Search results for: Equipment manufacturing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1181

Search results for: Equipment manufacturing

101 Procedure for Impact Testing of Fused Recycled Glass

Authors: David Halley, Tyra Oseng-Rees, Luca Pagano, Juan A Ferriz-Papi

Abstract:

Recycled glass material is made from 100% recycled bottle glass and consumes less energy than re-melt technology. It also uses no additives in the manufacturing process allowing the recycled glass material, in principal, to go back to the recycling stream after end-of-use, contributing to the circular economy with a low ecological impact. The aim of this paper is to investigate the procedure for testing the recycled glass material for impact resistance, so it can be applied to pavements and other surfaces which are at risk of impact during service. A review of different impact test procedures for construction materials was undertaken, comparing methodologies and international standards applied to other materials such as natural stone, ceramics and glass. A drop weight impact testing machine was designed and manufactured in-house to perform these tests. As a case study, samples of the recycled glass material were manufactured with two different thicknesses and tested. The impact energy was calculated theoretically, obtaining results with 5 and 10 J. The results on the material were subsequently discussed. Improvements on the procedure can be made using high speed video technology to calculate velocity just before and immediately after the impact to know the absorbed energy. The initial results obtained in this procedure were positive although repeatability needs to be developed to obtain a correlation of results and finally be able to validate the procedure. The experiment with samples showed the practicality of this procedure and application to the recycled glass material impact testing although further research needs to be developed.

Keywords: Construction materials, drop weight impact, impact testing, recycled glass.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1483
100 Design, Fabrication and Performance Evaluation of Mobile Engine-Driven Pneumatic Paddy Collector

Authors: Sony P. Aquino, Helen F. Gavino, Victorino T. Taylan, Teresito G. Aguinaldo

Abstract:

A simple mobile engine-driven pneumatic paddy collector made of locally available materials using local manufacturing technology was designed, fabricated, and tested for collecting and bagging of paddy dried on concrete pavement. The pneumatic paddy collector had the following major components: radial flat bladed type centrifugal fan, power transmission system, bagging area, frame and the conveyance system. Results showed significant differences on the collecting capacity, noise level, and fuel consumption when rotational speed of the air mover shaft was varied. Other parameters such as collecting efficiency, air velocity, augmented cracked grain percentage, and germination rate were not significantly affected by varying rotational speed of the air mover shaft. The pneumatic paddy collector had a collecting efficiency of 99.33 % with a collecting capacity of 2685.00 kg/h at maximum rotational speed of centrifugal fan shaft of about 4200 rpm. The machine entailed an investment cost of P 62,829.25. The break-even weight of paddy was 510,606.75 kg/yr at a collecting cost of 0.11 P/kg of paddy. Utilizing the machine for 400 hours per year generated an income of P 23,887.73. The projected time needed to recover cost of the machine based on 2685 kg/h collecting capacity was 2.63 year.

Keywords: Mobile engine-driven pneumatic paddy collector, collecting capacity and efficiency, simple cost analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5452
99 Construction 4.0: The Future of the Construction Industry in South Africa

Authors: Temidayo. O. Osunsanmi, Clinton Aigbavboa, Ayodeji Oke

Abstract:

The construction industry is a renowned latecomer to the efficiency offered by the adoption of information technology. Whereas, the banking, manufacturing, retailing industries have keyed into the future by using digitization and information technology as a new approach for ensuring competitive gain and efficiency. The construction industry has yet to fully realize similar benefits because the adoption of ICT is still at the infancy stage with a major concentration on the use of software. Thus, this study evaluates the awareness and readiness of construction professionals towards embracing a full digitalization of the construction industry using construction 4.0. The term ‘construction 4.0’ was coined from the industry 4.0 concept which is regarded as the fourth industrial revolution that originated from Germany. A questionnaire was utilized for sourcing data distributed to practicing construction professionals through a convenience sampling method. Using SPSS v24, the hypotheses posed were tested with the Mann Whitney test. The result revealed that there are no differences between the consulting and contracting organizations on the readiness for adopting construction 4.0 concepts in the construction industry. Using factor analysis, the study discovers that adopting construction 4.0 will improve the performance of the construction industry regarding cost and time savings and also create sustainable buildings. In conclusion, the study determined that construction professionals have a low awareness towards construction 4.0 concepts. The study recommends an increase in awareness of construction 4.0 concepts through seminars, workshops and training, while construction professionals should take hold of the benefits of adopting construction 4.0 concepts. The study contributes to the roadmap for the implementation of construction industry 4.0 concepts in the South African construction industry.

