Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30172
Some Results on Parallel Alternating Two-stage Methods

Authors: Guangbin Wang, Xue Li

Abstract:

In this paper, we present parallel alternating two-stage methods for solving linear system Ax=b, where A is a symmetric positive definite matrix. And we give some convergence results of these methods for nonsingular linear system.

Keywords: alternating two-stage, convergence, linear system, parallel.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1072249

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 851

References:


[1] H. Migall├│n, V. Migall├│n, J. Penadés, "Alternating two-stage methods for consistent linear system with applications to the parallel solution of Markov chains," Advances in Engineering Software, vol.41, pp.13-21,2010.
[2] B.L. Zhang, T.X. Gu, Z.Y. Mo, "Principles and methods of numerical parallel computation," National defense industry Press, Beijing, 1999.
[3] W. Rheinboldt, J. Vandergraft, "A simple approach to the Perron-Frobenius theory for positive operators on general partially-ordered nite-dimensional linear spaces," Mathematics of Computation, 27 (121) (1973) pp. 139-145.
[4] J.M. Ortega, Numerical Analysis, A second course, Academic Press, New York, NY, 1972. Reprinted by SIAM, Philadelphia, PA, 1992.
[5] Castel MJ, Migall├│n V, Penadés J. "Convergence of non-stationary parallel multisplitting methods for Hermitian positive denite matrices," Math Comput 1998;67(221): pp. 209-20.
[6] Migall├│n V, Penadés J. "Convergence of two-stage iterative methods for Hermitian positive denite matrices," Appl Math Lett 1997;10(3): pp. 79-83.