intake Manifold at low load low speed conditions 

 

IV. MODEL DESCRIPTION 

After going through the literatures, a brief discussion on the 
selection of parameters which have significantly high 

influence on NOx formation is hereby discussed. It is been 
observed from EZM reactions and the literature that the NOx 
formation is highly dependent on the mixture temperature, fuel 
burn rate, production and consumption of O2, N2, O, N, H and 
OH species, charge air energy, fuel and air mixing frequency 
and the turbulence inside the combustion chamber. So, in 
order to study all these conditions, different in-cylinder 
combustion parameters are extracted from the detailed engine 
combustion model. In total, 260 parameters were selected such 
as maximum cylinder pressure rise rate, trapped fuel mass, 
combustion to motoring pressure ration, burnt oxygen 
concentration at different fuel burnt amount conditions to 
name a few. 

 

 

Fig. 9 Heat release rate prediction comparison 
 
In Fig. 11, the correlation of all these parameters with 

respect to NOx is shown, where x-axis is the spearman 
correlation number and on y-axis the parameters are listed in 
numeric number. Since the focus in this work is to have a 
predictive model with less number of calibration factors, the 
cutoff factor for the selection of the parameter was set to the 
spearman coefficient number of 0.7, as shown by dotted green 
line in Fig. 11. 28 parameters showed the correlation of higher 
than 0.7, which later being evaluated to check how high the 
inter-correlation between the parameter is there. Since the 
semi-empirical model is also a mathematical model, all the 
parameters should not be dependent on each other otherwise it 
will magnify the error in the model which is being brought by 
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individual physical parameter measured from the model. So, 
in order to keep the parameters independent to each other, a 
correlation number of 0.9 was set which should not be crossed 
during the inter-correlation analysis as reported in Fig. 12 for 
the finalized parameter. After the parameters are shortlisted 
from the inter-correlation analysis, based on the increment in 
the R2 of model the parameters were added in the model and 
the selected parameters are listed in Table III, and a spearman 
correlation analysis of the selected parameters is shown in Fig. 
13. All the parameters show correlation higher than 0.7. Also, 
the study for examining the co-products of the parameters is 
also conducted. In this study all the possible permutation and 
combination has been applied to study the improvement in the 
correlation with respect to measured NOx but at the same time 
correlation between the co-products is also kept below 0.9, as 
shown in Fig. 14. 

 

 

Fig. 10 Normalized pressure trace prediction comparison 

   

Fig. 11 Spearman correlation analysis of all the parameters 
 

 

Fig. 12 Spearman correlation analysis of the inter-correlation of the 
selected parameters 
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Fig. 13 Spearman analysis of the selected parameters with respect to 
NOx measurement 

 
TABLE III 

LIST OF SELECTED PARAMETERS 

Sno Parameter Annotation 

1 Peak burn gas temperature P1 

2 Peak average gas temperature P2 

3 O2, P1 P3 

4 O2, P2 P4 

5 Maximum pressure rise rate P5 

6 Combustion and motoring pressure ratio P6 

7 Trapped fuel mass P7 

8 P5 X P7 P8 

9 P5 X P4 P9 

10 P6 X P1 P10 

11 P4 X P2 P11 

 

 

Fig. 14 Spearman analysis of the co-products of the parameters with 
respect to measured NOx 

 

 

Fig. 15 Normalized peak burn gas temperature vs. normalized 
measured NOx value 

  

Fig. 16 Normalized peak average gas temperature vs. normalized 
measured NOx value 

 
Hereafter the physical explanation of the selected 

parameters will be discussed. From (4), it is clearly observed 
that the burn gas temperature distribution plays an important 
role in the NOx calculation. Therefore, it should be included 
in the semi-empirical model. In the test also, it was observed 
that the peak burn gas temperature during the combustion has 
an exponential relationship with measured engine-out NOx as 
shown in Fig. 15. According to the Dec conceptual scheme 
[27], the NOx amount derived from thermal route is mostly 
formed in the stoichiometric diffusion flame. It can then 
proceed in the post-combustion region downstream from the 
diffusion flame. But the peak burn gas temperature represents 
only a very narrow region of high burn gas temperature. The 
rate of formation of NOx through thermal route is significant 
only at high temperatures (greater than 1800 K) because 
fixation of nitrogen requires the breaking of the strong 
nitrogen triple bond (dissociation energy of 941 kJ/gmol). So, 
in order to account for the overall air cylinder gas charge 
temperature, the peak of average gas temperature is also 
included in the model, and from Fig. 16 it can be observed that 
the measured NOx has a good exponential correlation with 
peak average gas temperature during the combustion. 