Keywords: Building information technology, Construction 4.0, Industry 4.0, Smart Site.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5674
98 Magnitude and Determinants of Overweight and Obesity among High School Adolescents in Addis Ababa, Ethiopia

Authors: Mulugeta Shegaze, Mekitie Wondafrash, Alemayehu A. Alemayehu, Shikur Mohammed, Zewdu Shewangezaw, Mukerem Abdo, Gebresilasea Gendisha

Abstract:

Background: The 2004 World Health Assembly called for specific actions to halt the overweight and obesity epidemic that is currently penetrating urban populations in the developing world. Adolescents require particular attention due to their vulnerability to develop obesity and the fact that adolescent weight tracks strongly into adulthood. However, there is scarcity of information on the modifiable risk factors to be targeted for primary intervention among urban adolescents in Ethiopia. This study was aimed at determining the magnitude and risk factors of overweight and obesity among high school adolescents in Addis Ababa. Methods: An institution-based cross-sectional study was conducted in February and March 2014 on 456 randomly selected adolescents from 20 high schools in Addis Ababa city.  Demographic data and other risk factors of overweight and obesity were collected using self-administered structured questionnaire, whereas anthropometric measurements of weight and height were taken using calibrated equipment and standardized techniques. The WHO STEPS instrument for chronic disease risk was applied to assess dietary habit and physical activity. Overweight and obesity status was determined based on BMI-for-age percentiles of WHO 2007 reference population. Results: The prevalence rates of overweight, obesity, and overall overweight/ obesity among high school adolescents in Addis Ababa were 9.7% (95%CI = 6.9-12.4%), 4.2% (95%CI = 2.3-6.0%), and 13.9% (95%CI = 10.6-17.1%), respectively. Overweight/obesity prevalence was highest among female adolescents, in private schools, and in the higher wealth category. In multivariable regression model, being female [AOR(95%CI) = 5.4(2.5,12.1)], being from private school [AOR(95%CI) = 3.0(1.4,6.2)], having >3 regular meals [AOR(95%CI) = 4.0(1.3,13.0)], consumption of sweet foods [AOR(95%CI) = 5.0(2.4,10.3)] and spending >3 hours/day sitting [AOR(95%CI) = 3.5(1.7,7.2)] were found to increase overweight/ obesity risk, whereas high Total Physical Activity level [AOR(95%CI) = 0.21(0.08,0.57)] and better nutrition knowledge [AOR(95%CI) = 0.160.07,0.37)] were found protective. Conclusions: More than one in ten of the high school adolescents were affected by overweight/obesity with dietary habit and physical activity are important modifiable risk factors. Well-tailored nutrition education program targeting lifestyle change should be initiated with more emphasis to female adolescents and students in private schools.

Keywords: Adolescents, NCDs, overweight, obesity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2532
97 The Impact of Supply Chain Strategy and Integration on Supply Chain Performance: Supply Chain Vulnerability as a Moderator

Authors: Yi-Chun Kuo, Jo-Chieh Lin

Abstract:

The objective of a supply chain strategy is to reduce waste and increase efficiency to attain cost benefits, and to guarantee supply chain flexibility when facing the ever-changing market environment in order to meet customer requirements. Strategy implementation aims to fulfill common goals and attain benefits by integrating upstream and downstream enterprises, sharing information, conducting common planning, and taking part in decision making, so as to enhance the overall performance of the supply chain. With the rise of outsourcing and globalization, the increasing dependence on suppliers and customers and the rapid development of information technology, the complexity and uncertainty of the supply chain have intensified, and supply chain vulnerability has surged, resulting in adverse effects on supply chain performance. Thus, this study aims to use supply chain vulnerability as a moderating variable and apply structural equation modeling (SEM) to determine the relationships among supply chain strategy, supply chain integration, and supply chain performance, as well as the moderating effect of supply chain vulnerability on supply chain performance. The data investigation of this study was questionnaires which were collected from the management level of enterprises in Taiwan and China, 149 questionnaires were received. The result of confirmatory factor analysis shows that the path coefficients of supply chain strategy on supply chain integration and supply chain performance are positive (0.497, t= 4.914; 0.748, t= 5.919), having a significantly positive effect. Supply chain integration is also significantly positively correlated to supply chain performance (0.192, t = 2.273). The moderating effects of supply chain vulnerability on supply chain strategy and supply chain integration to supply chain performance are significant (7.407; 4.687). In Taiwan, 97.73% of enterprises are small- and medium-sized enterprises (SMEs) focusing on receiving original equipment manufacturer (OEM) and original design manufacturer (ODM) orders. In order to meet the needs of customers and to respond to market changes, these enterprises especially focus on supply chain flexibility and their integration with the upstream and downstream enterprises. According to the observation of this research, the effect of supply chain vulnerability on supply chain performance is significant, and so enterprises need to attach great importance to the management of supply chain risk and conduct risk analysis on their suppliers in order to formulate response strategies when facing emergency situations. At the same time, risk management is incorporated into the supply chain so as to reduce the effect of supply chain vulnerability on the overall supply chain performance.

Keywords: Supply chain integration, supply chain performance, supply chain vulnerability, structural equation modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 844
96 An Approach to Capture, Evaluate and Handle Complexity of Engineering Change Occurrences in New Product Development

Authors: Mohammad Rostami Mehr, Seyed Arya Mir Rashed, Arndt Lueder, Magdalena Mißler-Behr

Abstract:

This paper represents the conception that complex problems do not necessary need similar complex solutions in order to cope with the complexity. Furthermore, a simple solution based on established methods can provide a sufficient way dealing with the complexity. To verify this conception, the presented paper focuses on the field of change management as a part of new product development process in automotive sector. In the field of complexity management, dealing with increasing complexity is essential, while, only non-flexible rigid processes that are not designed to handle complexity are available. The basic methodology of this paper can be divided in four main sections: 1) analyzing the complexity of the change management, 2) literature review in order to identify potential solutions and methods, 3) capturing and implementing expertise of experts from change management filed of an automobile manufacturing company and 4) systematical comparison of the identified methods from literature and connecting these with defined requirements of the complexity of the change management in order to develop a solution. As a practical outcome, this paper provides a method to capture the complexity of engineering changes (EC) and includes it within the EC evaluation process, following case-related process guidance to cope with the complexity. Furthermore, this approach supports the conception that dealing with complexity is possible while utilizing rather simple and established methods by combining them in to a powerful tool.

Keywords: complexity management, new product development, engineering change management, flexibility

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 490
95 Approximation of PE-MOCVD to ALD for TiN Concerning Resistivity and Chemical Composition

Authors: D. Geringswald, B. Hintze

Abstract:

The miniaturization of circuits is advancing. During chip manufacturing, structures are filled for example by metal organic chemical vapor deposition (MOCVD). Since this process reaches its limits in case of very high aspect ratios, the use of alternatives such as the atomic layer deposition (ALD) is possible, requiring the extension of existing coating systems. However, it is an unsolved question to what extent MOCVD can achieve results similar as an ALD process. In this context, this work addresses the characterization of a metal organic vapor deposition of titanium nitride. Based on the current state of the art, the film properties coating thickness, sheet resistance, resistivity, stress and chemical composition are considered. The used setting parameters are temperature, plasma gas ratio, plasma power, plasma treatment time, deposition time, deposition pressure, number of cycles and TDMAT flow. The derived process instructions for unstructured wafers and inside a structure with high aspect ratio include lowering the process temperature and increasing the number of cycles, the deposition and the plasma treatment time as well as the plasma gas ratio of hydrogen to nitrogen (H2:N2). In contrast to the current process configuration, the deposited titanium nitride (TiN) layer is more uniform inside the entire test structure. Consequently, this paper provides approaches to employ the MOCVD for structures with increasing aspect ratios.

