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Abstract—This paper describes three lumped parameters models
for the study of the dynamic behavior of a boom crane. The models
here proposed allows to evaluate the fluctuations of the load arising
from the rope and structure elasticity and from the type of the
motion command imposed by the winch. A calculation software
was developed in order to determine the actual acceleration of the
lifted mass and the dynamic overload during the lifting phase. Some
application examples are presented, with the aim of showing the
correlation between the magnitude of the stress and the type of the
employed motion command.

Keywords—Crane, dynamic model, overloading condition,
vibration.

I. INTRODUCTION

AS is known, the application of a load to a hoisting
device generates vibrations due to the rope and structure

elasticity [1], [2], [3], [4], [5]. This aspect is of a general nature
and is independent from the type of structure and from the
mode of application of the load; the dynamic effect, instead,
is strongly influenced by these factors. For hoisting devices the
phenomenon is particularly important as it generates dynamic
actions whose wrong assessment, forgetfulness or omission
could compromise the structure both as regards the maximum
stress, the instability, the fatigue and the overall balance of
the structure itself. Large literature on the subject has been
prepared by many research groups [6], [7], [8], [9] as the
problem, although overlooked at the design stage in the past,
now plays a progressively more important role. In this paper,
we deepens the study through the use of computational models
with lumped parameters, that allow the designer to simulate
the dynamic effects in function of the parameters of the
hoisting system (mass, stiffness, natural frequencies, damping,
etc.) and in functions of the motion law imposed by the
winch to the load. These phenomena may be applied to other
type of hosting machine like elevating work platform and
it is independent of the material used to made the hoisting
machine [10], [11]. The following paragraphs describe the
mathematical models (with one or two degrees of freedom)
and the resolution methods (analytical and numerical) of the
motion equations generated by these models. Some practical
examples of application of these models are finally shown,
using as a reference a particular type of crane, which,
depending on the position of the load and the lifting height,
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presents different dynamic behaviors as regards the stiffness
of the structure and regards the stiffness of the rope.

II. DYNAMIC MODELS

To analyze the dynamics of a crane during the hoisting
phase the designer can use one of the three models shown
in Fig. 1. The choice of model depends on the stiffness of the
components; in fact, if the stiffness of the ropes kr is much
higher than the stiffness of the structure ks, the one degree of
freedom (1 DOF) model in Fig. 1 (a) can be used; instead if
the stiffness of the structure is large compared to the stiffness
of the ropes, it is convenient to use the scheme in Fig. 1 (b),
which considers the structure rigidly connected to the ground
and the load elastically suspended. Finally, if both stiffnesses
have the same order of magnitude, it is necessary to use the
two degrees of freedom model (2 DOF) shown in Fig. 1 (c),
where both the load and the structure are elastically suspended.
In the following subsections these mathematical models are
analyzed in detail, with particular reference to the deduction
of the motion equations and to the solution techniques. A
complete list of symbols used in Fig. 1 is shown in Table I.

A. One DOF model with rigid rope and elastic structure

For this type of model (Fig. 1 (a)) we use as free coordinate
the displacement xs of the structure; since the rotation α of
the drum is known, the load displacement xl is given by:

xl = xs +Rα (1)

Fig. 1. Lumped parameter models of the crane
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TABLE I
MODEL PARAMETERS

SYMBOL DESCRIPTION

m Mass of the structure
M Mass of the load
ks Structural stiffness
cs Structural damping constant
kr Rope equivalent stiffness
cr Rope equivalent damping constant
R Pulley radius

Using the Lagrangian approach, the system dynamics is
described by the following equation:

d

dt

(
∂T

∂ẋs

)
− ∂T

∂xs
+

∂R
∂ẋs

+
∂V
∂xs

= 0 (2)

where the symbols T , V ed R indicate respectively the kinetic
energy, the potential energy (due to elastic deformation of
the structure) and the Rayleigh dissipation function; for our
problem these functions assume the form:

