Search results for: Reactive Powder Concrete
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1249

Search results for: Reactive Powder Concrete

349 Effect of TCSR on Measured Impedance by Distance Protection in Presence Single Phase to Earth Fault

Authors: Mohamed Zellagui, Abdelaziz Chaghi

Abstract:

This paper presents the impact study of apparent reactance injected by series Flexible AC Transmission System (FACTS) i.e. Thyristor Controlled Series Reactor (TCSR) on the measured impedance of a 400 kV single electrical transmission line in the presence of phase to earth fault with fault resistance. The study deals with an electrical transmission line of Eastern Algerian transmission networks at Group Sonelgaz (Algerian Company of Electrical and Gas) compensated by TCSR connected at midpoint of the line. This compensator used to inject active and reactive powers is controlled by three TCSR-s. The simulations results investigate the impacts of the TCSR on the parameters of short circuit calculation and parameters of measured impedance by distance relay in the presence of earth fault for three cases study.

Keywords: TCSR, Transmission line, Apparent reactance, Earth fault, Symmetrical components, Distance protection, Measured impedance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2512
348 Fuzzy Logic Controller Based Shunt Active Filter with Different MFs for Current Harmonics Elimination

Authors: Shreyash Sinai Kunde, Siddhang Tendulkar, Shiv Prakash Gupta, Gaurav Kumar, Suresh Mikkili

Abstract:

One of the major power quality concerns in modern times is the problem of current harmonics. The current harmonics is caused due to the increase in non-linear loads which is largely dominated by power electronics devices. The Shunt active filtering is one of the best solutions for mitigating current harmonics. This paper describes a fuzzy logic controller based (FLC) based three Phase Shunt active Filter to achieve low current harmonic distortion (THD) and Reactive power compensation. The performance of fuzzy logic controller is analysed under both balanced sinusoidal and unbalanced sinusoidal source condition. The above controller serves the purpose of maintaining DC Capacitor Voltage constant. The proposed shunt active filter uses hysteresis current controller for current control of IGBT based PWM inverter. The simulation results of model in Simulink MATLAB reveals satisfying results.

Keywords: Shunt active filter, Current harmonics, Fuzzy logic controller, Hysteresis current controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2684
347 Utilization of Bioactive Components Produced from Fermented Soybean (Natto) in Beef Burger

Authors: F. M. Abu-Salem, M. H. Mahmoud, A. Y. Gibriel, M. H. El-Kalyoubi, A. A. Abou-Arab Arab

Abstract:

Soybean Natto powder was added to the burger in order to enhance the oxidative stability as well as decreases the microbial spoilage. The soybean bioactives compound (soybean Natto) as antioxidant and antimicrobial were added at level of 1, 2 and 3%. Chemical analysis and physical properties were affected by soybean Natto addition. All the tested soybean Natto additives showed strong antioxidant properties. The microbiological indicators were significantly (P < 0.05) affected by the addition of the soybean Natto. Decreasing trends of different extent were also observed in samples of the treatments for total viable counts, Coliform, Staphylococcus aureus, yeast and molds. Storage period was significantly (P < 0.05) affected on microbial counts in all samples Staphylococcus aureus were the most sensitive microbe followed by Coliform group of the sample containing soybean Natto. Sensory attributes were also performed, added soybean Natto exhibits beany flavor which was clear about samples of 3% soybean Natto.

Keywords: Antioxidant, antimicrobial, bioactive peptide, antioxidant peptides.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2305
346 An Exhaustive Review of Die Sinking Electrical Discharge Machining Process and Scope for Future Research

Authors: M. M. Pawade, S. S. Banwait

Abstract:

Electrical Discharge Machine (EDM) is especially used for the manufacturing of 3-D complex geometry and hard material parts that are extremely difficult-to-machine by conventional machining processes. In this paper authors review the research work carried out in the development of die-sinking EDM within the past decades for the improvement of machining characteristics such as Material Removal Rate, Surface Roughness and Tool Wear Ratio. In this review various techniques reported by EDM researchers for improving the machining characteristics have been categorized as process parameters optimization, multi spark technique, powder mixed EDM, servo control system and pulse discriminating. At the end, flexible machine controller is suggested for Die Sinking EDM to enhance the machining characteristics and to achieve high-level automation. Thus, die sinking EDM can be integrated with Computer Integrated Manufacturing environment as a need of agile manufacturing systems.