Keywords: ALD, high aspect ratio, PE-MOCVD, TiN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1466
94 Application of Molecular Materials in the Manufacture of Flexible and Organic Devices for Photovoltaic Applications

Authors: M. Gómez-Gómez, M. E. Sánchez-Vergara

Abstract:

Many sustainable approaches to generate electric energy have emerged in the last few decades; one of them is through solar cells. Yet, this also has the disadvantage of highly polluting inorganic semiconductor manufacturing processes. Therefore, the use of molecular semiconductors must be considered. In this work, allene compounds C24H26O4 and C24H26O5 were used as dopants to manufacture semiconductor films based on PbPc by high-vacuum evaporation technique. IR spectroscopy was carried out to determine the phase and any significant chemical changes which may occur during the thermal evaporation. According to UV-visible spectroscopy and Tauc’s model, the deposition process generated thin films with an activation energy range of 1.47 eV to 1.55 eV for direct transitions and 1.29 eV to 1.33 eV for indirect transitions. These values place the manufactured films within the range of low bandgap semiconductors. The flexible devices were manufactured: polyethylene terephthalate (PET), Indium tin oxide (ITO)/organic semiconductor/Cubic Close Packed (CCP). The characterization of the devices was carried out by evaluating electrical conductivity using the four-probe collinear method. I-V curves were obtained under different lighting conditions at room temperature. OS1 (PbPc/C24H26O4) showed an Ohmic behavior, while OS2 (PbPc/C24H26O5) reached higher current values at lower voltages. The results obtained show that the semiconductor devices doped with allene compounds can be used in the manufacture of optoelectronic devices.

Keywords: Electrical properties, optical gap, phthalocyanine, thin film.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 352
93 Characteristics of Wall Thickness Increase in Pipe Reduction Process using Planetary Rolls

Authors: Yuji Kotani, Shunsuke Kanai, Hisaki Watari

Abstract:

In recent years, global warming has become a worldwide problem. The reduction of carbon dioxide emissions is a top priority for many companies in the manufacturing industry. In the automobile industry as well, the reduction of carbon dioxide emissions is one of the most important issues. Technology to reduce the weight of automotive parts improves the fuel economy of automobiles, and is an important technology for reducing carbon dioxide. Also, even if this weight reduction technology is applied to electric automobiles rather than gasoline automobiles, reducing energy consumption remains an important issue. Plastic processing of hollow pipes is one important technology for realizing the weight reduction of automotive parts. Ohashi et al. [1],[2] present an example of research on pipe formation in which a process was carried out to enlarge a pipe diameter using a lost core, achieving the suppression of wall thickness reduction and greater pipe expansion than hydroforming. In this study, we investigated a method to increase the wall thickness of a pipe through pipe compression using planetary rolls. The establishment of a technology whereby the wall thickness of a pipe can be controlled without buckling the pipe is an important technology for the weight reduction of products. Using the finite element analysis method, we predicted that it would be possible to increase the compression of an aluminum pipe with a 3mm wall thickness by approximately 20%, and wall thickness by approximately 20% by pressing the hollow pipe with planetary rolls.

Keywords: Pipe-Forming, Wall Thickness, Finite-element-method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2941
92 Human Digital Twin for Personal Conversation Automation Using Supervised Machine Learning Approaches

Authors: Aya Salama

Abstract:

Digital Twin has emerged as a compelling research area, capturing the attention of scholars over the past decade. It finds applications across diverse fields, including smart manufacturing and healthcare, offering significant time and cost savings. Notably, it often intersects with other cutting-edge technologies such as Data Mining, Artificial Intelligence, and Machine Learning. However, the concept of a Human Digital Twin (HDT) is still in its infancy and requires further demonstration of its practicality. HDT takes the notion of Digital Twin a step further by extending it to living entities, notably humans, who are vastly different from inanimate physical objects. The primary objective of this research was to create an HDT capable of automating real-time human responses by simulating human behavior. To achieve this, the study delved into various areas, including clustering, supervised classification, topic extraction, and sentiment analysis. The paper successfully demonstrated the feasibility of HDT for generating personalized responses in social messaging applications. Notably, the proposed approach achieved an overall accuracy of 63%, a highly promising result that could pave the way for further exploration of the HDT concept. The methodology employed Random Forest for clustering the question database and matching new questions, while K-nearest neighbor was utilized for sentiment analysis.

