Search results for: Melt pressure and velocity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2037

Search results for: Melt pressure and velocity

1767 Evaluation Using a Bidirectional Microphone as a Pressure Pulse Wave Meter

Authors: S. Fujiwara, T. Kaburagi, K. Kobayashi, K. Watanabe, Y. Kurihara

Abstract:

This paper describes a novel sensor device, a pressure pulse wave meter, which uses a bidirectional condenser microphone. The microphone work as a microphone as well as a sensor with high gain over a wide frequency range; they are also highly reliable and economic. Currently aging is becoming a serious social issue in Japan causing increased medical expenses in the country. Hence, it is important for elderly citizens to check health condition at home, and to care the health conditions through daily monitoring. Given this circumstances, we developed a novel pressure pulse wave meter based on a bidirectional condenser microphone: this device is used as a measuring instrument of health conditions.

Keywords: Bidirectional microphone, pressure pulse wave meter, health condition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1531
1766 Mathematical Modelling of Different Types of Body Support Surface for Pressure Ulcer Prevention

Authors: Mahbub C. Mishu, Venketesh N. Dubey, Tamas Hickish, Jonathan Cole

Abstract:

Pressure ulcer is a common problem for today’s healthcare industry. It occurs due to external load applied to the skin. Also when the subject is immobile for a longer period of time and there is continuous load applied to a particular area of human body, blood flow gets reduced and as a result pressure ulcer develops. Body support surface has a significant role in preventing ulceration so it is important to know the characteristics of support surface under loading conditions. In this paper we have presented mathematical models of different types of viscoelastic materials and also we have shown the validation of our simulation results with experiments.

Keywords: Pressure ulcer, viscoelastic material, mathematical model, experimental validation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1873
1765 Role of Acoustic Pressure on the Dynamics of Moving Single-Bubble Sonoluminescence

Authors: Reza Rezaei-Nasirabad, Zeinab Galavani, Rasoul Sadighi-Bonabi, Mohammad Asgarian

Abstract:

Role of acoustic driving pressure on the translational-radial dynamics of a moving single bubble sonoluminescence (m-SBSL) has been numerically investigated. The results indicate that increase in the amplitude of the driving pressure leads to increase in the bubble peak temperature. The length and the shape of the trajectory of the bubble depends on the acoustic pressure and because of the spatially dependence of the radial dynamics of the moving bubble, its peak temperature varies during the acoustical pulses. The results are in good agreement with the experimental reports on m-SBSL.

Keywords: Bubble dynamics, Equation of the gas state, Hydrodynamic force, Moving sonoluminescence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1733
1764 Effects of Intake Temperature and Intake Pressure on Combustion and Exhaust Emissions of HCCI Engine

Authors: Fridhi Hadia, Soua Wadhah, Hidouri Ammar, Omri Ahmed

Abstract:

In this paper, the effect of the intake temperature (IT) and intake pressure (IP) on ignition timing and pollutants emission of Homogeneous Charge Compression Ignition (HCCI) engine is investigated. Numerical computations are performed using the CHEMKIN computer code. The numerical temperature obtained using different boundary conditions is compared to published data and a good agreement is assigned. Results show that the HCCI combustion engine is significantly improved by increasing the IT. With a value of IT lower than 390 K, combustion cannot occur. However, with an IT greater than 420 K, the cylinder pressure decreases. An optimum crank rotation angle is achieved by using IT of 420 K. So, we can conclude that the variation of the IT and IP influence notably the emission concentration.

Keywords: HCCI engine, CEMKIN, intake temperature, intake pressure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1031
1763 Calcium Silicate Bricks – Ultrasonic Pulse Method: Effects of Natural Frequency of Transducers on Measurement Results

Authors: Jiri Brozovsky

Abstract:

Modulus of elasticity is one of the important parameters of construction materials, which considerably influence their deformation properties and which can also be determined by means of non-destructive test methods like ultrasonic pulse method. However, measurement results of ultrasonic pulse methods are influenced by various factors, one of which is the natural frequency of the transducers. The paper states knowledge about influence of natural frequency of the transducers (54; 82 and 150kHz) on ultrasonic pulse velocity and dynamic modulus of elasticity (Young's Dynamic modulus of elasticity). Differences between ultrasonic pulse velocity and dynamic modulus of elasticity were found with the same smallest dimension of test specimen in the direction of sounding and density their value decreases as the natural frequency of transducers grew.

