Search results for: Generalized alternating two-stage method
8373 Convergence Analysis of the Generalized Alternating Two-Stage Method
Authors: Guangbin Wang, Liangliang Li, Fuping Tan
Abstract:
In this paper, we give the generalized alternating twostage method in which the inner iterations are accomplished by a generalized alternating method. And we present convergence results of the method for solving nonsingular linear systems when the coefficient matrix of the linear system is a monotone matrix or an H-matrix.
Keywords: Generalized alternating two-stage method, linear system, convergence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12608372 Alternating Implicit Block FDTD Method For Scalar Wave Equation
Authors: N. M. Nusi, M. Othman, M. Suleiman, F. Ismail, N. Alias
Abstract:
In this paper, an alternating implicit block method for solving two dimensional scalar wave equation is presented. The new method consist of two stages for each time step implemented in alternating directions which are very simple in computation. To increase the speed of computation, a group of adjacent points is computed simultaneously. It is shown that the presented method increase the maximum time step size and more accurate than the conventional finite difference time domain (FDTD) method and other existing method of natural ordering.Keywords: FDTD, Scalar wave equation, alternating direction implicit (ADI), alternating group explicit (AGE), asymmetric approximation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19048371 Some Results on Parallel Alternating Methods
Authors: Guangbin Wang, Fuping Tan
Abstract:
In this paper, we investigate two parallel alternating methods for solving the system of linear equations Ax = b and give convergence theorems for the parallel alternating methods when the coefficient matrix is a nonsingular H-matrix. Furthermore, we give one example to show our results.
Keywords: Nonsingular H-matrix, parallel alternating method, convergence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11048370 Proximal Parallel Alternating Direction Method for Monotone Structured Variational Inequalities
Abstract:
In this paper, we focus on the alternating direction method, which is one of the most effective methods for solving structured variational inequalities(VI). In fact, we propose a proximal parallel alternating direction method which only needs to solve two strongly monotone sub-VI problems at each iteration. Convergence of the new method is proved under mild assumptions. We also present some preliminary numerical results, which indicate that the new method is quite efficient.
Keywords: structured variational inequalities, proximal point method, global convergence
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13198369 Semiconvergence of Alternating Iterative Methods for Singular Linear Systems
Authors: Jing Wu
Abstract:
In this paper, we discuss semiconvergence of the alternating iterative methods for solving singular systems. The semiconvergence theories for the alternating methods are established when the coefficient matrix is a singular matrix. Furthermore, the corresponding comparison theorems are obtained.
Keywords: Alternating iterative method, Semiconvergence, Singular matrix.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16568368 Generalized Chebyshev Collocation Method
Authors: Junghan Kim, Wonkyu Chung, Sunyoung Bu, Philsu Kim
Abstract:
In this paper, we introduce a generalized Chebyshev collocation method (GCCM) based on the generalized Chebyshev polynomials for solving stiff systems. For employing a technique of the embedded Runge-Kutta method used in explicit schemes, the property of the generalized Chebyshev polynomials is used, in which the nodes for the higher degree polynomial are overlapped with those for the lower degree polynomial. The constructed algorithm controls both the error and the time step size simultaneously and further the errors at each integration step are embedded in the algorithm itself, which provides the efficiency of the computational cost. For the assessment of the effectiveness, numerical results obtained by the proposed method and the Radau IIA are presented and compared.
Keywords: Generalized Chebyshev Collocation method, Generalized Chebyshev Polynomial, Initial value problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26418367 An Iterative Algorithm to Compute the Generalized Inverse A(2) T,S Under the Restricted Inner Product
Authors: Xingping Sheng
Abstract:
Let T and S be a subspace of Cn and Cm, respectively. Then for A ∈ Cm×n satisfied AT ⊕ S = Cm, the generalized inverse A(2) T,S is given by A(2) T,S = (PS⊥APT )†. In this paper, a finite formulae is presented to compute generalized inverse A(2) T,S under the concept of restricted inner product, which defined as < A,B >T,S=< PS⊥APT,B > for the A,B ∈ Cm×n. By this iterative method, when taken the initial matrix X0 = PTA∗PS⊥, the generalized inverse A(2) T,S can be obtained within at most mn iteration steps in absence of roundoff errors. Finally given numerical example is shown that the iterative formulae is quite efficient.Keywords: Generalized inverse A(2) T, S, Restricted inner product, Iterative method, Orthogonal projection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12588366 Inexact Alternating Direction Method for Variational Inequality Problems with Linear Equality Constraints
Abstract:
In this article, a new inexact alternating direction method(ADM) is proposed for solving a class of variational inequality problems. At each iteration, the new method firstly solves the resulting subproblems of ADM approximately to generate an temporal point ˜xk, and then the multiplier yk is updated to get the new iterate yk+1. In order to get xk+1, we adopt a new descent direction which is simple compared with the existing prediction-correction type ADMs. For the inexact ADM, the resulting proximal subproblem has closedform solution when the proximal parameter and inexact term are chosen appropriately. We show the efficiency of the inexact ADM numerically by some preliminary numerical experiments.