T =
1

2
(mẋ2

s +Mẋ2
l ) =

1

2
[mẋ2

s +M(ẋs +Rα̇)2] (3)

V =
1

2
ksx

2
s R =

1

2
csẋ

2
s (4)

Substituting these expressions in (2) we obtain, after some
mathematical manipulations, the motion equation of the
system:

(m+M)ẍs + csẋs + ksxs = −MRα̈ (5)

By defining y = Rα this equation may be written as follows:

ẍs + 2ξaωaẋs + ω2
axs = −λÿ (6)

where:
λ =

M

m+M
=

M

mt
(7)

indicates the ratio between the load mass M and the total mass
mt of the system and the symbols:

ωa =

√
ks
mt

ξa =
cs

2
√
ksmt

(8)

indicate, respectively, the natural frequency and the damping
ratio of the system in Fig. 1 (a). If the hoisting acceleration ÿ is
assigned as function of the time, (6) can be solved through the
convolution integral that gives the solution xs(t) for null initial
conditions; or the system under consideration, assuming that
vibrations are underdamped (ξa < 1), this integral assumes
the following expression [12]:

xs(t) = − λ

ω∗
a

∫ t

0

ÿ(τ)e−ξaωa(t−τ) sin[ω∗
a(t− τ)]dτ (9)

where:
ω∗
a = ωa

√
1− ξ2a (10)

indicates the damped natural frequency of the system. The
integral can be calculated analytically in simple cases; for
more complex cases, the evaluation of the integral can be
performed using numerical techniques [13]. In the case where

it is preferred to operate numerically it is appropriate to rewrite
(6) in the form of a system of two first order differential
equations: for this purpose, it is necessary first to make explicit
the acceleration ẍs and to define two auxiliary functions:

u1(t) = xs(t) u2(t) = ẋs(t) (11)

which respectively represent the position and the velocity of
the structure. From these definitions, we get immediately the
following system:{

u̇1 = u2

u̇2 = −(λÿ + 2ξaωau2 + ω2
au1)

(12)

whose solution can be obtained through a numerical
integration procedure (Runge-Kutta, Wilson, etc.) [12]
[13]. Currently these algorithms are implemented in the
math libraries of many software applications for scientific
calculations and therefore their use is simple and immediate.

B. One DOF model with elastic rope and rigid structure

To study the dynamics of the model shown in Fig. 1 (b) we
use as free coordinate the load displacement xl because the
displacement xs is identically zero, due to the infinite stiffness
of the structure. Therefore the Lagrange equation takes the
form:

d

dt

(
∂T

∂ẋl

)
− ∂T

∂xl
+

∂R
∂ẋl

+
∂V
∂xl

= 0 (13)

where the kinetic energy, the elastic potential energy and the
dissipation function are defined as follows

T =
1

2
Mẋ2

l (14)

V =
1

2
kr(xl −Rα)2 R =

1

2
cr(ẋl −Rα̇)2 (15)

Substituting these expressions in (13) and calculating the
respective derivatives, we obtain, with simple steps the motion
equation of the system:

Mẍl + cr(ẋl −Rα̇) + kr(xl −Rα) = 0 (16)

Dividing by M all terms of (16), defining y = Rα and
introducing the relative coordinate z = xl−y (which expresses
the difference between the load motion law and the motion law
imposed by the winch), we get:

z̈ + 2ξbωbż + ω2
bz = −ÿ (17)

where:

ωb =

√
kr
M

ξb =
cr

2
√
krM

(18)

indicate respectively the natural frequency and the damping
ratio of the system in Fig. 1 (b). Also in this case the solution
can be easily obtained by means of the convolution integral;
assuming ξb < 1 (underdamped system) and zero initial
conditions, we have:

z(t) = − 1

ω∗
b

∫ t

0

ÿ(τ)e−ξbωb(t−τ) sin[ω∗
b (t− τ)]dτ (19)

where:
ω∗
b = ωa

√
1− ξ2b (20)
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indicates the damped natural frequency of the system. After
calculating the solution z(t), the load displacement shifting xl

is easily calculated using the relation:

xl(t) = z(t) + y(t) (21)

