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Abstract—The world-wide population of people over 60 years
of age is growing rapidly. The explosion is placing increasingly
onerous demands on individual families, multiple industries and
entire countries. Current, human-intensive approaches to eldercare
are not sustainable, but IoT and AI technologies can help. The
Knowledge Reactor (KR) is a contextual, data fusion engine built to
address this and other similar problems. It fuses and centralizes IoT
and System of Record/Engagement data into a reactive knowledge
graph. Cognitive applications and services are constructed with its
multiagent architecture. The KR can scale-up and scaledown, because
it exploits container-based, horizontally scalable services for graph
store (JanusGraph) and pub-sub (Kafka) technologies. While the KR
can be applied to many domains that require IoT and AI technologies,
this paper describes how the KR specifically supports the challenging
domain of cognitive eldercare. Rule- and machine learning-based
analytics infer activities of daily living from IoT sensor readings. KR
scalability, adaptability, flexibility and usability are demonstrated.

Keywords—Ambient sensing, AI, artificial intelligence, eldercare,
IoT, internet of things, knowledge graph.

I. INTRODUCTION

FOR the first time in history, older adults outnumber

children under the age of five. By 2050, roughly 2

billion people will be 60 or older, and in countries like Japan

and Singapore, it will be more than half of the population.

Unfortunately, in many countries, there is a shortage of

caregivers to go around. This is a long-term societal issue with

far-reaching implications that transcend industries and borders.

This Knowledge Reactor (KR) research project constructs a

system from Internet of Things (IoT) and Artificial Intelligence

(AI) technologies to address parts of the eldercare problem.

These technologies will never fully replace humans in

eldercare, but they can be used to automate tedious tasks,

freeing caregivers to spend their time on problems humans

alone can uniquely address. IoT is crucial because it enables

round-the-clock, in-dwelling monitoring of elders. AI and

analytics are crucial to intelligently convert the variety of

sensor readings types into a coherent situational context. Only

then can intelligent and well-informed decision making occur.

The KR can be productively applied to other, non-eldercare

domains, but this paper focuses exclusively on the eldercare

domain.

Using ambient IoT sensor data, the research objective

is to learn and model individual patterns for sleeping,

eating, moving, grooming, toileting, and bathing and make
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Fig. 1 Topview visualization of a studio apartment. Colored ovals are
approximate sensing regions

connections from certain behaviors to increased risks of health

decline. The hypothesis is that the right combination of

consumer grade sensors deployed in an optimal layout within

a room or dwelling will allow daily patterns to be readily

observed. The technical challenge is to enable this at scale

and personalized for every older adult. The needs of caregivers

to proactively monitor elders’ health and well-being must be

balanced against elders’ privacy, security, and digital dignity.

Section II describes relevant background. Section III

describes the use case that motivates the application of

technology to support ongoing quality of life. Section

IV presents the Knowledge Reactor, developed as the

foundation for the eldercare solution. Section V describes the

eldercare application using data gathered from two real-world

environments. Section VI describes the analysis performed on

the data from these two real-world environments and interim
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results. Section VIII summarizes our findings and includes

ideas for future work.

II. BACKGROUND

A common life trajectory for an elder begins with the

elder living unassisted in her own home or apartment. After

retirement, as her needs and abilities change, she might

transition into an independent living (IL) facility. IL is defined

by freedom, choice, amenities, and convenient assistance for

a range of needs. As her capabilities diminish further, she

may transition to an assisted living (AL) facility. AL allow

elders to enjoy as much independence and activity as they

would like, with the comfort of knowing on-site health care

and personal assistance are available when needed. As a next

step in the continuum of care, a skilled nursing facility (SNF)

is an inpatient healthcare facility that provides continuous

(24-hour) nursing supervision to individuals who require

medical care but do not require hospitalization. Commonly

referred to as “nursing homes”, these facilities normally care

for incapacitated persons in need of long- or short-term care

and assist with many aspects of daily living (walking, bathing,

dressing, eating).