Keywords: variational inequality problems, alternating direction method, global convergence
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14998365 Battery Operation Time Enhancement Based On Alternating Battery Cell Discharge
Authors: Jong-Bae Lee, Seongsoo Lee
Abstract:
This paper proposes an alternating discharge method of multiple battery cells to extend battery operation time. In the proposed method, two battery cells are periodically connected in turn to a mobile device and only one cell supply power while the other rests. Battery operation time of the connecting cell decreases due to rate-capacity effect, while that of the resting cell increases due to recovery effect. These two effects conflict each other, but recovery effect is generally larger than rate-capacity effect and battery lifetime is extended. It was found from the result that battery operation time increase about 7% by using alternating battery cell discharge.
Keywords: Battery, Recovery Effect, Rate-Capacity Effect, Low-Power, Alternating Battery Cell Discharge.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16888364 Adaptive Discharge Time Control for Battery Operation Time Enhancement
Authors: Jong-Bae Lee, Seongsoo Lee
Abstract:
This paper proposes an adaptive discharge time control method to balance cell voltages in alternating battery cell discharging method. In the alternating battery cell discharging method, battery cells are periodically discharged in turn. Recovery effect increases battery output voltage while the given battery cell rests without discharging, thus battery operation time of target system increases. However, voltage mismatch between cells leads two problems. First, voltage difference between cells induces inter-cell current with wasted power. Second, it degrades battery operation time, since system stops when any cell reaches to the minimum system operation voltage. To solve this problem, the proposed method adaptively controls cell discharge time to equalize both cell voltages. In the proposed method, battery operation time increases about 19%, while alternating battery cell discharging method shows about 7% improvement.
Keywords: Battery, Recovery Effect, Low-Power, Alternating Battery Cell Discharging, Adaptive Discharge Time Control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14988363 The Comparison of Finite Difference Methods for Radiation Diffusion Equations
Authors: Ren Jian, Yang Shulin
Abstract:
In this paper, the difference between the Alternating Direction Method (ADM) and the Non-Splitting Method (NSM) is investigated, while both methods applied to the simulations for 2-D multimaterial radiation diffusion issues. Although the ADM have the same accuracy orders with the NSM on the uniform meshes, the accuracy of ADM will decrease on the distorted meshes or the boundary of domain. Numerical experiments are carried out to confirm the theoretical predication.Keywords: Alternating Direction Method, Non-SplittingMethod, Radiation Diffusion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14248362 Adomian Method for Second-order Fuzzy Differential Equation
Authors: Lei Wang, Sizong Guo
Abstract:
In this paper, we study the numerical method for solving second-order fuzzy differential equations using Adomian method under strongly generalized differentiability. And, we present an example with initial condition having four different solutions to illustrate the efficiency of the proposed method under strongly generalized differentiability.