Along with the gas temperature, oxygen concentration is 
also one of the important parameters which influence the NOx 
production, which was observed in (4). So, in order to account 
for the impact of oxygen on NOx formation, two parameters 
are included in this model. The first parameter (O2, P1) defines 
the total mass of oxygen burnt to achieve the peak burn gas 
temperature. The second parameter (O2, P2) is used to define 
how much oxygen mass has been burnt during the phase when 
the peak burn gas temperature drops from its peak value to 
2000 K. These two parameters are also shown in Fig. 17 to 
give a clear pictorial view. O2, P1 captures the oxygen 
concertation being consumed in the NOx formation reactions 
during the first half of the combustion, i.e. before the adiabatic 
flame temperature is achieved. When the temperature starts to 
drop down, the NOx formation phenomenon at high 
temperature is captured by O2, P2. Figs. 18 and 19 also show 
that the two parameters defining impact of O2 has good 
correlation which measured NOx. 

The mass of N2 and O2 which are available inside the 
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combustion chamber in diffusive burned gas region is 
proportional to the fuel mass burn rate. With the high fuel 
burn rate, high combustion pressure rise rate is observed, so 
pressure rise rate can be used as the rate of fuel burnt. Also, 
the Fig. 20 shows good correlations between the maximum 
pressure rise rate and the measured NOx, therefore this term 
should be included in the model. Along with the fuel burn rate, 
the rise in the air charge energy inside the combustion 
chamber also plays an equal important role for generating 
NOx. This change in the air charge energy can be indicated by 
looking at the ratio between the max pressure obtained during 
combustion and motoring period. Fig. 21 confirms this 
hypothesis by showing the expectable trend line between the 
measured NOx and the combustion and motoring pressure 
ratios. 

 

 

Fig. 17 Definition of O2, P1 and O2, P2 
 

 

Fig. 18 Normalized O2, P1 vs normalized measured NOx value 
 

With the given parameters such as pressure ratio and 
pressure rise rate, the fuel burn rate has been taken care of but 
the fuel which is being trapped inside the cylinder has also to 
be considered. This is due to the fact that the NOx is majorly 
formed in diffusion flame region, and the trapped fuel mass 

can lead to a small premixed combustion region which results 
in the lower NOx generation. Fig. 22 also supports this 
hypothesis and shows a clear correlation between trapped fuel 
mass and the measured NOx. 

 

 

Fig. 19 Normalized O2, P2 Vs normalized measured NOx value 
 

 

Fig. 20 Normalized max pressure rise rate Vs normalized measured 
NOx value 

 

 

Fig. 21 Normalized max combustion and motoring pressure ratio Vs 
normalized measured NOx value 
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Fig. 22 Normalized trapped fuel mass Vs normalized measured NOx 
value 

 

 

Fig. 23 Predicted Vs measured NOx emissions comparison for the 
calibration data set 

V. RESULTS AND DISCUSSION 

On the basis of the discussion in above section, the engine-
out NOx concentration should be function of the parameters 
given in Table III, and the following function form has been 
proposed: 

 
𝑁𝑂𝑥 𝑃𝑃𝑀  𝐴 𝐴 𝑋 𝑒𝐵1𝑋𝑃1 𝐴 𝑋 𝑒 𝐴 𝑋𝑃3

𝐴 𝑋 𝑒 𝐴 𝑋𝑃5 𝐴 𝑋𝑃6 𝐴 𝑋𝑃7 𝐴 𝑋𝑃8
𝐴 𝑋𝑃9 𝐴 𝑋𝑃10 𝐴 𝑋𝑃11             (6) 

 
where A1-A12 and B1-B5 are the calibration factors and the 
exponential powers are determined by the mathematical 
relationship which was observed between the parameters and 
the measured NOx. The proposed equation has been calibrated 
by means of the least square method, on the basis of the steady 
state data mentioned in Table I. This has allowed the 
calibration factors to be successfully calibrated. It should be 
noted that only half of the data was used to calibrate the model 
the rest of the half was purely used to validate the model. 
Also, the data selection was randomly to avoid any human 
biasness. The calibrated model shows a good fit as shown in 
Fig. 23. The error line of +/- 20% is also plotted to give any 
idea of the range in which the prediction is matching with 
experimental data. From the plot it is clear that almost all of 
the data lies within the region with a RMSE of 74 PPM, 
nRMSE of 2.26% and the coefficient of determination R2 of 

0.985. 
Now the rest of the half of data was used to predict the NOx 

concentration and as shown in Fig. 24, almost all the predicted 
points are within the error limits with a RMSE of 78 PPM, 
nRMSE of 2.25% and the R2 of 0.9814. It can be observed that 
the correlation and the RMSE of the calibrated and validated 
data are very close which signifies that model is well 
calibrated and have good predictability. 