Keywords: Electrical Discharge Machine, Flexible Machine Controller, Material Removal Rate, Tool Wear Ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5255
345 The Self-Propelled Model of a Boat, Based on the Wave Thrust

Authors: V. Arabadzhi

Abstract:

We attempted investigate a boat model, based on the conversion of energy of surface wave into a sequence of unidirectional pulses of jet spurts, in other words - model of the boat, which is thrusting by the waves field on water surface. These pulses are forming some average reactive stream from the output nozzle on the stern of boat. The suggested model provides the conversion of its oscillatory motions (both pitching and rolling) into a jet flow. This becomes possible due to special construction of the boat and due to several details, sensitive to the local wave field. The boat model presents the uniflow jet engine without slow conversions of mechanical energy into intermediate forms and without any external sources of energy (besides surface waves). Motion of boat is characterized by fast jerks and average onward velocity, which exceeds the velocities of liquid particles in the wave.

Keywords: Flat-bottomed boat, Underwater wing, Input and output nozzles, Wave thrust, Conversion of wave into a jet stream, Oscillatory motion and onward motion, Squid-like pump, Hatch-like pump, The thrust due to lifting float, The thrust due to radiation reaction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1797
344 Spherical Spectrum Properties of Quaternionic Operators

Authors: Yiwan Guo, Fahui Zhai

Abstract:

In this paper, the similarity invariant and the upper semi-continuity of spherical spectrum, and the spherical spectrum properties for infinite direct sums of quaternionic operators are characterized, respectively. As an application of some results established, a concrete example about the computation of the spherical spectrum of a compact quaternionic operator with form of infinite direct sums of quaternionic matrices is also given.

Keywords: Spherical spectrum, Quaternionic operator, Upper semi-continuity, Direct sum of operators.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1385
343 Mechanical Characterization of Mango Peel Flour and Biopolypropylene Composites Compatibilized with PP-g-IA

Authors: J. Gomez-Caturla, L. Quiles-Carrillo, J. Ivorra-Martinez, D. Garcia-Garcia, R. Balart

Abstract:

The present work reports on the development of wood plastic composites based on biopolypropylene (BioPP) and mango peel flour (MPF) by extrusion and injection molding processes. PP-g-IA and dicumyl peroxide (DCP) have been used as a compatibilizer and as a free radical initiator for reactive extrusion, respectively. Mechanical and morphological properties have been characterized in order to study the compatibility of the blends. The obtained results showed that DCP and PP-g-IA improved the stiffness of BioPP in terms of elastic modulus. Moreover, they positively increased the tensile strength and elongation at break of the blends in comparison with the sample that only had BioPP and MPF on its composition, improving the affinity between both compounds. DCP and PP-g-IA even seem to have certain synergy, which was corroborated through Field Emission Scanning Electron Microscopy (FESEM) analysis. Images showed that the MPF particles had greater adhesion to the polymer matrix when PP-g-IA and DCP were added. This effect was more intense when both elements were added, observing an almost inexistent gap between MPF particles and the BioPP matrix.