Keywords: Fuzzy-valued function, fuzzy initial value problem, strongly generalized differentiability, adomian decomposition method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25358361 Generalized Mathematical Description and Simulation of Grid-Tied Thyristor Converters
Authors: V. S. Klimash, Ye Min Thu
Abstract:
Thyristor rectifiers, inverters grid-tied, and AC voltage regulators are widely used in industry, and on electrified transport, they have a lot in common both in the power circuit and in the control system. They have a common mathematical structure and switching processes. At the same time, the rectifier, but the inverter units and thyristor regulators of alternating voltage are considered separately both theoretically and practically. They are written about in different books as completely different devices. The aim of this work is to combine them into one class based on the unity of the equations describing electromagnetic processes, and then, to show this unity on the mathematical model and experimental setup. Based on research from mathematics to the product, a conclusion is made about the methodology for the rapid conduct of research and experimental design work, preparation for production and serial production of converters with a unified bundle. In recent years, there has been a transition from thyristor circuits and transistor in modular design. Showing the example of thyristor rectifiers and AC voltage regulators, we can conclude that there is a unity of mathematical structures and grid-tied thyristor converters.Keywords: Direct current, alternating current, rectifier, AC voltage regulator, generalized mathematical model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10098360 The BGMRES Method for Generalized Sylvester Matrix Equation AXB − X = C and Preconditioning
Authors: Azita Tajaddini, Ramleh Shamsi
Abstract:
In this paper, we present the block generalized minimal residual (BGMRES) method in order to solve the generalized Sylvester matrix equation. However, this method may not be converged in some problems. We construct a polynomial preconditioner based on BGMRES which shows why polynomial preconditioner is superior to some block solvers. Finally, numerical experiments report the effectiveness of this method.Keywords: Linear matrix equation, Block GMRES, matrix Krylov subspace, polynomial preconditioner.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8758359 Some Results on Parallel Alternating Two-stage Methods
Authors: Guangbin Wang, Xue Li
Abstract:
In this paper, we present parallel alternating two-stage methods for solving linear system Ax=b, where A is a symmetric positive definite matrix. And we give some convergence results of these methods for nonsingular linear system.Keywords: alternating two-stage, convergence, linear system, parallel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11878358 Note to the Global GMRES for Solving the Matrix Equation AXB = F
Authors: Fatemeh Panjeh Ali Beik
Abstract:
In the present work, we propose a new projection method for solving the matrix equation AXB = F. For implementing our new method, generalized forms of block Krylov subspace and global Arnoldi process are presented. The new method can be considered as an extended form of the well-known global generalized minimum residual (Gl-GMRES) method for solving multiple linear systems and it will be called as the extended Gl-GMRES (EGl- GMRES). Some new theoretical results have been established for proposed method by employing Schur complement. Finally, some numerical results are given to illustrate the efficiency of our new method.
Keywords: Matrix equation, Iterative method, linear systems, block Krylov subspace method, global generalized minimum residual (Gl-GMRES).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18418357 Restarted Generalized Second-Order Krylov Subspace Methods for Solving Quadratic Eigenvalue Problems
Authors: Liping Zhou, Liang Bao, Yiqin Lin, Yimin Wei, Qinghua Wu
Abstract:
This article is devoted to the numerical solution of large-scale quadratic eigenvalue problems. Such problems arise in a wide variety of applications, such as the dynamic analysis of structural mechanical systems, acoustic systems, fluid mechanics, and signal processing. We first introduce a generalized second-order Krylov subspace based on a pair of square matrices and two initial vectors and present a generalized second-order Arnoldi process for constructing an orthonormal basis of the generalized second-order Krylov subspace. Then, by using the projection technique and the refined projection technique, we propose a restarted generalized second-order Arnoldi method and a restarted refined generalized second-order Arnoldi method for computing some eigenpairs of largescale quadratic eigenvalue problems. Some theoretical results are also presented. Some numerical examples are presented to illustrate the effectiveness of the proposed methods.Keywords: Quadratic eigenvalue problem, Generalized secondorder Krylov subspace, Generalized second-order Arnoldi process, Projection technique, Refined technique, Restarting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18698356 A Note on the Convergence of the Generalized AOR Iterative Method for Linear Systems
Authors: Zhong-xi Gao, Hou-biao Li
Abstract:
Recently, some convergent results of the generalized AOR iterative (GAOR) method for solving linear systems with strictly diagonally dominant matrices are presented in [Darvishi, M.T., Hessari, P.: On convergence of the generalized AOR method for linear systems with diagonally dominant cofficient matrices. Appl. Math. Comput. 176, 128-133 (2006)] and [Tian, G.X., Huang, T.Z., Cui, S.Y.: Convergence of generalized AOR iterative method for linear systems with strictly diagonally dominant cofficient matrices. J. Comp. Appl. Math. 213, 240-247 (2008)]. In this paper, we give the convergence of the GAOR method for linear systems with strictly doubly diagonally dominant matrix, which improves these corresponding results.