Keywords: Calcium silicate brick, ultrasonic pulse method, ultrasonic pulse velocity, dynamic modulus of elasticity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2191
1762 A New Velocity Expression for Open Channel and its Application to Lyari River

Authors: Rana Khalid Naeem, Asif Mansoor

Abstract:

In this communication an expression for mean velocity of waste flow via an open channel is proposed which is an improvement over Manning formula. The discharges, storages and depths are computed at all locations of the Lyari river by utilizing proposed expression. The results attained through proposed expression are in good agreement with the observed data and better than those acquired using Manning formula.

Keywords: Comparison, Depth, Flow, Open Channel, Proposed Model, Storage

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1466
1761 Mathematical Modeling of an Avalanche Release and Estimation of Flow Parameters by Numerical Method

Authors: Mahmoud Zarrini

Abstract:

Avalanche release of snow has been modeled in the present studies. Snow is assumed to be represented by semi-solid and the governing equations have been studied from the concept of continuum approach. The dynamical equations have been solved for two different zones [starting zone and track zone] by using appropriate initial and boundary conditions. Effect of density (ρ), Eddy viscosity (η), Slope angle (θ), Slab depth (R) on the flow parameters have been observed in the present studies. Numerical methods have been employed for computing the non linear differential equations. One of the most interesting and fundamental innovation in the present studies is getting initial condition for the computation of velocity by numerical approach. This information of the velocity has obtained through the concept of fracture mechanics applicable to snow. The results on the flow parameters have found to be in qualitative agreement with the published results.

Keywords: Snow avalanche, fracture mechanics, avalanche velocity, avalanche zones.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1722
1760 The Relations between Seismic Results and Groundwater near the Gokpinar Damp Area, Denizli, Turkey

Authors: Mahmud Gungor, Ali Aydin, Erdal Akyol, Suat Tasdelen

Abstract:

The understanding of geotechnical characteristics of near-surface material and the effects of the groundwater is very important problem in such as site studies. For showing the relations between seismic data and groundwater, we selected about 25 km2 as the study area. It has been presented which is a detailed work of seismic data and groundwater depths of Gokpinar Damp area. Seismic waves velocity (Vp and Vs) are very important parameters showing the soil properties. The seismic records were used the method of the multichannel analysis of surface waves near area of Gokpinar Damp area. Sixty sites in this area have been investigated with survey lines about 60 m in length. MASW (Multichannel analysis of surface wave) method has been used to generate onedimensional shear wave velocity profile at locations. These shear wave velocities are used to estimate equivalent shear wave velocity in the study area at every 2 and 5 m intervals up to a depth of 45 m. Levels of equivalent shear wave velocity of soil are used the classified of the study area. After the results of the study, it must be considered as components of urban planning and building design of Gokpinar Damp area, Denizli and the application and use of these results should be required and enforced by municipal authorities.

Keywords: Seismic data, Gokpinar Damp, urban planning, Denizli.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2312
1759 Experimental and Numerical Study on the Effects of Oxygen Methane Flames with Water Dilution for Different Pressures

Authors: J. P. Chica Cano, G. Cabot, S. de Persis, F. Foucher

Abstract:

Among all possibilities to combat global warming, CO2 capture and sequestration (CCS) is presented as a great alternative to reduce greenhouse gas (GHG) emission. Several strategies for CCS from industrial and power plants are being considered. The concept of combined oxy-fuel combustion has been the most alternative solution. Nevertheless, due to the high cost of pure O2 production, additional ways recently emerged. In this paper, an innovative combustion process for a gas turbine cycle was studied: it was composed of methane combustion with oxygen enhanced air (OEA), exhaust gas recirculation (EGR) and H2O issuing from STIG (Steam Injection Gas Turbine), and the CO2 capture was realized by membrane separator. The effect on this combustion process was emphasized, and it was shown that a study of the influence of H2O dilution on the combustion parameters by experimental and numerical approaches had to be carried out. As a consequence, the laminar burning velocities measurements were performed in a stainless steel spherical combustion from atmospheric pressure to high pressure (up to 0.5 MPa), at 473 K for an equivalence ratio at 1. These experimental results were satisfactorily compared with Chemical Workbench v.4.1 package in conjunction with GRIMech 3.0 reaction mechanism. The good correlations so obtained between experimental and calculated flame speed velocities showed the validity of the GRIMech 3.0 mechanism in this domain of combustion: high H2O dilution, low N2, medium pressure. Finally, good estimations of flame speed and pollutant emissions were determined in other conditions compatible with real gas turbine. In particular, mixtures (composed of CH4/O2/N2/H2O/ or CO2) leading to the same adiabatic temperature were investigated. Influences of oxygen enrichment and H2O dilution (compared to CO2) were disused.

Keywords: CO2 capture, oxygen enrichment, water dilution, laminar burning velocity, pollutants emissions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 826
1758 Derivation of Darcy’s Law using Homogenization Method

Authors: Kannanut Chamsri

Abstract:

Darcy’s Law is a well-known constitutive equation describing the flow of a fluid through a porous medium. The equation shows a relationship between the superficial or Darcy velocity and the pressure gradient which was first experimentally observed by Henry Darcy in 1855-1856. In this study, we apply homogenization method to Stokes equation in order to derive Darcy’s Law. The process of deriving the equation is complicated, especially in multidimensional domain. Thus, for the sake of simplicity, we use the indicial notation as well as the homogenization. This combination provides a smooth, simple and easy technique to derive Darcy’s Law.

Keywords: Darcy’s Law, Homogenization method, Indicial notation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4972
1757 Residual Stress in Ground WC-Co Coatings

Authors: M. Jalali Azizpour, H. Mohammadi Majd

Abstract:

High velocity oxygen fuel (HVOF) spray technique is one of the leading technologies that have been proposed as an alternative to the replacement of electrolytic hard chromium plating in a number of engineering applications. In this study, WC-Co powder was coated on AISI1045 steel using high velocity oxy fuel (HVOF) method. The sin2ψ method was used to evaluate the through thickness residual stress by means of XRD after mechanical layer removal process (only grinding). The average of through thickness residual stress using X-Ray diffraction was -400 MPa.

Keywords: Grinding, HVOF, Thermal spray, WC-Co.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2671
1756 Investigation of Behavior on the Contact Surface of the Tire and Ground by CFD Simulation

Authors: M. F. Sung, Y.D. Kuan, R.J. Shyu, S.M. Lee

Abstract:

Tread design has evolved over the years to achieve the common tread pattern used in current vehicles. However, to meet safety and comfort requirements, tread design considers more than one design factor. Tread design must consider the grip and drainage, and the manner in which to reduce rolling noise, which is one of the main factors considered by manufacturers. The main objective of this study was the application the computational fluid dynamics (CFD) technique to simulate the contact surface of the tire and ground. The results demonstrated an air-Pumping and large pressure drop effect in the process of contact surface. The results also revealed that the pressure can be used to analyze sound pressure level (SPL).

Keywords: Air-pumping, computational fluid dynamics, sound pressure level, tire.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2318
1755 Numerical Analysis on the Performance of Heatsink with Microchannels

Authors: Jer-Huan Jang, Han-Chieh Chiu, Wei-Chung Yeih, Jia-Jui Yang, Chien-Sheng Huang

Abstract:

In this paper, numerical simulation is used to investigate the thermal performance of liquid cooling heatsink with microchannels due to geometric arrangement. Commercial software ICEPAK is utilized for the analysis. The considered parameters include aspect ratio, porosity and the length and height of microchannel. The aspect ratio varies from 3 to 16 and the length of microchannel is 10mm, 14mm, and 18mm. The height of microchannel is 2mm, 3mm and 4mm. It is found short channel have better thermal efficiency than long channel at 490Pa. No matter the length of channel the best aspect ratio is 4. It is also noted that pressure difference at 2940Pa the best aspect ratio from 4 to 8, it means pressure difference affect aspect ratio, effective thermal resistance at low pressure difference but lower effective thermal resistance at high pressure difference.