 

 

Fig. 24 Predicted Vs measured NOx emissions comparison for the 
validation data set 

 

 

Fig. 25 Predicted Vs measured NOx emissions comparison for the 
EZM model for with EGR operating region data 

 
The developed semi-empirical model is then compared with 

the EZM model and as it is shown in Fig. 25 that in the entire 
operating region with EGR, the model is able to predict the 
NOx concentration with a RMSE of 168 PPM, nRMSE of 
7.34% and the R2 of 0.96. The high RMSE is due to the larger 
percentage of error in high NOx region, which has been 
improved significantly in the proposed semi-empirical model. 
Similar observation is captured when the NOx concentration 
was calculated in no EGR cases, where RMSE, nRMSE and 
R2 are 111 PPM, 4.88% and 0.9753 respectively, as shown in 
Fig. 26. 

Further model prediction capability was tested by using the 
model to predict NOx for the different sweep cases such as 
EGR, VGT and injection sweep. As shown in Fig. 27, in the 
injection sweep data set, the model was able to predict the 
NOx with nRMSE of 2.05% and the R2 of 0.99. Similarly, for 
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EGR and VGT sweep test, the model was predicting well with 
the 20% error limit with the nRMSE of 4.16% and 4.71% 
respectively as shown in Figs. 28 and 29. Although the semi-
empirical model (UDF) shows lower predictability in the case 
of EGR and VGT sweep but when compared with the results 
got from the EZM model, the UDF model shows much better 
prediction at higher NOx region. Since there is issue with the 
prediction in EZM model also, the combustion model must be 
checked at the given sweeps.     

 

 

Fig. 26 Predicted Vs measured NOx emissions comparison for the 
EZM model for without EGR operating region data 

 

 

Fig. 27 Predicted Vs measured NOx emissions comparison for the 
injection sweep data set 

 

  

Fig. 28 Predicted vs. measured NOx emissions comparison for the 
EGR sweep data set 

  

Fig. 29 Predicted Vs measured NOx emissions comparison for the 
VGT sweep data set 

 
To further validate the developed model, data was collected 

at completely different engine and that data was used to 
predict the NOx concentration. As shown in Fig. 30, the NOx 
concentration is predicted with a RMSE of 91 PPM, nRMSE 
of 6.32% and R2 of 0.865. The model has a linearly over 
prediction trend, but it should be noted that the NOx has been 
calculated with the same model and without recalibrating the 
factors for this engine. Most of the data was within 20% error 
bandwidth but few of the data was also distributed between 20 
to 35% error zone and  couple of points with error higher 
than 35%. Model is able to predict significantly better at lower 
NOx region compared to the higher NOx concentration region. 
After recalibrating the model with 50% of the data available 
for this engine, the model accuracy drastically improved and 
the NOx concentration is now well predicted with the RMSE 
of 50 PPM, nRMSE of 3.5% and R2 of 0.92, as shown in Fig. 
31.  

 

 

Fig. 30 Predicted vs. measured NOx emissions comparison for the 
completely different engine data set without recalibrating the model 

 
In the literature review, it was observed that the machine 

learning approach for making the model is only another model 
calibrating method, therefore it will require the same amount 
of data to calibrate the model based on the physical 
parameters. So, in this work, an effort was also made to check 
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how the neural network model behaves with the smaller 
number of data points but with the physical parameters which 
represents the physics behind NOx formation. Several 
algorithms were tested and the RMSE results show that with 
the availability of 75% data set for calibration, model was able 
to predict the NOx with the RMSE of as low as 58.6 PPM as 
shown in Table IV. It was observed that SVM model provides 
good correlation compared to the other methods especially 
super learner. In the super learner approach the percentage of 
contribution of gbm, random forest, polymars and svm is 
5.5%, 28.3%, 40.6% and 25.6% respectively. It should be also 
noted that the super learner result reported in this work is 
obtained after n-fold cross validation, example is shown in 
Fig. 32, whereas there is no cross validation for SVM 
approach. This shows that the different results can be obtained 
by choosing different regression model, but the important part 
in building a semi-empirical model is the selection of the 
parameters which have physical or chemical relationship with 
the NOx formation. It is also important to focus on the 
complexity of the model. Since it is difficult to integrate a 
machine learning model or neural network model with the 
combustion model of GT-Power, a simple mathematical 
function is chosen to represent the NOx formation which can 
be easily integrated as a mathematical function and will not 
impact the run time of the current combustion model.  