Activities of daily living (“ADLs”) and instrumental

activities of daily living (IADLs) are important measures of an

elder’s physical or cognitive status. ADLs are basic self-care

tasks such as toileting, bathing, and mobility. IADLs are

more complex skills such as shopping, food preparation, and

housekeeping. Together, ADLs and IADLs represent the skills

required in order for an individual to live independently. ADLs

and IADLs are often used by medical practitioners to provide

a functional assessment of the individual. Toward this end, this

research focuses on the use of sensor data to identify ADLs

and IADLs.

III. USE CASE

This research proposes the use of IoT and AI technologies

to support elders as they transition through the continuum

of care. It considers the deployment of sensor technology

in an environment comprised of tens, hundred, or thousands

of dwellings. Each dwelling (e.g., house, apartment, living

facility), is home to typically one elder or two elders (e.g., a

couple). Sensors monitor each elder in each dwelling to learn

the elder’s activity patterns. Because each individual is unique,

pattern details are elder-specific, although one may identify

cohorts of individuals with similar patterns.

While different types of sensors may be deployed in the

environment, the use case focuses on the deployment of

ambient sensors. Ambient sensors are used since many of

today’s elders prefer not to wear sensor devices. Even those

who are not opposed to wearables cannot be depended upon

to charge their wearables. This is particularly true for elders

with cognitive decline or memory dysfunction – a group of

elders who are particularly at risk and in need of assistive

technologies. Of course, these concerns must be adapted as

technology changes and as elders’ comfort with technology

changes.

Sensor data are gathered locally but a decision must be

made whether data should be maintained and analyzed locally

or centrally. Retaining all data locally minimizes the risk of

a personal information data breach and minimizes network

bandwidth. On the other hand, aggregating data centrally

allows for data analysis across individuals and dwellings.

Since sensors from some vendor ecosystems must pass through

the vendor’s cloud infrastructure, local analysis was not an

option.

Elder-specific and dwelling-specific situations determine

the number of sensors required to detect and establish a

baseline and monitor changes in an elder’s ADLs and IADLs.

Section VI discusses the analysis of the sensor signals for six

ADLs: toileting, bathing, cooking, dressing, transferring and

sleeping. To justify the large investment, these technologies

must be scalable to thousands to millions of elders with low

incremental costs.

IV. KNOWLEDGE REACTOR

Existing approaches to IoT data fusion are either ad

hoc or highly application specific and not reusable across

cognitive applications, resulting in expensive duplicate efforts

in data curation, integration and knowledge modeling for

each cognitive service or application. The KR is a contextual

data fusion engine that centralizes IoT and System of

Record/Engagement data to create a reactive knowledge graph.

Cognitive applications are written as a multiagent system. The

KR scales-up and scales-down, exploiting container-based,

horizontally scalable graph store (JanusGraph) and pub-sub

(Kafka) technologies that sit logically atop the Watson IoT

Platform.

A. Design Requirements

The evolving nature of the eldercare problem will require

significant evolution of the use cases, ontologies, data

structures and target environments as work progresses and

domain understanding improves. Therefore, over-arching KR

requirements are for a systems that is contextual, flexible,

adaptable, incremental, scalable and performant.

B. Architecture

Context is crucial to a proper solution. Many IoT solutions

are instances of a single pattern: one sensor; one rule; one
alert. A single sensor rarely sufficiently distinguishes between

“good” and “bad” events. Consider kitchen fires as a simple

example that is grossly unable to distinguish between good

and bad. It is easy enough to point a flame sensor at the top

of the stove (one sensor), and when flames are sensed (one

rule), call emergency services (one alert). However, what if

a grandmother hosts her grandson’s birthday party. Burning

candles on a birthday cake are certainly a fire but should not

trigger a call to emergency services. Not all flames in the

kitchen are “bad”.

Adding context substantially changes the interpretation of

events. Knowing (a) not everyone in the dwelling is currently

performing a distracting activity (e.g., talking on the phone),
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(b) multiple people are in or around the kitchen, and (c) the

elder’s social network includes people whose birthday or

anniversary are close to today’s date would justify classifying

the kitchen fire very differently. Contextualized data is the key

to reducing both false negatives and false positives.