Keywords: thermal resistance, liquid cooling, microchannels, numerical analysis, pressure difference

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2111
1754 Steering Velocity Bounded Mobile Robots in Environments with Partially Known Obstacles

Authors: Reza Hossseynie, Amir Jafari

Abstract:

This paper presents a method for steering velocity bounded mobile robots in environments with partially known stationary obstacles. The exact location of obstacles is unknown and only a probability distribution associated with the location of the obstacles is known. Kinematic model of a 2-wheeled differential drive robot is used as the model of mobile robot. The presented control strategy uses the Artificial Potential Field (APF) method for devising a desired direction of movement for the robot at each instant of time while the Constrained Directions Control (CDC) uses the generated direction to produce the control signals required for steering the robot. The location of each obstacle is considered to be the mean value of the 2D probability distribution and similarly, the magnitude of the electric charge in the APF is set as the trace of covariance matrix of the location probability distribution. The method not only captures the challenges of planning the path (i.e. probabilistic nature of the location of unknown obstacles), but it also addresses the output saturation which is considered to be an important issue from the control perspective. Moreover, velocity of the robot can be controlled during the steering. For example, the velocity of robot can be reduced in close vicinity of obstacles and target to ensure safety. Finally, the control strategy is simulated for different scenarios to show how the method can be put into practice.

Keywords: Steering, obstacle avoidance, mobile robots, constrained directions control, artificial potential field.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 863
1753 The Effect Particle Velocity on the Thickness of Thermally Sprayed Coatings

Authors: M. Jalali Azizpour, H. Mohammadi Majd

Abstract:

In this paper, the effect of WC-12Co particle velocity in HVOF thermal spraying process on the coating thickness has been studied. The statistical results show that the spray distance and oxygen-to-fuel ratio are more effective factors on particle characterization and thickness of HVOF thermal spraying coatings. Spray Watch diagnostic system, scanning electron microscopy (SEM), X-ray diffraction and thickness measuring system were used for this purpose.

Keywords: Grinding, HVOF, Thermal spray, WC-Co.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2318
1752 Single Zone Model for HCCI Engine Fueled with n-Heptane

Authors: Thanapiyawanit Bancha, Lu Jau-Huai

Abstract:

In this study, we developed a model to predict the temperature and the pressure variation in an internal combustion engine operated in HCCI (Homogeneous charge compression ignition) mode. HCCI operation begins from aspirating of homogeneous charge mixture through intake valve like SI (Spark ignition) engine and the premixed charge is compressed until temperature and pressure of mixture reach autoignition point like diesel engine. Combustion phase was described by double-Wiebe function. The single zone model coupled with an double-Wiebe function were performed to simulated pressure and temperature between the period of IVC (Inlet valve close) and EVO (Exhaust valve open). Mixture gas properties were implemented using STANJAN and transfer the results to main model. The model has considered the engine geometry and enables varying in fuelling, equivalence ratio, manifold temperature and pressure. The results were compared with the experiment and showed good correlation with respect to combustion phasing, pressure rise, peak pressure and temperature. This model could be adapted and use to control start of combustion for HCCI engine.

Keywords: Double-Wiebe function, HCCI, Ignition enhancer, Single zone model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2763
1751 On the Dynamic Behaviour of a Four-Bar Linkage Driven by a Velocity Controlled DC Motor

Authors: Giovanni Incerti

Abstract:

The dynamic behaviour of a four-bar linkage driven by a velocity controlled DC motor is discussed in the paper. In particular the author presents the results obtained by means of a specifically developed software, which implements the mathematical models of all components of the system (linkage, transmission, electric motor, control devices). The use of this software enables a more efficient design approach, since it allows the designer to check, in a simple and immediate way, the dynamic behaviour of the mechanism, arising from different values of the system parameters.