If the equation is solved by numerical integration, it is
necessary to operate as in the previous case, by rewriting the
equation of motion in the form of a system of two first order
differential equations;

By defining:

u1(t) = z(t) u2(t) = ż(t) (22)

we obtain: {
u̇1 = u2

u̇2 = −(ÿ + 2ξbωbu2 + ω2
bu1)

(23)

C. Two DOF model

For the study of the two degrees of freedom model in
Fig. 1 (c) we use as independent coordinates xl and xs; the
Lagrange equations of the system are:⎧⎪⎪⎨

⎪⎪⎩
d

dt

(
∂T

∂ẋl

)
− ∂T

∂xl
+

∂R
∂ẋl

+
∂V
∂xl

= 0

d

dt

(
∂T

∂ẋl

)
− ∂T

∂xl
+

∂R
∂ẋl

+
∂V
∂xl

= 0

(24)

The kinetic energy, the elastic potential energy and dissipation
function assume the following expressions:

T =
1

2
(Mẋ2

l +mẋ2
s) (25)

V =
1

2
[kr(xs +Rα− xl)

2 + ksx
2
s] (26)

R =
1

2
[cr(ẋs +Rα̇− ẋl)

2 + csẋ
2
s] (27)

Substituting these functions into Lagrange equations, the
following system of differential equations is obtained:{

Mẍl + crẋl − crẋs + krxl − krxs = f
mẍs − crẋl + (cr + cs)ẋs − krxl + (kr + ks)xs = −f

(28)
where f = R(krα + crα̇) = kry + crẏ. Using the matrix
notation we can rewrite this system in the form:

Mẍ+Cẋ+Kx = F (29)

where:

x =

{
xl

xs

}
F =

{
f

−f

}
(30)

respectively indicate the displacement vector and the vector of
forcing actions and

M =

[
M 0
0 m

]

C =

[
cr −cr
−cr (cr + cs)

]

K =

[
kr −kr
−kr (kr + ks)

]
(31)

are respectively the mass, damping and stiffness matrices. The
natural frequencies of the system can be calculated by solving
the characteristic equation, which is obtained by setting
equal to zero the determinant of the matrix Δ = K− ω2M;
using symbolic algebra for this task and introducing the
dimensionless ratios μ = M/m and κ = kr/ks we have:

|Δ| = ω4 −Aω2 +B = 0 (32)

where:

A =
ks
m

(
1 +

κ

μ
+ κ

)
B =

(
ks
m

)2
κ

μ
(33)

The positive solutions of (32) are the natural frequencies ω1

and ω2 of the hoisting system. The modal ratios γ1 e γ2 can
be expressed in the form:

γi =

(
Xl

Xs

)
ω=ωi

=
κ

κ− μω2
i

m

ks

= 1 +
1

κ

(
1− ω2

i

m

ks

)
i = 1, 2

(34)

where Xl and Xs are respectively the oscillation amplitudes
of the load and the structure for the ith normal mode of the
system. Therefore the modal matrix Φ can be written in the
form:

Φ = [Φ1 Φ2] =

[
γ1 γ2
1 1

]
(35)

Using this matrix it is possible to define the following
relationship:

x = Φq (36)

that defines a linear transformation between the vector
x = [xl xs]

T of the physical coordinates and the vector
q = [q1 q2]

T of the principal coordinates. As is known, the
principal coordinates,do not have a physical meaning, but
they allow to decouple the motion equations, transforming
the system with two degrees of freedom in two independent
systems with a single degree of freedom. Substituting (36) in
(29) and pre-multiplying all terms by ΦT we get:

ΦTMΦq̈+ΦTCΦq̇+ΦTKΦq = ΦTF (37)

As is known, the property of orthogonality of the modal
vectors with respect to the matrix and stiffness matrices allows
you to write the following relationships:

ΦT
i MΦj = 0 i �= j

ΦT
i MΦi = m∗

ii i = 1, 2
(38)