Keywords: Biopolypropylene, compatibilization, mango peel flour, wood plastic composite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 334
342 Performences of Type-2 Fuzzy Logic Control and Neuro-Fuzzy Control Based on DPC for Grid Connected DFIG with Fixed Switching Frequency

Authors: Fayssal Amrane, Azeddine Chaiba

Abstract:

In this paper, type-2 fuzzy logic control (T2FLC) and neuro-fuzzy control (NFC) for a doubly fed induction generator (DFIG) based on direct power control (DPC) with a fixed switching frequency is proposed for wind generation application. First, a mathematical model of the doubly-fed induction generator implemented in d-q reference frame is achieved. Then, a DPC algorithm approach for controlling active and reactive power of DFIG via fixed switching frequency is incorporated using PID. The performance of T2FLC and NFC, which is based on the DPC algorithm, are investigated and compared to those obtained from the PID controller. Finally, simulation results demonstrate that the NFC is more robust, superior dynamic performance for wind power generation system applications.

Keywords: Doubly fed induction generetor, direct power control, space vector modulation, type-2 fuzzy logic control, neuro-fuzzy control, maximum power point tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1622
341 Making Data Structures and Algorithms more Understandable by Programming Sudoku the Human Way

Authors: Roelien Goede

Abstract:

Data Structures and Algorithms is a module in most Computer Science or Information Technology curricula. It is one of the modules most students identify as being difficult. This paper demonstrates how programming a solution for Sudoku can make abstract concepts more concrete. The paper relates concepts of a typical Data Structures and Algorithms module to a step by step solution for Sudoku in a human type as opposed to a computer oriented solution.

Keywords: Data Structures, Algorithms, Sudoku, ObjectOriented Programming, Programming Teaching, Education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3062
340 Thermodynamic Analysis of Activated Carbon- CO2 based Adsorption Cooling Cycles

Authors: Skander Jribi, Anutosh Chakraborty, Ibrahim I. El-Sharkawy, Bidyut Baran Saha, Shigeru Koyama

Abstract:

Heat powered solid sorption is a feasible alternative to electrical vapor compression refrigeration systems. In this paper, activated carbon (powder type Maxsorb and fiber type ACF-A10)- CO2 based adsorption cooling cycles are studied using the pressuretemperature- concentration (P-T-W) diagram. The specific cooling effect (SCE) and the coefficient of performance (COP) of these two cooling systems are simulated for the driving heat source temperatures ranging from 30 ºC to 90 ºC in terms of different cooling load temperatures with a cooling source temperature of 25 ºC. It is found from the present analysis that Maxsorb-CO2 couple shows higher cooling capacity and COP. The maximum COPs of Maxsorb-CO2 and ACF(A10)-CO2 based cooling systems are found to be 0.15 and 0.083, respectively. The main innovative feature of this cooling cycle is the ability to utilize low temperature waste heat or solar energy using CO2 as the refrigerant, which is one of the best alternative for applications where flammability and toxicity are not allowed.

Keywords: Activated carbon, Adsorption cooling system, Carbon dioxide, Performance evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3621
339 Direct Power Control Strategies for Multilevel Inverter Based Custom Power Devices

Authors: S. Venkateshwarlu, B. P. Muni, A. D. Rajkumar, J. Praveen

Abstract:

Custom power is a technology driven product and service solution which embraces a family devices such as Dynamic Voltage Restorer (DVR), Distributed Shunt Compensator (DSTATCOM), Solid State Breaker (SSB) etc which will provide power quality functions at distribution voltages. The rapid response of these devices enables them to operate in real time, providing continuous and dynamic control of the supply including voltage and reactive power regulation, harmonic reduction and elimination of voltage dips. This paper presents the benefits of multilevel inverters when they are used for DPC based custom power devices. Power flow control mechanism, salient features, advantages and disadvantages of direct power control (DPC) using lookup table, SVM, predictive voltage vector and hybrid DPC strategies are discussed in this paper. Simulation results of three level inverter based STATCOM, harmonic analysis of multi level inverters are presented at the end.