Keywords: Four-bar linkage, Speed control, Dynamic analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4031
1750 Soliton Interaction in Birefringent Fibers with Third-Order Dispersion

Authors: Dowluru Ravi Kumar, Bhima Prabhakara Rao

Abstract:

Propagation of solitons in single-mode birefringent fibers is considered under the presence of third-order dispersion (TOD). The behavior of two neighboring solitons and their interaction is investigated under the presence of third-order dispersion with different group velocity dispersion (GVD) parameters. It is found that third-order dispersion makes the resultant soliton to deviate from its ideal position and increases the interaction between adjacent soliton pulses. It is also observed that this deviation due to third-order dispersion is considerably small when the optical pulse propagates at wavelengths relatively far from the zerodispersion. Modified coupled nonlinear Schrödinger-s equations (CNLSE) representing the propagation of optical pulse in single mode fiber with TOD are solved using split-step Fourier algorithm. The results presented in this paper reveal that the third-order dispersion can substantially increase the interaction between the solitons, but large group velocity dispersion reduces the interaction between neighboring solitons.

Keywords: Birefringence, Group velocity dispersion, Polarization mode dispersion, Soliton interaction, Third order dispersion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1180
1749 Solubility of CO2 in Aqueous Solutions of 2- Amino-2-Methyl-1-Propanol at High Pressure

Authors: Azmi Mohd Shariff, Ghulam Murshid, K.K. Lau, Mohammad Azmi Bustam, Faizan Ahamd

Abstract:

Carbon dioxide is one of the major green house gases. It is removed from different streams using amine absorption process. Sterically hindered amines are suggested as good CO2 absorbers. Solubility of carbon dioxide (CO2) was measured in aqueous solutions of 2-Amino-2-methyl-1-propanol (AMP) at temperatures 30 oC, 40 oC and 60 oC. The effect of pressure and temperature was studied over various concentrations of AMP. It has been found that pressure has positive effect on CO2 solubility where as solubility decreased with increasing temperature. Absorption performance of AMP increased with increasing pressure. Solubility of aqueous AMP was compared with mo-ethanolamine (MEA) and the absorption capacity of aqueous solutions of AMP was found to be better.

Keywords: Global warming, Carbon dioxide, Amine, Solubility

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2543
1748 Polishing Machine Based on High-Pressure Water Jet

Authors: Mohammad A. Khasawneh

Abstract:

The design of high pressure water jet based polishing equipment and its fabrication conducted in this study is reported herein, together with some preliminary test results for assessing its applicability for HMA surface polishing. This study also provides preliminary findings concerning the test variables, such as the rotational speed, the water jet pressure, the abrasive agent used, and the impact angel that were experimentally investigated in this study. The preliminary findings based on four trial tests (two on large slab specimens and two on small size gyratory compacted specimens), however, indicate that both friction and texture values tend to increase with the polishing durations for two combinations of pressure and rotation speed of the rotary deck. It seems that the more polishing action the specimen is subjected to; the aggregate edges are created such that the surface texture values are increased with the accompanied increase in friction values. It may be of interest (but which is outside the scope of this study) to investigate if the similar trend exist for HMA prepared with aggregate source that is sand and gravel.

Keywords: High-pressure, water jet, Friction, Texture, Polishing, Statistical Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2000
1747 Super Harmonic Nonlinear Lateral Vibration of an Axially Moving Beam with Rotating Prismatic Joint

Authors: M. Najafi, S. Bab, F. Rahimi Dehgolan

Abstract:

The motion of an axially moving beam with rotating prismatic joint with a tip mass on the end is analyzed to investigate the nonlinear vibration and dynamic stability of the beam. The beam is moving with a harmonic axially and rotating velocity about a constant mean velocity. A time-dependent partial differential equation and boundary conditions with the aid of the Hamilton principle are derived to describe the beam lateral deflection. After the partial differential equation is discretized by the Galerkin method, the method of multiple scales is applied to obtain analytical solutions. Frequency response curves are plotted for the super harmonic resonances of the first and the second modes. The effects of non-linear term and mean velocity are investigated on the steady state response of the axially moving beam. The results are validated with numerical simulations.