ΦT
i KΦj = 0 i �= j

ΦT
i KΦi = k∗ii i = 1, 2

(39)

Based on this property, it is possible then to write the following
diagonal matrices:

M∗ = ΦTMΦ =

[
m∗

11 0
0 m∗

22

]
(40)

K∗ = ΦTKΦ =

[
k∗11 0
0 k∗22

]
(41)
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Clearly, the natural frequenicies of the system can now be
expressed in the form:

ω1 =

√
k∗11
m∗

11

ω2 =

√
k∗22
m∗

22

(42)

Since the properties of orthogonality is not valid for the
damping matrix, the matrix product ΦTCΦ appearing in (37)
does not generate a diagonal matrix and therefore the motion
equations are coupled because of the damping terms. To
solve this problem we introduce the hypothesis of proportional
damping (or Rayleigh damping), according to which the
damping matrix is expressed as linear combination of the mass
and stiffness matrices; assuming known the coefficients a and
b, we have:

C = aM+ bK (43)

Substituting (43) in (37) and taking into account the (40) and
(41) we obtain:

M∗q̈+ [aM∗ + bK∗]q̇+K∗q = Q (44)

where Q = ΦTF.
Clearly the matrix:

C∗ = aM∗ + bK∗ (45)

is diagonal since it is calculated as a linear combination of
two diagonal matrices. Substituting (45) in (44) we obtain two
decoupled motion equations:

M∗q̈+C∗q̇+K∗q = Q (46)

By solving (46) you get the solution in principal coordinates;
the physical coordinates can be easily obtained using the
linear transformation (36). If the modal vectors are properly
normalized, is possible to transform the matrix M∗ into the
identity matrix I; this operation is carried out multiplying each
vector modal Φi by a coefficient ηi, which makes the element
m∗

ii equal to unity; therefore we have:

m∗
ii = (ηiΦ

T
i )M(ηiΦi) = 1 (47)

from which:

ηi =
1√

ΦT
i MΦi

i = 1, 2 (48)

If m∗
ii = 1, then, according to (42), k∗ii = ω2

i ; it follows
that the matrix K∗ is transformed into the diagonal matrix W
which contains the square of the natural frequencies of the
system:

W =

[
ω2
1 0
0 ω2

2

]
(49)

From (45) and (46), setting M∗ = I and K∗ = W we have:

q̈+ (aI+ bW)q̇+Wq = Q (50)

or, in scalar form:

q̈i + (a+ ω2
i b)q̇i + ω2

i qi = Qi i = 1, 2 (51)

Now, if we define:

a+ ω2
i b = 2ξiωi (52)

it is possible to obtain immediately the modal damping ratios
ξi of the system:

ξi =
a+ ω2

i b

2ωi
=

1

2

(
a

ωi
+ bωi

)
i = 1, 2 (53)

Of course, even for the two degrees of freedom model is
always possible to operate numerically, using a solver for
systems of differential equations. In this case it is necessary
to rewrite the second order differential equations as four
first-order equations. Therefore we proceed by expliciting from
(29) acceleration vector:

ẍ =

{
ẍl

ẍs

}
= M−1(F−Cẋ−Kx) (54)

In this way, the two functions are defined:{
ẍl = F1(xl, ẋl, xs, ẋs, t)
ẍs = F2(xl, ẋl, xs, ẋs, t)

(55)

which provide, respectively, the load and the structure
accelerations as a function of the displacements, velocities and
time.