The use case requires a diverse range of data structures:

(a) wide variety of personal information, (b) EMR (electronic

medical record) data, (c) spatial information about dwellings,

(d) social networks, (e) taxonomic and ontological structures,

and (f) lists of sensor readings. A graph store is the heart of

the KR, since graphs are capable of concisely representing

these different data structures in an integrated and natural

fashion. The reactive graph database is scalable, and is a

modern version of the classic ”blackboard” architecture [1]. A

modular, multiagent approach enables flexible and incremental
applications. Each agent performs a limited well-defined task

and agents inter-operate. Agents may be incrementally added

and recombined to satisfy emerging use cases.

A single analytic—even a machine learned one—is

inadequate to span from sensor inputs to recommendation

outputs; that is too big of a leap. Rather, the KR’s overall

approach for constructing context is to build up multiple layers

of context, each layer at progressively higher conceptual levels.

C. Implementation

These requirements led to the implementation of the

Knowledge Reactor as shown in Fig. 2. It is the core

infrastructure to gather, maintain, and analyze the sensor data

and finally generate actionable insights.

The graph store is implemented using JanusGraph [2],

because it natively supports graph structures (vertices and

edges) and has demonstrated both scalability and performance.

All transaction commits are intercepted so that a simplified

representation of all changed vertices and edges can be written

to Kafka [3] (a publish/subscribe messaging infrastructure),

which has also demonstrated scalability and performance.

This feature makes the graph reactive: any agent can

subscribe to one or more Kafka topics and listen for changes.

Interacting with other data stores (e.g. Mongo) and messaging

infrastructures (e.g. Watson IoT platform [4] and MQTT) are

also possible.

To support flexibility and quick turn-around of development

changes, automated “devops” techniques automatically build

and deploy KR instances to physical computer servers. Docker

[5] container technology enables servers to be quickly and

easily deployed on computer servers. Containers consume

far fewer system resources than hypervisors. Docker is a

key element of the KR build process, delivering speed and

repeatability to build and deploy KR instances. There are

currently around 70 running KR instances for various live, test

and demo purposes. The KR currently contains eight Docker

images: Zookeeper, Kafka, Cassandra, JanusGraph, Tomcat,

Node-RED, Mongo, and TinkerTools (a locally developed

tool).

A rapid and automated build process efficiently supports the

large volume of incremental and evolutionary changes across

multiple server types. And a rapid and automated deployment

process supports deployment of the many KR server instances.

Both are necessary to support production-scale deployments.

D. Agents

Many of the applications needed to support the use case

must be long running. This is accomplished by decomposing

applications into a collection of agents.

Agents are reusable, long running functions that

communicate with one another. They run on top of the

KR infrastructure, using its facilities. Agents can read from

and write to the graph using TinkerPop3’s [6] Gremlin graph

query language. They can read from and publish to Kafka

topics. Agents are self-contained and isolated pieces of code

(they don’t share application-level, data structures, but do

share low-level, infrastructure-level, data structures). This

enables each individual agent to be moved between servers

to improve load balancing.

Applications are built as multiple layers of agents. The

lowest layer agents read data from the sensors and write

that data into the graph with the required structure. Agents

in higher layers listen for lower level changes to the graph

and perform further processing. They communicate with each

other primarily through the graph (”blackboard”). Some agents

aggregate sensor readings from the graph into time windows

of readings, which are written back to the graph as new

”streams” of data. Another layer of agents read the time

window data and classify them into ADLs. Higher layers

compare current ADL patterns with historic patterns, and write

any anomalies back to the graph. The highest layer of agents

decide which action, if any, to execute. A more complete

flow through multiple agents layers is: (a) in-dwelling sensors,

(b) situational awareness, including behavioral awareness via

ADLs and IADLs, (c) identifying abnormalities (d) accessing

problems and risks, (e) planning and proposing multi-step

responses, (f) decision making between proposed responses,

and finally (g) notifications/alerts and in-dwelling effectors

(e.g. cut power to stove).

The goal of data fusion is to build world models at different

conceptual levels, including situational awareness, proposed

plans and decision making. KR agents incrementally fuse a

wide variety of sensor data types together into a combined

graph model. This includes fusing different sensor modalities

and (in the future) fusing sensor and Electronic Medical

Record (EMR) data.

The KR supports two approaches to analytics: OLTP

(on-line transaction processing) for small, localized graph

processing and OLAP (on-line analytical processing) for

”whole graph” analytics. OLTP agents can be written in

Node-RED [7], Java or Python. Agents can read and write

to the graph using TinkerPop3 APIs, subscribe and publish

to Kafka topics, and perform any other necessary processing.