Keywords: DPC, DPC-SVM, Dynamic voltage restorer, DSTATCOM, Multilevel inverter, PWM Converter, PDPC, VF-DPC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2923
338 Seismic Behavior of Thin Shear Wall under the Exerted Loads

Authors: Ali A. Ofoghi

Abstract:

While the shear walls are not economical in buildings, thin shear walls are widely used in the buildings. In the present study, the ratio of different loads to their plasticity and seismic behavior of the wall under different loads have been investigated. Modeling and analysis are carried out by the finite element analysis software ABAQUS. The results show that any increase in the exerted loads will have adverse effects on the seismic behavior of the thin shear walls and causes the wall to collapse by small displacements.

Keywords: Thin shear wall, nonlinear dynamic analysis, reinforced concrete, plasticity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 909
337 Iron Recovery from Red Mud as Zero-Valent Iron Metal Powder Using Direct Electrochemical Reduction Method

Authors: Franky Michael Hamonangan Siagian, Affan Maulana, Himawan Tri Bayu Murti Petrus, Panut Mulyono, Widi Astuti

Abstract:

In this study, the feasibility of the direct electrowinning method was used to produce zero-valent iron from red mud. The red mud sample came from the Tayan mine, Indonesia, which contains high hematite (Fe2O3). Before electrolysis, the samples were characterized by various analytical techniques (ICP-AES, SEM, XRD) to determine their chemical composition and mineralogy. The direct electrowinning method of red mud suspended in NaOH was introduced at low temperatures ranging from 30-110 °C. Current density and temperature variations were carried out to determine the optimum operation of the direct electrowinning process. Cathode deposits and residues in electrochemical cells were analyzed using XRD, XRF, and SEM to determine the chemical composition and current recovery. The low-temperature electrolysis current efficiency on Redmud can reach 11.8% recovery at a current density of 796 A/m². The moderate performance of the process was investigated with red mud, which was attributed to the troublesome adsorption of red mud particles on the cathode, making the reduction far less efficient than that with hematite.

Keywords: Alumina, electrochemical reduction, iron production, red mud.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 144
336 Rapid Expansion Supercritical Solution (RESS) Carbon Dioxide as an Environmental Friendly Method for Ginger Rhizome Solid Oil Particles Formation

Authors: N. A. Zainuddin, I. Norhuda, I. S. Adeib, A. N. Mustapa, S. H. Sarijo

Abstract:

Recently, RESS (Rapid Expansion Supercritical Solution) method has been used by researchers to produce fine particles for pharmaceutical drug substances. Since RESS technology acknowledges a lot of benefits compare to conventional method of ginger extraction, it is suggested to use this method to explore particle formation of bioactive compound from powder ginger. The objective of this research is to produce direct solid oil particles formation from ginger rhizome which contains valuable compounds by using RESS-CO2 process. RESS experiments were carried using extraction pressure of 3000, 4000, 5000, 6000 and 7000psi and at different extraction temperature of 40, 45, 50, 55, 60, 65 and 70°C for 40 minutes extraction time and contant flowrate (24ml/min). From the studies conducted, it was found that at extraction pressure 5000psi and temperature 40°C, the smallest particle size obtained was 2.22μm on 99 % reduction from the original size of 370μm.

Keywords: Particle size, RESS, solid oil particle, supercritical carbon dioxide.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 922
335 Analytical Solution for the Zakharov-Kuznetsov Equations by Differential Transform Method

Authors: Saeideh Hesam, Alireza Nazemi, Ahmad Haghbin

Abstract:

This paper presents the approximate analytical solution of a Zakharov-Kuznetsov ZK(m, n, k) equation with the help of the differential transform method (DTM). The DTM method is a powerful and efficient technique for finding solutions of nonlinear equations without the need of a linearization process. In this approach the solution is found in the form of a rapidly convergent series with easily computed components. The two special cases, ZK(2,2,2) and ZK(3,3,3), are chosen to illustrate the concrete scheme of the DTM method in ZK(m, n, k) equations. The results demonstrate reliability and efficiency of the proposed method.