Keywords: Diagonally dominant matrix, GAOR method, Linear system, Convergence
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13048355 Parallel Alternating Two-stage Methods for Solving Linear System
Authors: Guangbin Wang, Ning Zhang, Fuping Tan
Abstract:
In this paper, we present parallel alternating two-stage methods for solving linear system Ax = b, where A is a monotone matrix or an H-matrix. And we give some convergence results of these methods for nonsingular linear system.
Keywords: Parallel, alternating two-stage, convergence, linear system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11488354 Generalized Fuzzy Subalgebras and Fuzzy Ideals of BCI-Algebras with Operators
Authors: Yuli Hu, Shaoquan Sun
Abstract:
The aim of this paper is to introduce the concepts of generalized fuzzy subalgebras, generalized fuzzy ideals and generalized fuzzy quotient algebras of BCI-algebras with operators, and to investigate their basic properties.Keywords: BCI-algebras with operators, generalized fuzzy subalgebras, generalized fuzzy ideals, generalized fuzzy quotient algebras.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8158353 Extending Global Full Orthogonalization method for Solving the Matrix Equation AXB=F
Authors: Fatemeh Panjeh Ali Beik
Abstract:
In the present work, we propose a new method for solving the matrix equation AXB=F . The new method can be considered as a generalized form of the well-known global full orthogonalization method (Gl-FOM) for solving multiple linear systems. Hence, the method will be called extended Gl-FOM (EGl- FOM). For implementing EGl-FOM, generalized forms of block Krylov subspace and global Arnoldi process are presented. Finally, some numerical experiments are given to illustrate the efficiency of our new method.Keywords: Matrix equations, Iterative methods, Block Krylovsubspace methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19948352 Some Solitary Wave Solutions of Generalized Pochhammer-Chree Equation via Exp-function Method
Authors: Kourosh Parand, Jamal Amani Rad
Abstract:
In this paper, Exp-function method is used for some exact solitary solutions of the generalized Pochhammer-Chree equation. It has been shown that the Exp-function method, with the help of symbolic computation, provides a very effective and powerful mathematical tool for solving nonlinear partial differential equations. As a result, some exact solitary solutions are obtained. It is shown that the Exp-function method is direct, effective, succinct and can be used for many other nonlinear partial differential equations.
Keywords: Exp-function method, generalized Pochhammer- Chree equation, solitary wave solution, ODE's.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15918351 The Performance of Alternating Top-Bottom Strategy for Successive Over Relaxation Scheme on Two Dimensional Boundary Value Problem
Authors: M. K. Hasan, Y. H. Ng, J. Sulaiman
Abstract:
This paper present the implementation of a new ordering strategy on Successive Overrelaxation scheme on two dimensional boundary value problems. The strategy involve two directions alternatingly; from top and bottom of the solution domain. The method shows to significantly reduce the iteration number to converge. Four numerical experiments were carried out to examine the performance of the new strategy.
Keywords: Two dimensional boundary value problems, Successive Overrelaxation scheme, Alternating Top-Bottom strategy, fast convergence
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14928350 The New Relative Efficiency Based on the Least Eigenvalue in Generalized Linear Model
Authors: Chao Yuan, Bao Guang Tian
Abstract:
A new relative efficiency is defined as LSE and BLUE in the generalized linear model. The relative efficiency is based on the ratio of the least eigenvalues. In this paper, we discuss about its lower bound and the relationship between it and generalized relative coefficient. Finally, this paper proves that the new estimation is better under Stein function and special condition in some degree.Keywords: Generalized linear model, generalized relative coefficient, least eigenvalue, relative efficiency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11898349 Generalized Differential Quadrature Nonlinear Consolidation Analysis of Clay Layer with Time-Varied Drainage Conditions
Authors: A. Bahmanikashkouli, O.R. Bahadori Nezhad
Abstract:
In this article, the phenomenon of nonlinear consolidation in saturated and homogeneous clay layer is studied. Considering time-varied drainage model, the excess pore water pressure in the layer depth is calculated. The Generalized Differential Quadrature (GDQ) method is used for the modeling and numerical analysis. For the purpose of analysis, first the domain of independent variables (i.e., time and clay layer depth) is discretized by the Chebyshev-Gauss-Lobatto series and then the nonlinear system of equations obtained from the GDQ method is solved by means of the Newton-Raphson approach. The obtained results indicate that the Generalized Differential Quadrature method, in addition to being simple to apply, enjoys a very high accuracy in the calculation of excess pore water pressure.Keywords: Generalized Differential Quadrature method, Nonlinear consolidation, Nonlinear system of equations, Time-varied drainage