For large analytic tasks (OLAP), data can be extracted from

the graph and processed in Spark [8] using either Jupyter

notebooks [9] or stand-alone programs.

Node-RED promotes a reactive, stream-based,

programming model in which an application is constructed

from a collections of inter-connected “nodes”. Messages flow
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Fig. 2 Major elements of the Knowledge Reactor environment

into a node, are transformed inside the node, and then flow

out of the node and into the nodes following it. Reactive

programming is a very natural and convenient way to write

long running agents, and Node-RED supports it natively.

Trying to write reactive Java agents with just primitive

threads and queues was significantly harder than Node-RED’s

approach. To improve Java development, various reactive
approaches were examined. Java 8 Streams are not

multi-threaded and do not support merging streams, so

it was not appropriate. A custom “Block” framework

was implemented that mirrors Node-RED’s reactive nodes,

and it was used for many agent implementations. Blocks

transparently supports two execution modes: one thread per

block (which can be performance intensive) and blocks that

submit work items to a Java ExecutorService where items are

executed by a common pool of threads. More recently, RxJava

[10] is being investigated for future agents.

E. Ontology

Data must be given a structure and interpretation for agents

to manipulate it. The term ontology describes that structure

of data elements and their interrelationships. Because data is

based on TinkerPop3 rather than RDF [11], the KR ontology is

less formal than ontolgies defined using W3C’s formal OWL

[12].

A large number of existing ontologies were reviewed:

[13]-[27]. While each have merits, they were either too

detailed or didn’t sufficiently cover the concepts we required.

In the end, the KR needed new ontologies, adapting ideas

from those existing ontologies where ever possible. Given

the emerging and evolving use case(s)—particularly during

early versions—ontological innovation and experimentation is

expected. So the ontology must be flexible and adaptable.

Given the wide span of concepts that must be represented,

the complete ontology is composed as a collection of

multiple, overlapping ontologies (”mini-ontologies”) including

(a) people, (b) spatial environments (c) physical sensors, and

(d) sensor readings. Additional ontologies will certainly be

added over time, for example the elder’s social network.

Ontologies can reference elements in other ontologies,

connecting the data together.

The Person ontology contains names, identification numbers

(e.g. facility and federal medical record numbers, SSN, etc),

addresses, phone numbers, emails, etc. The spatial ontology

adds the dwelling, rooms, connectors between rooms, and

shape information. The sensor ontology describes the sensor

hardware make and model, unique sensor id, the room in

which it is located, and information about the types of data

it collects. A graphical store naturally represents all these

ontologies.

Since the bulk of data items are sensor readings, that

ontology is currently the most fully developed. All sensor

readings are timestamped, and the graph data structure grows

linearly over time, with each new sensor reading adding

vertices and edges to the end of a growing list of readings for

each sensor. Importantly, this structure parallels the structure

of feature vectors used by many machine learning algorithms.

Some agents read from one sensor reading list and aggregate

readings into time windows and store the result as a new

list. Some agents read from one or more lower-level sensor

reading lists and construct lists of higher-level feature values.

Higher-level readings (vertices) can explicitly reference the

lower-level readings from which they were derived. All have

a similar ontological structure. Multiple layers of agents

construct multiple layers of lists.

Incremental evolution requires support for data sets from

multiple ontologies co-existing, side by side, within the same

graph. Since agent implementations are closely tied to the

ontologies of the data they manipulate, multiple agent sets will

also co-exist, side by side. Other than the additional effort for

agent development and maintenance, the KR easily supports

multiple ontologies and agent sets.

F. Tooling

Given the infrastructure above and data ingested into the

graph, multiple, locally-written tools quickly visualize the data
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and enable users to work with large data volumes.