Keywords: Zakharov-Kuznetsov equation, differential transform method, closed form solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1888
334 An Energy Reverse AODV Routing Protocol in Ad Hoc Mobile Networks

Authors: Said Khelifa, Zoulikha Mekkakia Maaza

Abstract:

In this paper we present a full performance analysis of an energy conserving routing protocol in mobile ad hoc network, named ER-AODV (Energy Reverse Ad-hoc On-demand Distance Vector routing). ER-AODV is a reactive routing protocol based on a policy which combines two mechanisms used in the basic AODV protocol. AODV and most of the on demand ad hoc routing protocols use single route reply along reverse path. Rapid change of topology causes that the route reply could not arrive to the source node, i.e. after a source node sends several route request messages, the node obtains a reply message, and this increases in power consumption. To avoid these problems, we propose a mechanism which tries multiple route replies. The second mechanism proposes a new adaptive approach which seeks to incorporate the metric "residual energy " in the process route selection, Indeed the residual energy of mobile nodes were considered when making routing decisions. The results of simulation show that protocol ER-AODV answers a better energy conservation.

Keywords: Ad hoc mobile networks, Energy AODV, Energy consumption, ER-AODV, Reverse AODV.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2291
333 Impregnation of Cupper into Kanuma Volcanic Ash Soil to Improve Mercury Sorption Capacity

Authors: Jatindra N. Bhakta, Yukihiro Munekage

Abstract:

The present study attempted to improve the Mercury (Hg) sorption capacity of kanuma volcanic ash soil (KVAS) by impregnating the cupper (Cu). Impregnation was executed by 1 and 5% Cu powder and sorption characterization of optimum Hg removing Cu impregnated KVAS was performed under different operational conditions, contact time, solution pH, sorbent dosage and Hg concentration using the batch operation studies. The 1% Cu impregnated KVAS pronounced optimum improvement (79%) in removing Hg from water compare to control. The present investigation determined the equilibrium state of maximum Hg adsorption at 6 h contact period. The adsorption revealed a pH dependent response and pH 3.5 showed maximum sorption capacity of Hg. Freundlich isotherm model is well fitted with the experimental data than that of Langmuir isotherm. It can be concluded that the Cu impregnation improves the Hg sorption capacity of KVAS and 1% Cu impregnated KVAS could be employed as cost-effective adsorbent media for treating Hg contaminated water.

Keywords: Cupper, impregnation, isotherm, kanuma volcanic ash soil, mercury, sorption

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1628
332 Study the Behavior of Different Composite Short Columns (DST) with Prismatic Sections under Bending Load

Authors: V. Sadeghi Balkanlou, M. Reza Bagerzadeh Karimi, A. Hasanbakloo, B. Bagheri Azar

Abstract:

In this paper, the behavior of different types of DST columns has been studied under bending load. Briefly, composite columns consist of an internal carbon steel tube and an external stainless steel wall that the between the walls are filled with concrete. Composite columns are expected to combine the advantages of all three materials and have the advantage of high flexural stiffness of CFDST columns. In this research, ABAQUS software is used for finite element analysis then the results of ultimate strength of the composite sections are illustrated.

Keywords: DST, Stainless steel, carbon steel, ABAQUS, Straigh Columns, Tapered Columns.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3487
331 T-DOF PID Controller Design using Characteristic Ratio Assignment Method for Quadruple Tank Process

Authors: Tianchai Suksri, U-thai Sritheeravirojana, Arjin Numsomran, Viriya Kongrattana, Thongchai Werataweemart

Abstract:

A control system design with Characteristic Ratio Assignment (CRA) is proven that effective for SISO control design. But the control system design for MIMO via CRA is not concrete procedure. In this paper presents the control system design method for quadruple-tank process via CRA. By using the decentralized method for both minimum phase and non-minimum phase are made. The results from PI and PID controller design via CRA can be illustrated the validity of our approach by MATLAB.