Keywords: Axially moving beam, Galerkin method, non-linear vibration, super harmonic resonances.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 943
1746 Procedure for Impact Testing of Fused Recycled Glass

Authors: David Halley, Tyra Oseng-Rees, Luca Pagano, Juan A Ferriz-Papi

Abstract:

Recycled glass material is made from 100% recycled bottle glass and consumes less energy than re-melt technology. It also uses no additives in the manufacturing process allowing the recycled glass material, in principal, to go back to the recycling stream after end-of-use, contributing to the circular economy with a low ecological impact. The aim of this paper is to investigate the procedure for testing the recycled glass material for impact resistance, so it can be applied to pavements and other surfaces which are at risk of impact during service. A review of different impact test procedures for construction materials was undertaken, comparing methodologies and international standards applied to other materials such as natural stone, ceramics and glass. A drop weight impact testing machine was designed and manufactured in-house to perform these tests. As a case study, samples of the recycled glass material were manufactured with two different thicknesses and tested. The impact energy was calculated theoretically, obtaining results with 5 and 10 J. The results on the material were subsequently discussed. Improvements on the procedure can be made using high speed video technology to calculate velocity just before and immediately after the impact to know the absorbed energy. The initial results obtained in this procedure were positive although repeatability needs to be developed to obtain a correlation of results and finally be able to validate the procedure. The experiment with samples showed the practicality of this procedure and application to the recycled glass material impact testing although further research needs to be developed.

Keywords: Construction materials, drop weight impact, impact testing, recycled glass.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1477
1745 Free Convection in an Infinite Porous Dusty Medium Induced by Pulsating Point Heat Source

Authors: K. Kannan, V. Venkataraman

Abstract:

Free convection effects and heat transfer due to a pulsating point heat source embedded in an infinite, fluid saturated, porous dusty medium are studied analytically. Both velocity and temperature fields are discussed in the form of series expansions in the Rayleigh number, for both the fluid and particle phases based on the mean heat generation rate from source and on the permeability of the porous dusty medium. This study is carried out by assuming the Rayleigh number small and the validity of Darcy-s law. Analytical expressions for both phases are obtained for second order mean in both velocity and temperature fields and evolution of different wave patterns are observed in the fluctuating part. It has been observed that, at the vicinity of the origin, the second order mean flow is influenced only by relaxation time of dust particles and not by dust concentration.

Keywords: Pulsating point heat source, azimuthal velocity, porous dusty medium, Darcy's law.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1323
1744 Study on Discontinuity Properties of Phased-Array Ultrasound Transducer Affecting to Sound Pressure Fields Pattern

Authors: Tran Trong Thang, Nguyen Phan Kien, Trinh Quang Duc

Abstract:

The phased-array ultrasound transducer types are utilities for medical ultrasonography as well as optical imaging. However, their discontinuity characteristic limits the applications due to the artifacts contaminated into the reconstructed images. Because of the effects of the ultrasound pressure field pattern to the echo ultrasonic waves as well as the optical modulated signal, the side lobes of the focused ultrasound beam induced by discontinuity of the phased-array ultrasound transducer might the reason of the artifacts. In this paper, a simple method in approach of numerical simulation was used to investigate the limitation of discontinuity of the elements in phased-array ultrasound transducer and their effects to the ultrasound pressure field. Take into account the change of ultrasound pressure field patterns in the conditions of variation of the pitches between elements of the phased-array ultrasound transducer, the appropriated parameters for phased-array ultrasound transducer design were asserted quantitatively.