One particularly valuable tool is the locally-written Topview
tool (see Fig. 1), which displays a spatial/temporal replay of

color-coded “sensing regions” overlaid on top of a background

floor plan of the dwelling. It then replays a stream of recorded,

sensor reading events, allowing users to adjust the replay speed

from 1X, 10X, 100X, 1000X to 10000X. When a motion

sensor turns on or off, Topview displays or hides the sensing

region shape. The user sees the dwelling’s floor plan, overlaid

with sensor regions flashing on and off. Topview represents

each type of sensors and placement using a unique letter,

color and shape. Table I shows Topview’s mapping of letters

TABLE I
TOPVIEW LEGEND

Sensor Letter Sensor type
A accelerometers
C contact sensors on doors
M motion sensor on ceiling
R motion sensor on walls
W weather sensor

to sensor types. Visualizing sensors streams—particularly at

high speed—makes it much easier to “see” activities in the

dwelling, than by looking at a spreadsheet of lifeless on/off

events.

V. REAL WORLD APPLICATION

This section describes an application of the Knowledge

Reactor to a real world eldercare environment. We partnered

with Avamere Family of Companies [28] to deploy the solution

in two different Avamere environments: 20 SNF dwellings

located on one floor of a SNF and five apartments in an

IL. Each of the 25 dwellings were unique in size and

configuration.

The research objective collects data from sensors to infer

changes in ADLs and IADLs, and to then assess each

resident’s physical and cognitive status.

A. Sensor Deployment

The sensored dwellings feed sensor data into the KR for

analysis. Because this study does not include ethnographic

observation, the high-density distribution of sensors and the

sensor placement were critical for analysis and modeling of

ADLs and IADLs.

The Samsung SmartThings [29] and Netatmo [30] suites

of IoT products were deployed in each dwelling. Flowing

through Watson IoT, the KR ingests sensor readings from both

ecosystems’ cloud platforms and places them in the graph.

SmartThings Motion sensors were attached to fixtures such

as walls and ceilings to monitor motion. The motion sensors

were carefully placed so that one could differentiate between

motion in different areas of the dwelling. For example,

motion sensors were placed on the ceiling to detect movement

below. The lens of motion sensors over toilets and showers

were partly covered to narrow their sensing region for more

localized detection. Placing motion sensors on both the walls

and ceiling creates an intersecting sensing regions for better

localization.

SmartThings Multipurpose sensors were attached to fixtures

such as doors, washing machines, and furniture to monitor

the opening/closing and detect presence from acceleration

measurements along the three coordinate axes (x,y,z). These

sensors were deployed on bathroom, shower, closet and

cabinet doors as well as on furniture, bed rails and hand

sanitizers.

SmartThings Outlet sensors were installed to measure power

consumption of televisions and microwaves. Low consumption

indicates the device is off (many devices never draw zero

power); higher consumption indicates the device is in use.

Netatmo weather sensors measure temperature, humidity,

carbon dioxide, and noise levels both inside and outside of

the dwelling. They were placed in the bedroom, bathroom and

kitchen of each dwelling.

To organize the deployment of the high density of sensors,

a sensor naming convention was created that identifies each

sensor and its placement. The naming convention consist of

a short code (e.g. M6 as shown in Fig. 1) and an expanded,

unique 16-character string (e.g. I01BBB-lrscl200). The short

code enables quick and convenient identification of a sensor

on the sensor deployment schematic.

There are no best practices indicating the optimal number

and positioning of sensors to measure ADLs and IADLs with

a level of accuracy that enables the prediction of change in the

elder’s health status. Rather than experimenting with different

sensor densities during the deployment phase, this research

begins with a dense sensor deployment (”over-sensoring”) of

the dwelling. The most efficient deployment is then determined

during the analysis phase by selectively eliminating sensor data

before analysis. Such studies will form the basis for more

informed sensor deployments in the future.

B. Sensor Data

Table II shows summary statistics of the number of entities

in the sensor deployment. In total, 519 sensors were deployed

across 73 rooms in 25 dwellings (a dwelling can have multiple

rooms). Most dwellings in the SNF were private bedroom with

two bedrooms sharing a common bathroom. In the IL, each

dwelling has multiple rooms: living room, kitchen, bedroom,

bathroom, etc. Data was collected for 124 residents across 158

continuous days.