Keywords: CRA, Quadruple-Tank.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1554
330 Interfacing Photovoltaic Systems to the Utility Grid: A Comparative Simulation Study to Mitigate the Impact of Unbalanced Voltage Dips

Authors: Badr M. Alshammari, A. Rabeh, A. K. Mohamed

Abstract:

This paper presents the modeling and the control of a grid-connected photovoltaic system (PVS). Firstly, the MPPT control of the PVS and its associated DC/DC converter has been analyzed in order to extract the maximum of available power. Secondly, the control system of the grid side converter (GSC) which is a three-phase voltage source inverter (VSI) has been presented. A special attention has been paid to the control algorithms of the GSC converter during grid voltages imbalances. Especially, three different control objectives are to achieve; the mitigation of the grid imbalance adverse effects, at the point of common coupling (PCC), on the injected currents, the elimination of double frequency oscillations in active power flow, and the elimination of double frequency oscillations in reactive power flow. Simulation results of two control strategies have been performed via MATLAB software in order to demonstrate the particularities of each control strategy according to power quality standards.

Keywords: Renewable energies, photovoltaic systems, DC link, voltage source inverter, space vector SVPWM, unbalanced voltage dips, symmetrical components.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1583
329 Numerical Study on Improving Indoor Thermal Comfort Using a PCM Wall

Authors: M. Faraji, F. Berroug

Abstract:

A one-dimensional mathematical model was developed in order to analyze and optimize the latent heat storage wall. The governing equations for energy transport were developed by using the enthalpy method and discretized with volume control scheme. The resulting algebraic equations were next solved iteratively by using TDMA algorithm. A series of numerical investigations were conducted in order to examine the effects of the thickness of the PCM layer on the thermal behavior of the proposed heating system. Results are obtained for thermal gain and temperature fluctuation. The charging discharging process was also presented and analyzed.

Keywords: Phase change material, Building, Concrete, Latent heat, Thermal control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2108
328 A Composite Developed from a Methyl Methacrylate and Embedded Eppawala Hydroxyapatite for Orthopedics

Authors: H. K. G. K. D. K. Hapuhinna, R. D. Gunaratne, H. M. J. C. Pitawala

Abstract:

This study aimed to find out chemical and structural suitability of synthesized eppawala hydroxyapatite composite as bone cement, by comparing and contrasting it with human bone as well as commercially available bone cement, which is currently used in orthopedic surgeries. Therefore, a mixture of commercially available bone cement and its liquid monomer, commercially available methyl methacrylate (MMA) and a mixture of solid state synthesized eppawala hydroxyapatite powder with commercially available MMA were prepared as the direct substitution for bone cement. Then physical and chemical properties including composition, crystallinity, presence of functional groups, thermal stability, surface morphology, and microstructural features were examined compared to human bone. Results show that there is a close similarity between synthesized product and human bone and it has exhibited high thermal stability, good crystalline and porous properties than the commercial product. Finally, the study concluded that synthesized hydroxyapatite composite can be used directly as a substitution for commercial bone cement.

Keywords: Hydroxyapatite, bone cement, methyl methacrylate, orthopedics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 576
327 Memory Leak Detection in Distributed System

Authors: Roohi Shabrin S., Devi Prasad B., Prabu D., Pallavi R. S., Revathi P.

Abstract:

Due to memory leaks, often-valuable system memory gets wasted and denied for other processes thereby affecting the computational performance. If an application-s memory usage exceeds virtual memory size, it can leads to system crash. Current memory leak detection techniques for clusters are reactive and display the memory leak information after the execution of the process (they detect memory leak only after it occur). This paper presents a Dynamic Memory Monitoring Agent (DMMA) technique. DMMA framework is a dynamic memory leak detection, that detects the memory leak while application is in execution phase, when memory leak in any process in the cluster is identified by DMMA it gives information to the end users to enable them to take corrective actions and also DMMA submit the affected process to healthy node in the system. Thus provides reliable service to the user. DMMA maintains information about memory consumption of executing processes and based on this information and critical states, DMMA can improve reliability and efficaciousness of cluster computing.