Keywords: Phased-array ultrasound transducer, sound pressure pattern, discontinuous sound field, numerical visualization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2562
1743 Calculation Analysis of an Axial Compressor Supersonic Stage Impeller

Authors: Y. B. Galerkin, E. Y. Popova, K. V. Soldatova

Abstract:

There is an evident trend to elevate pressure ratio of a single stage of a turbo compressors - axial compressors in particular. Whilst there was an opinion recently that a pressure ratio 1,9 was a reasonable limit, later appeared information on successful modeling tested of stages with pressure ratio up to 2,8. The authors recon that lack of information on high pressure stages makes actual a study of rational choice of design parameters before high supersonic flow problems solving. The computer program of an engineering type was developed. Below is presented a sample of its application to study possible parameters of the impeller of the stage with pressure ratio 3,0. Influence of two main design parameters on expected efficiency, periphery blade speed and flow structure is demonstrated. The results had lead to choose a variant for further analysis and improvement by CFD methods.

Keywords: Supersonic stage, impeller, efficiency, flow rate coefficient, work coefficient, loss coefficient, oblique shock, direct shock.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2611
1742 Effects of Upflow Liquid Velocity on Performance of Expanded Granular Sludge Bed (EGSB) System

Authors: Seni Karnchanawong, Wachara Phajee

Abstract:

The effects of upflow liquid velocity (ULV) on performance of expanded granular sludge bed (EGSB) system were investigated. The EGSB reactor, made from galvanized steel pipe 0.10 m diameter and 5 m height, had been used to treat piggery wastewater, after passing through acidification tank. It consisted of 39.3 l working volume in reaction zone and 122 l working volume in sedimentation zone, at the upper part. The reactor was seeded with anaerobically digested sludge and operated at the ULVs of 4, 8, 12 and 16 m/h, consecutively, corresponding to organic loading rates of 9.6 – 13.0 kg COD/ (m3.d). The average COD concentrations in the influent were 9,601 – 13,050 mg/l. The COD removal was not significantly different, i.e. 93.0% - 94.0%, except at ULV 12 m/h where SS in the influent was exceptionally high so that VSS washout had occurred, leading to low COD removal. The FCOD and VFA concentrations in the effluent of all experiments were not much different, indicating the same range of treatment performance. The biogas production decreased at higher ULV and ULV of 4 m/h is suggested as design criterion for EGSB system.

Keywords: Expanded granular sludge bed system, piggery wastewater, upflow liquid velocity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2743
1741 Effect of Uneven Surface on Magnetic Properties of Fe-Based Amorphous Transformer

Authors: Yeong-Hwa Chang, Chang-Hung Hsu, Huei-Lung Chu, Chia-Wen Chang, Wei-Shou Chan, Chun-Yao Lee; Chia-Shiang Yao, Yan-Lou He

Abstract:

This study reports the preparation of soft magnetic ribbons of Fe-based amorphous alloys using the single-roller melt-spinning technique. Ribbon width varied from 142 mm to 213 mm and, with a thickness of approximately 22 μm 2 μm. The microstructure and magnetic properties of the ribbons were characterized by differential scanning calorimeter (DSC), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), and electrical resistivity measurements (ERM). The amorphous material properties dependence of the cooling rate and nozzle pressure have uneven surface in ribbon thicknesses are investigated. Magnetic measurement results indicate that some region of the ribbon exhibits good magnetic properties, higher saturation induction and lower coercivity. However, due to the uneven surface of 213 mm wide ribbon, the magnetic responses are not uniformly distributed. To understand the transformer magnetic performances, this study analyzes the measurements of a three-phase 2 MVA amorphous-cored transformer. Experimental results confirm that the transformer with a ribbon width of 142 mm has better magnetic properties in terms of lower core loss, exciting power, and audible noise. 