TABLE II
NUMBER OF ENTITIES BY TYPE

Entity Type Count
Persons 124
Dwellings 25
Rooms 73
Sensors 519
Days 158

Table III shows a total of 8.9 million readings were collected

across all dwellings and all sensor-types. This represented

2.6 GB of data. Motion sensor readings account for the

bulk of the readings at 65%. Only 7% of the readings were

generated by Netatmo Weather Stations, which only reported

enironmental conditions every 10 minutes.
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TABLE III
NUMBER OF SENSOR READINGS BY SENSOR TYPE

Entity Type Records Percent
Motion readings 5,828,361 65%
Contact readings 1,106,332 12%
Accelerometer readings 1,416,067 16%
Weather readings 612,594 7%
Total readings 8,963,354 100%

VI. ANALYTICS

This research builds KR knowledge graphs to detect and

establish a baseline to monitor changes in an elder’s ADLs

and IADLs as well as any other changes in patterns observed

in the data. Having just recently received the sensor data, only

preliminary results are available.

Two approaches to ADL and IADL classification are

used: rule-based and ML-based. Avamere required no

cameras, microphones, ethnographic observations, surveys or

interviews were used in this study. Therefore, traditional ML

classification accuracy measures that require ground truth

could not be calculated. However, intuition and a basic

understanding of human behavior enables mapping key sensors

to detecting ADL and IADLs.

A. Sensor Classification of ADLs and IADLs

The data models define how ADLs/IADLs and sensor

signals relate to each other and how they are classified and

analyzed. The models are based on the knowledge of the

activities and their basic properties.

To classify activities (ADLs and IADLs), sensors are

identified as (a) highly relevant, (b) corroborating, or

(c) conflicting. A highly relevant sensor is required to detect

the activity. A corroborating sensor enhances belief the activity

occurred. A conflicting sensor diminishes belief the activity

occurred. Consider classifying the toileting ADL based on the

sensors in Fig. 1. The sensor M8 above the toilet is highly

relevant to toileting. The adjacent sensors R1, C9, M7, M9,

and W2 in the bathroom corroborate toileting. Lastly, the

motion sensors M10 above the bed and A4 above the living

room chair are conflicting because a person can’t generate

readings from those sensors while toileting.

B. Rule-Based ADL Classification

The first approach to ADL classification is rule-based

classification. Specifically, sensor readings are organized into

one minute time intervals. Intervals are created by truncating

the seconds and millisecond values in the event’s timestamp.

The window counts the number of events from each unique

sensor that occured during that time window. To reduce data

volumes, no time windows are created for minutes with no

events.

Next, hand-crafted rules were developed based on the set of

sensor readings received during each one minute time interval.

The rules labeled each time window with either an ADL or

as “no activity”. Some rules are fairly straight-forward. For

example, presence detected by motion sensors over toilet are

highly relevant evidence for toileting. Or presence detected

by motion sensor in shower is highly relevant for showering.

Other rules are more subtle as they involve multiple sensors.

For example, motion detected in kitchen together with cabinet

door accelerometers corrobarate evidence for the IADL of

preparing a meal. Once the data is labeled, ADL and IADL

behavior patterns are studied over time to establish a baseline

of normal and abnormal behavior for each individual. In

addition, ADLs and IADLs are aggregated into routines (e.g.

the sequencing of ADLs and IADLs throughout the day). The

routine of one elder showed a decline in transferring and an

increase of time in bed, over the period of a month. This type

of routine change would alert a care provider of a possible

illness or injury. Based on the sensor deployment, experience

suggests that ADLs and IADLs in some dwellings can be

difficult to identify via sensor readings. For example, no rules

could be identified to detect a dressing ADL in the studio

apartment in Fig. 1, because there was no independent clothing

closet or dedicated dressing area in the apartment.

C. LDA-Based ADL Classification

Machine learning (”ML”) is the second approach to ADL

classification. Latent Dirichlet Allocation (LDA) is a standard

approach to classify a corpus of textual documents into the

hidden (latent) “topics” inside each document, based on the

words they contain.

Adopting an approach similar to [31], [32], LDA classifies

each one minute time interval of sensor readings into

seven “topics”. These seven topics include the six common

ADLs (toileting, showering, grooming, dressing, eating, and

movement) as well as an additional “relaxing” ADL.