Keywords: Dynamic Memory Monitoring Agent (DMMA), Cluster Computing, Memory Leak, Fault Tolerant Framework, Dynamic Memory Leak Detection (DMLD).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2235
326 Development of a Nano-Alumina-Zirconia Composite Catalyst as an Active Thin Film in Biodiesel Production

Authors: N. Marzban, J. K. Heydarzadeh M. Pourmohammadbagher, M. H. Hatami, A. Samia

Abstract:

A nano-alumina-zirconia composite catalyst was synthesized by a simple aqueous sol-gel method using AlCl3.6H2O and ZrCl4 as precursors. Thermal decomposition of the precursor and subsequent formation of γ-Al2O3 and t-Zr were investigated by thermal analysis. XRD analysis showed that γ-Al2O3 and t-ZrO2 phases were formed at 700 °C. FT-IR analysis also indicated that the phase transition to γ-Al2O3 occurred in corroboration with X-ray studies. TEM analysis of the calcined powder revealed that spherical particles were in the range of 8-12 nm. The nano-alumina-zirconia composite particles were mesoporous and uniformly distributed in their crystalline phase. In order to measure the catalytic activity, esterification reaction was carried out. Biodiesel, as a renewable fuel, was formed in a continuous packed column reactor. Free fatty acid (FFA) was esterified with ethanol in a heterogeneous catalytic reactor. It was found that the synthesized γ-Al2O3/ZrO2 composite had the potential to be used as a heterogeneous base catalyst for biodiesel production processes.

Keywords: Nano-alumina-zirconia, composite catalyst, thin film, biodiesel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1696
325 Broadband Baseband Impedance Control for Linearity Enhancement in Microwave Devices

Authors: Muhammad Akmal Chaudhary

Abstract:

The out-of-band impedance environment is considered to be of paramount importance in engineering the in-band impedance environment. Presenting the frequency independent and constant outof- band impedances across the wide modulation bandwidth is extremely important for reliable device characterization for future wireless systems. This paper presents an out-of-band impedance optimization scheme based on simultaneous engineering of significant baseband components IF1 (twice the modulation frequency) and IF2 (four times the modulation frequency) and higher baseband components such as IF3 (six times the modulation frequency) and IF4 (eight times the modulation frequency) to engineer the in-band impedance environment. The investigations were carried out on a 10W GaN HEMT device driven to deliver a peak envelope power of approximately 40.5dBm under modulated excitation. The presentation of frequency independent baseband impedances to all the significant baseband components whilst maintaining the optimum termination for fundamental tones as well as reactive termination for 2nd harmonic under class-J mode of operation has outlined separate optimum impedances for best intermodulation (IM) linearity.

Keywords: Active load-pull, baseband, device characterisation, waveform measurements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1928
324 Knowledge Reactor: A Contextual Computing Work in Progress for Eldercare

Authors: Scott N. Gerard, Aliza Heching, Susann M. Keohane, Samuel S. Adams

Abstract:

The world-wide population of people over 60 years of age is growing rapidly. The explosion is placing increasingly onerous demands on individual families, multiple industries and entire countries. Current, human-intensive approaches to eldercare are not sustainable, but IoT and AI technologies can help. The Knowledge Reactor (KR) is a contextual, data fusion engine built to address this and other similar problems. It fuses and centralizes IoT and System of Record/Engagement data into a reactive knowledge graph. Cognitive applications and services are constructed with its multiagent architecture. The KR can scale-up and scaledown, because it exploits container-based, horizontally scalable services for graph store (JanusGraph) and pub-sub (Kafka) technologies. While the KR can be applied to many domains that require IoT and AI technologies, this paper describes how the KR specifically supports the challenging domain of cognitive eldercare. Rule- and machine learning-based analytics infer activities of daily living from IoT sensor readings. KR scalability, adaptability, flexibility and usability are demonstrated.