 

 

Fig. 31 Predicted Vs measured NOx emissions comparison for the 
completely different engine data set after recalibrating the model 

 
TABLE IV 

RMSE RESULTS FROM DIFFERENT ALGORITHMS 

Sno Algorithm 
RMSE for 25% 

data set validation

1 Support Vector Machine (SVM) 58.6 

2 Random Forest 85.245 

3 Super Learner 85.342 

4 Polymars 170.8114 

5 gbm 87.5706 

VI. CONCLUSION 

This work presented the development and validation 
framework of a semi-empirical zero-dimensional NOx model 
for the medium heavy duty diesel engine. The model is based 

on the physical in-cylinder combustion parameters which 
defines the physics and chemistry behind the NOx formation. 
The selection of these parameters is them combined with 
empirical model with the available data points. To achieve the 
target, three major objectives have been achieved: 
1)  A predictive combustion model should be developed, so 

that the in-cylinder parameters can be extracted. 
2) Second step is to ensure the selected parameters have 

physical relationship with NOx test data and does not 
have high inter-correlation. The high inter-correlation will 
lead to the higher chance of error increment in the model 
which is being brought by the parameters taken from the 
combustion model.  

3) With the availability of advanced regression tool, a final 
linear NOx model was built as a function of physical 
parameters. The summary of the results of the accuracy of 
the model for different test conditions is presented in 
Table V. 

 

 

Fig. 32 Example of n-fold cross validation approach 
 

TABLE V 
RMSE RESULTS FROM DIFFERENT ALGORITHMS 

Sno Test condition 
RMSE 
(PPM) 

nRMSE 
(%) 

R2 

1 Calibration at operating condition 74 2.26 0.985 

2 Validation at operating condition 78 2.25 0.9814

3 
EZM prediction operating condition with 

EGR 
168 7.34 0.96 

4 
EZM prediction operating condition 

without EGR 
111 4.88 0.9753

5 Model prediction at injection sweep 72 2.05 0.99 

7 Model prediction at EGR sweep 70 4.16 0.9687

8 Model prediction at VGT sweep 75 4.71 0.9837

9 Engine 2 validation without re-calibration 91 6.32 0.865 

10 Engine 2 validation with re-calibration 50 3.5 0.92 

 
Validation results show that the developed model is able to 

predict the NOx concentration with high accuracy especially 
for the lower and middle range of NOx values. The accuracy 
was slightly off at higher NOx values when the model was test 
on different engine data set. Overall the results were within the 
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tolerance limit and with the advantage of lower computational 
time and cost; it can have a meaningful contribution in 
achieving a virtual engine platform which can be used for 
multiple applications such as control strategies development, 
engine pre calibration and HIL testing. 

It should be noted that this is not the end of the proposed 
semi-empirical model. The model has been developed based 
on the initial small amount of data set. It has to be tested and 
then calibrated for the wide range of design of experiments 
(DOE) data sets to make it more robustness and predictable. 
This model will be used to form another level of model which 
will be used in future development work. This continuous 
improvement and development will be done by using the data 
from other set of NTE (not to exceed) and altitude testing 
where the model has already been used for predicting the 
engine-out NOx emission. Based on the discussion in this 
paper, the following future work has been planned: 
1) Similar approach will be used to model other emission 

models such as soot, CO and HC but most of the efforts 
should be spent on selecting the physical parameters 
which can have huge impact on the model’s predictability. 
This requires the automation of the parameter selection 
based on domain expert knowledge instead of purely data 
driven. 

2) Machine learning aided formula can be constructed which 
will require fewer manual efforts and can find more 
representative formula for the mathematical function to 
integrate in the combustion model. 

3) Sensitivity analysis will be performed to determine the 
impact of error percentage inside the parameter on the 
overall model prediction error. A systematic approach has 
to be determined to reduce the impact of the parameter 
uncertainty. 

4) Finally, a deterministic deep learning and machine 
learning approach has to be developed to improve model 
predictability and robustness. 
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