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20298348 Implementation of Generalized Plasticity in Load-Deformation Behavior of Foundation with Emphasis on Localization Problem
Authors: A. H. Akhaveissy
Abstract:
Nonlinear finite element method with eight noded isoparametric quadrilateral element is used for prediction of loaddeformation behavior including bearing capacity of foundations. Modified generalized plasticity model with non-associated flow rule is applied for analysis of soil-footing system. Also Von Mises and Tresca criterions are used for simulation of soil behavior. Modified generalized plasticity model is able to simulate load-deformation including softening behavior. Localization phenomena are considered by different meshes. Localization phenomena have not been seen in the examples. Predictions by modified generalized plasticity model show good agreement with laboratory data and theoretical prediction in comparison the other models.Keywords: Localization phenomena, Generalized plasticity, Non-associated Flow Rule
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15958347 Lagrangian Method for Solving Unsteady Gas Equation
Authors: Amir Taghavi, kourosh Parand, Hosein Fani
Abstract:
In this paper we propose, a Lagrangian method to solve unsteady gas equation which is a nonlinear ordinary differential equation on semi-infnite interval. This approach is based on Modified generalized Laguerre functions. This method reduces the solution of this problem to the solution of a system of algebraic equations. We also compare this work with some other numerical results. The findings show that the present solution is highly accurate.
Keywords: Unsteady gas equation, Generalized Laguerre functions, Lagrangian method, Nonlinear ODE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15248346 2D Numerical Analysis of Sao Paulo Tunnel
Authors: A.H. Akhaveissy
Abstract:
Nonlinear finite element method and Serendipity eight nodes element are used for determining of ground surface settlement due to tunneling. Linear element with elastic behavior is used for modeling of lining. Modified Generalized plasticity model with nonassociated flow rule is applied for analysis of a tunnel in Sao Paulo – Brazil. The tunnel had analyzed by Lades- model with 16 parameters. In this work modified Generalized Plasticity is used with 10 parameters, also Mohr-Coulomb model is used to analysis the tunnel. The results show good agreement with observed results of field data by modified Generalized Plasticity model than other models. The obtained result by Mohr-Coulomb model shows less settlement than other model due to excavation.Keywords: Non-associated flow rule, Generalized plasticity, tunnel excavation, Excavation method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26268345 A Local Invariant Generalized Hough Transform Method for Integrated Circuit Visual Positioning
Authors: Fei Long Wei, Hua Yang, Hai Tao Zhang, Zhou Ping Yin
Abstract:
In this study, an local invariant generalized Houghtransform (LI-GHT) method is proposed for integrated circuit (IC) visual positioning. The original generalized Hough transform (GHT) is robust to external noise; however, it is not suitable for visual positioning of IC chips due to the four-dimensionality (4D) of parameter space which leads to the substantial storage requirement and high computational complexity. The proposed LI-GHT method can reduce the dimensionality of parameter space to 2D thanks to the rotational invariance of local invariant geometric feature and it can estimate the accuracy position and rotation angle of IC chips in real-time under noise and blur influence. The experiment results show that the proposed LI-GHT can estimate position and rotation angle of IC chips with high accuracy and fast speed. The proposed LI-GHT algorithm was implemented in IC visual positioning system of radio frequency identification (RFID) packaging equipment.
Keywords: Integrated Circuit Visual Positioning, Generalized Hough Transform, Local invariant Generalized Hough Transform, ICpacking equipment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22098344 (T1, T2)*- Semi Star Generalized Locally Closed Sets
Authors: M. Sundararaman, K. Chandrasekhara Rao
Abstract:
The aim of this paper is to continue the study of (T1, T2)-semi star generalized closed sets by introducing the concepts of (T1, T2)-semi star generalized locally closed sets and study their basic properties in bitopological spaces.
Keywords: (T1, T2)*-semi star generalized locally closed sets, T1T2-semi star generalized closed sets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1472