Introducing now the auxiliary functions:

u1(t) = xl(t) u2(t) = ẋl(t)
u3(t) = xs(t) u4(t) = ẋs(t)

(56)

the system of four first order differential equations assumes
the following form:⎧⎪⎪⎨

⎪⎪⎩
u̇1 = u2

u̇2 = F1(u1, u2, u3, u4, t)
u̇3 = u4

u̇4 = F2(u1, u2, u3, u4, t)

(57)

III. NUMERICAL SIMULATIONS

The models described in Section II have been used for
the dynamic study of a gantry crane; the purpose of this
analysis is to verify the mechanical behavior of the crane
for a given configuration in terms of stiffness and for a
given motion command, in relation with the maximum lifting
speed and acceleration. The motion law represented in Fig. 2
was defined. The speed was chosen increasing linearly for
a time interval ta and then held constant. The choice of a
gantry crane was dictated by the large spread of this type
of port cranes and by the fact that the great variability of
the operating conditions (position of the arm and lift height)

t ta 

������

����	�

y = Rα̇ versus timeFig. 2. Load velocity ˙
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significantly affects the dynamic response of the machine. The
first stage of the work has concerned the structural design of
the crane; the performance characteristics of the machine and
its dimensional parameters have been chosen so as to obtain
a crane at the top of the category, with regard to size and
load capacity. Specifically, we have adopted a maximum rated
load of 50000 kg. Fig. 3 shows schematically the geometry of
the machine. After a first dimensioning, carried out according
to the commonly used standards for this type of crane (UNI
EN 13001, DIN 15018), a three dimensional model, using
SolidWorks software package, was prepared; subsequent finite
element analysis (FEM) was performed using Simulation
Multiphysics software by Autodesk. The crane structure has a
stiffness in the vertical direction which depends on the position
of the load on the arm (sea side or dock side). The stiffness
value was determined through a FEM analysis.

In the position with the load on the sea side, i.e. during
the picking phase of the container from the ship, the
load application generates a bending of the arm tip of
approximately 140 mm with respect to the reference position,
corresponding to the configuration in which the crane is
subjected only to the action of its own weight. Considering
a load of 560 kN, the stiffness is equal to about 4000 N/mm.
When the load is on the quay side, the deflection of the arm
is approximately 35 mm compared to the static condition;
therefore, always considering a load of 560 kN, the stiffness of
the structure is approximately 16000 N/mm. The FEM analysis
allowed to determine the first natural frequency of the structure
and the equivalent modal mass; the first frequency is found to
be equal to about 1.6 Hz and the modal mass of approximately
64000 kg, corresponding to 20% of the mass of the whole
crane. The weights of the trolley, drums and accessories must
be added to this value; on the basis of preliminary evaluations,
the weight of these elements is equal to approximately 16000
kg and therefore the equivalent modal mass to be considered
in the mathematical models is equal to 80000 kg. The rope
stiffness depends on some parameters such as diameter, length
and number of branches; adopting this variability, the rigidity
of the rope ranges from 4000 N/mm in the case of lifting
rope with 8 or 10 branches and diameter respectively 24 or
22 mm and from a height of 65 m to the maximum value of
30000 N /mm if instead the lifting height is reduced to 10

���

���

���

It was found a maximum acceleration of 1.6m/s2 (Model
B, Fig. 1) which corresponds to a load on the structure
greater than 60% with respect to nominal one. This increase

m. Fig. 4 and 5 show the crane deformation in different load
conditions and in correspondence of the first natural frequency
of vibration. For the assessment of the structure damping some
tests similar to those present in literature [14], [15], [16] were
conducted and a value equal to 5% for the structure and a value
equal to 8% for the ropes were found. Fig. 6 show the results
of some numerical simulations developed with the dynamic
models described in section II. They refer to a maximum
lifting speed of 100 m/min reached in 2 sec. This value is
characteristic of high performance cranes commonly used in
practice. Table II summarizes the parameters used for the
simulations.

Fig. 4. Displacement of the crane with the pay load at sea side.