Keywords: Ambient sensing, AI, artificial intelligence, eldercare, IoT, internet of things, knowledge graph.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1000
323 NSGA Based Optimal Volt / Var Control in Distribution System with Dispersed Generation

Authors: P. N. Hrisheekesha, Jaydev Sharma

Abstract:

In this paper, a method based on Non-Dominated Sorting Genetic Algorithm (NSGA) has been presented for the Volt / Var control in power distribution systems with dispersed generation (DG). Genetic algorithm approach is used due to its broad applicability, ease of use and high accuracy. The proposed method is better suited for volt/var control problems. A multi-objective optimization problem has been formulated for the volt/var control of the distribution system. The non-dominated sorting genetic algorithm based method proposed in this paper, alleviates the problem of tuning the weighting factors required in solving the multi-objective volt/var control optimization problems. Based on the simulation studies carried out on the distribution system, the proposed scheme has been found to be simple, accurate and easy to apply to solve the multiobjective volt/var control optimization problem of the distribution system with dispersed generation.

Keywords: Dispersed Generation, Distribution System, Non-Dominated Sorting Genetic Algorithm, Voltage / Reactive powercontrol.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1602
322 FEM Simulations to Study the Effects of Laser Power and Scan Speed on Molten Pool Size in Additive Manufacturing

Authors: Yee-Ting Lee, Jyun-Rong Zhuang, Wen-Hsin Hsieh, An-Shik Yang

Abstract:

Additive manufacturing (AM) is increasingly crucial in biomedical and aerospace industries. As a recently developed AM technique, selective laser melting (SLM) has become a commercial method for various manufacturing processes. However, the molten pool configuration during SLM of metal powders is a decisive issue for the product quality. It is very important to investigate the heat transfer characteristics during the laser heating process. In this work, the finite element method (FEM) software ANSYS® (work bench module 16.0) was used to predict the unsteady temperature distribution for resolving molten pool dimensions with consideration of temperature-dependent thermal physical properties of TiAl6V4 at different laser powers and scanning speeds. The simulated results of the temperature distributions illustrated that the ratio of laser power to scanning speed can greatly influence the size of molten pool of titanium alloy powder for SLM development.

Keywords: Additive manufacturing, finite element method, molten pool dimensions, selective laser melting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1612
321 Numerical Investigation on Damage Evolution of Piles inside Liquefied Soil Foundation - Dynamic-Loading Experiments -

Authors: Ahmed Mohammed Youssef Mohammed, Mohammad Reza Okhovat, Koichi Maekawa

Abstract:

The large and small-scale shaking table tests, which was conducted for investigating damage evolution of piles inside liquefied soil, are numerically simulated and experimental verified by the3D nonlinear finite element analysis. Damage evolution of elasto-plastic circular steel piles and reinforced concrete (RC) one with cracking and yield of reinforcement are focused on, and the failure patterns and residual damages are captured by the proposed constitutive models. The superstructure excitation behind quay wall is reproduced as well.

Keywords: Soil-Structure Interaction, Piles, Soil Liquefaction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1950
320 A Functional Thermochemical Energy Storage System for Mobile Applications: Design and Performance Analysis

Authors: Jure Galović, Peter Hofmann

Abstract:

Thermochemical energy storage (TCES), as a long-term and lossless energy storage principle, provides a contribution for the reduction of greenhouse emissions of mobile applications, such as passenger vehicles with an internal combustion engine. A prototype of a TCES system, based on reversible sorption reactions of LiBr composite and methanol has been designed at Vienna University of Technology. In this paper, the selection of reactive and inert carrier materials as well as the design of heat exchangers (reactor vessel and evapo-condenser) was reviewed and the cycle stability under real operating conditions was investigated. The performance of the developed system strongly depends on the environmental temperatures, to which the reactor vessel and evapo-condenser are exposed during the phases of thermal conversion. For an integration of the system into mobile applications, the functionality of the designed prototype was proved in numerous conducted cycles whereby no adverse reactions were observed.

Keywords: Mobile applications, LiBr composite, methanol, performance of TCES system, sorption process, thermochemical energy storage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 934