Keywords: Amorphous ribbon, uneven surface, magnetic properties, and rapid solidification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2130
1740 Computational Study on Cardiac-Coronary Interaction in Terms of Coronary Flow-Pressure Waveforms in Presence of Drugs: Comparison Between Simulated and In Vivo Data

Authors: C. De Lazzari, E. Del Prete, I. Genuini, F. Fedele

Abstract:

Cardiovascular human simulator can be a useful tool in understanding complex physiopathological process in cardiocirculatory system. It can also be a useful tool in order to investigate the effects of different drugs on hemodynamic parameters. The aim of this work is to test the potentiality of our cardiovascular numerical simulator CARDIOSIM© in reproducing flow/pressure coronary waveforms in presence of two different drugs: Amlodipine (AMLO) and Adenosine (ADO). In particular a time-varying intramyocardial compression, assumed to be proportional to the left ventricular pressure, was related to the venous coronary compliances in order to study its effects on the coronary blood flow and the flow/pressure loop. Considering that coronary circulation dynamics is strongly interrelated with the mechanics of the left ventricular contraction, relaxation, and filling, the numerical model allowed to analyze the effects induced by the left ventricular pressure on the coronary flow.

Keywords: Cardiovascular system, Coronary blood flow, Hemodynamic, Numerical simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1689
1739 Analysis of Pressure Drop in a Concentrated Solar Collector with Direct Steam Production

Authors: Sara Sallam, Mohamed Taqi, Naoual Belouaggadia

Abstract:

Solar thermal power plants using parabolic trough collectors (PTC) are currently a powerful technology for generating electricity. Most of these solar power plants use thermal oils as heat transfer fluid. The latter is heated in the solar field and transfers the heat absorbed in an oil-water heat exchanger for the production of steam driving the turbines of the power plant. Currently, we are seeking to develop PTCs with direct steam generation (DSG). This process consists of circulating water under pressure in the receiver tube to generate steam directly into the solar loop. This makes it possible to reduce the investment and maintenance costs of the PTCs (the oil-water exchangers are removed) and to avoid the environmental risks associated with the use of thermal oils. The pressure drops in these systems are an important parameter to ensure their proper operation. The determination of these losses is complex because of the presence of the two phases, and most often we limit ourselves to describing them by models using empirical correlations. A comparison of these models with experimental data was performed. Our calculations focused on the evolution of the pressure of the liquid-vapor mixture along the receiver tube of a PTC-DSG for pressure values and inlet flow rates ranging respectively from 3 to 10 MPa, and from 0.4 to 0.6 kg/s. The comparison of the numerical results with experience allows us to demonstrate the validity of some models according to the pressures and the flow rates of entry in the PTC-DSG receiver tube. The analysis of these two parameters’ effects on the evolution of the pressure along the receiving tub, shows that the increase of the inlet pressure and the decrease of the flow rate lead to minimal pressure losses.

Keywords: Direct steam generation, parabolic trough collectors, pressure drop.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 724
1738 Effect of Uneven Surface on Magnetic Properties of Fe-based Amorphous Power Transformer

Authors: Chang-Hung Hsu, Yeong-Hwa Chang, Chun-Yao Lee, Chia-Shiang Yao, Yan-Lou He, Huei-Lung Chu, Chia-Wen Chang, Wei-Shou Chan

Abstract:

This study reports the preparation of soft magnetic ribbons of Fe-based amorphous alloys using the single-roller melt-spinning technique. Ribbon width varied from 142 mm to 213 mm and, with a thickness of approximately 22 μm ± 2 μm. The microstructure and magnetic properties of the ribbons were characterized by differential scanning calorimeter (DSC), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), and electrical resistivity measurements (ERM). The amorphous material properties dependence of the cooling rate and nozzle pressure have uneven surface in ribbon thicknesses are investigated. Magnetic measurement results indicate that some region of the ribbon exhibits good magnetic properties, higher saturation induction and lower coercivity. However, due to the uneven surface of 213 mm wide ribbon, the magnetic responses are not uniformly distributed. To understand the transformer magnetic performances, this study analyzes the measurements of a three-phase 2 MVA amorphous-cored transformer. Experimental results confirm that the transformer with a ribbon width of 142 mm has better magnetic properties in terms of lower core loss, exciting power, and audible noise.

Keywords: Amorphous ribbon, uneven surface, magnetic properties, and rapid solidification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1962