Fig. 5. Displacement of the crane in correspondence of the first mode of
vibration (1.6 Hz).Fig. 3. Main dimensions of the designed crane [m]
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Fig. 6. Acceleration trend as a function of time in relation to the different configurations of the crane and the parameters of the law of motion
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Simulation Model Mass of the Mass of the Structural Structural Rope Rope Lifting Accel. Max. Min.
Nr. type structure load stiffness damping const. stiffness damping const. speed time load accel. load accel.

m M k s c s k r c r v t a a max a min

kg kg kN/m Ns/m kN/m N/m m/min s m/s2 m/s2

A 80000 50000 4000 100000 *** *** 100 2 1,093 -0,287
B 80000 50000 *** *** 3000 100000 100 2 1,406 -0,643
C 80000 50000 4000 100000 3000 100000 100 2 1,232 -0,573

A 80000 50000 18000 100000 *** *** 100 2 1,123 -0,328
B 80000 50000 *** *** 3000 100000 100 2 1,406 -0,643
C 80000 50000 18000 100000 3000 100000 100 2 1,438 -0,607

A 80000 50000 4000 100000 *** *** 100 2 1,093 -0,287
B 80000 50000 *** *** 30000 100000 100 2 1,569 -0,719
C 80000 50000 4000 100000 30000 100000 100 2 1,294 -0,507

A 80000 50000 18000 100000 *** *** 100 2 1,123 -0,328
B 80000 50000 *** *** 30000 100000 100 2 1,569 -0,719
C 80000 50000 18000 100000 30000 100000 100 2 1,452 -0,796

A 80000 50000 18000 100000 *** *** 80 2 0,898 -0,262
B 80000 50000 *** *** 30000 100000 80 2 1,255 -0,575
C 80000 50000 18000 100000 30000 100000 80 2 1,162 -0,637

2

3

4

5

1

of the load decreases significantly the safety coefficient of
the structure. Since the typical design values for these cranes
vary between 1.6 and 2, the precise determination of the
maximum load acting on the structure becomes of fundamental
importance. This fact on the one hand may cause exceeding
in the yield point of the material of the crane and on the
other may be responsible for local or global instability with
consequent overturning of the structure. As known also in
literature the maximum there is a relationship between the
maximum acceleration value and the lifting speed [9].

Fig. 6 shows the result of a simulation with a lifting speed
of 80 m/min. It can be clearly visible how the dynamic effect
results reduced with respect to the simulation of Fig. 6 made
with a lifting speed of 100 m/min. Even if only on a qualitative
level it can be stated that the ratio between the maximum
values of acceleration is correlated to the ratio between the
lifting speed.

From the simulation it can be also observed that the number
of load fluctuation results rather high and this can influenced
the fatigue behavior of the structure (Fig. 6). Additionally also
the amplitude of fluctuation cannot be neglected. Fig. 6 shows
a decreasing in load amplitude from 1.2 to 0.4 the nominal
value. The amplitude and the number of load fluctuation are
related to many factors among which there are the stiffness
and the damping of the structure and the rope. In this work
these values were derived from literature or calculated through
analitycal and numerical analyses (see Section II). Regarding
these considerations, from the comparison between the models
it was found that, for the crane considered, the model A
underestimated the dynamic effect while the models B and C
gave results comparable and in some cases stackable (Fig. 6).
the higher the ratio ks/kr the greater the convergence of
the results of the models B and C that, for values greater
than 4 differed by only 5%. Finally, it can be concluded
that to estimate the maximum acceleration experienced by the
structure object of this application the scheme B is equally
suited to the most complex scheme C.

IV. CONCLUSIONS

The work presented three dynamic models allow to analyze
the dynamic effects induced by the lifting of a load.

The models have been implemented into a software that
can be used during the design of a hoisting device to
evaluate the dynamic behavior of a crane in different operating
conditions. Particular attention was devoted to the calculus of
the maximum acceleration of the load, since the safety of the
lifting device is significantly influenced by this parameter.

In order to show the usefulness of the developed software,
the paper presented a detailed analysis of a gantry crane,
designed in accordance with the current technical standards;
the analysis allowed the evaluation of the acceleration acting
on the load in relation to the parameters of the dynamic
models.

From the results of the numerical simulations the designer of
a hoisting device can evaluate the dynamic overload conditions
with a fast and sufficiently accurate procedure and modify the
structural design of the machine so as to meet the requirements
of safety required by the standards.
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