For the LDA-based classification process, the sensor

readings from the KR are extracted from the graph and writen

to IBM’s Cloud Object Store. A Jupyter notebook runs the

LDA algorithm in a Spark cluster on IBM Cloud to find the

seven topics. Each topic is then manually assigned an ADL

by looking at its most prominent sensor readings. Finally,

the ADL for each LDA topic are manually determined by

examining which sensors in the topic are highly relevant,

corroborating and conflicting.

VII. RESULTS

While research projects are primarily measured based upon

successfully demonstrating workability, projects aiming for

production demand scalability in both ease of deployment

and volume of data. The initial implementation of the

Knowledge Reactor in the Avamere environment highlighted

some factors that must be considered when deploying a

large-scale sensor-based monitoring system.

The KR devops process can incrementally regenerate a new

build in 3 minutes, and can automatically deploy 20 KR server

instances from scratch in 90 minutes.

To demonstrate scalability, 20 copies of a graph dataset of

nearly 1.3 million sensor readings were loaded into the KR.

This created a graph of 103+ million graph elements (vertices

and edges). It took 42 hours using a single-threaded, Java

ingestion program, or 5.9 milliseconds/reading. This linear

performance generally validates the choice of JanusGraph
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and Kafka. Furthermore, implementation changes have been

identified to make the ingestion program multi-threaded, which

will dramatically reduce total ingestion time for large graphs.

A code base usable only by its creators is worthless.

A company-internal, month long, “code-a-thon” invited 18

world-wide participants to use the KR and provide feedback

on the KR’s technology and usability of its supporting

educational materials. Working on their own time, a third

of the participants successfully completed all exercises which

included the setup of the Knowledge Reactor, writing agents,

reading and writing to the graph, and basic data analysis. This

is preliminary demonstration of the KR’s usability.

Running the LDA algorithm on a two server, Spark cluster

identified seven ADLs. Six of the seven topic were easily

identified with ADLs; the seventh topic could not be identified.

Table IV shows the seven topics, and the number of time

windows assigned to each ADL. However, further refinement

is needed since sleeping should be the most frequent ADL; not

bathing. Possible causes for this are (a) the number of topics

to construct is an input parameter to LDA and a wrong value

could incorrectly merge dissimilar ADLs; (b) a motionless

sleeper does not generate events, and time windows without

readings are eliminated; and (c) poor manual assignment from

topic to ADL;

An interesting insight was discovered. One topic contained

both the motion sensor above the toilet and the accelerometer

sensor attached to the front door. At first, the correlation was

puzzling, but now makes sense because people often use the

toilet just before leaving and just after arriving.

Since no ground truth for ADLs is available, accuracy

results aren’t available. Future work plans to analyze our

data in two separate ways. First, compare the rule- and

(refined) LDA-based classification results. ADL agreement

between two dissimilar approaches would lend credibility that

they are both detecting the same phenomenon. Second, run

a pseudo-ethnographic analysis, where humans view elder

activities—as seen through the limited lens of just sensor

data—on a predefined set of time windows. Then compare

the ethnographic classification with the rule- and ML-based

classifications.

TABLE IV
ADL FREQUENCY FROM LDA

ADL Time Windows Percent
Cooking 9,581 10%
Unclear 11,658 12%
Transferring 9,585 10%
Toileting 13,263 14%
Bathing 25,393 26%
TV 12,601 13%
Sleeping 13,846 14%
Total 95,927 100%

VIII. CONCLUSION

This research successfully demonstrated many points. The

Knowledge Reactor infrastructure is a useful approach to

applying contextual data fusion and AI techniques toward

easing the eldercare problem. It is scalable, and is usable

beyond its developers. A large and valuable data set for elders

in both SNF and IL facilities was created.
Two analytical approaches to matching sensor data with

ADLs were demonstrated with encouraging initial results.

However, the LDA analytic still requires manual assignment

to topics to ADLs. This will not scale to thousands of unique

dwellings. Future work will investigate using ontological

labels (similar to [31]) to automatically transfer topics-to-ADL

assignments across dwellings.
Fusion of sensor and EMR data is both challenging and

exciting. It is an critical future work item.
Current methods can not differentiate between multiple

individuals in a single dwelling. This issue must be addressed

before any practical deployment.
While still a work in progress, the Knowledge Reactor has

demonstrated many important capabilities required to address

the eldercare problem at large scales. It is also well positioned

to address other, similar IoT and AI problems.
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