Keywords: Human Digital twin, sentiment analysis, topic extraction, supervised machine learning, unsupervised machine learning, classification and clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 129
91 Nutritional Value Determination of Different Varieties of Oats and Barley Using Near-Infrared Spectroscopy Method for the Horses Nutrition

Authors: V. Viliene, V. Sasyte, A. Raceviciute-Stupeliene, R. Gruzauskas

Abstract:

In horse nutrition, the most suitable cereal for their rations composition could be defined as oats and barley. Oats have high nutritive value because it provides more protein, fiber, iron and zinc than other whole grains, has good taste, and an activity of stimulating metabolic changes in the body. Another cereal – barley is very similar to oats as a feed except for some characteristics that affect how it is used; however, barley is lower in fiber than oats and is classified as a "heavy" feed. The value of oats and barley grain, first of all is dependent on its composition. Near-infrared spectroscopy (NIRS) has long been considered and used as a significant method in component and quality analysis and as an emerging technology for authenticity applications for cereal quality control. This paper presents the chemical and amino acid composition of different varieties of barley and oats, also digestible energy of different cereals for horses. Ten different spring barley (n = 5) and oats (n = 5) varieties, grown in one location in Lithuania, were assayed for their chemical composition (dry matter, crude protein, crude fat, crude ash, crude fiber, starch) and amino acids content, digestible amino acids and amino acids digestibility. Also, the grains digestible energy for horses was calculated. The oats and barley samples reflectance spectra were measured by means of NIRS using Foss-Tecator DS2500 equipment. The chemical components: fat, crude protein, starch and fiber differed statistically (P<0.05) between the oats and barley varieties. The highest total amino acid content between oats was determined in variety Flamingsprofi (4.56 g/kg) and the lowest – variety Circle (3.57 g/kg), and between barley - respectively in varieties Publican (3.50 g/kg) and Sebastian (3.11 g/kg). The different varieties of oats digestible amino acid content varied from 3.11 g/kg to 4.07 g/kg; barley different varieties varied from 2.59 g/kg to 2.94 g/kg. The average amino acids digestibility of oats varied from 74.4% (Liz) to 95.6% (Fen) and in barley - from 75.8 % (Tre) to 89.6% (Fen). The amount of digestible energy in the analyzed varieties of oats and barley was an average compound 13.74 MJ/kg DM and 14.85 MJ/kg DM, respectively. An analysis of the results showed that different varieties of oats compared with barley are preferable for horse nutrition according to the crude fat, crude fiber, ash and separate amino acids content, but the analyzed barley varieties dominated the higher amounts of crude protein, the digestible Liz amount and higher DE content, and thus, could be recommended for making feed formulation for horses combining oats and barley, taking into account the chemical composition of using cereal varieties.

Keywords: Barley, digestive energy, horses, nutritional value, oats.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2204
90 Large Scale Production of Polyhydroxyalkanoates (PHAs) from Wastewater: A Study of Techno-Economics, Energy Use and Greenhouse Gas Emissions

Authors: Cora Fernandez Dacosta, John A. Posada, Andrea Ramirez

Abstract:

The biodegradable family of polymers polyhydroxyalkanoates is an interesting substitute for convectional fossil-based plastics. However, the manufacturing and environmental impacts associated with their production via intracellular bacterial fermentation are strongly dependent on the raw material used and on energy consumption during the extraction process, limiting their potential for commercialization. Industrial wastewater is studied in this paper as a promising alternative feedstock for waste valorization. Based on results from laboratory and pilot-scale experiments, a conceptual process design, techno-economic analysis and life cycle assessment are developed for the large-scale production of the most common type of polyhydroxyalkanoate, polyhydroxbutyrate. Intracellular polyhydroxybutyrate is obtained via fermentation of microbial community present in industrial wastewater and the downstream processing is based on chemical digestion with surfactant and hypochlorite. The economic potential and environmental performance results help identifying bottlenecks and best opportunities to scale-up the process prior to industrial implementation. The outcome of this research indicates that the fermentation of wastewater towards PHB presents advantages compared to traditional PHAs production from sugars because the null environmental burdens and financial costs of the raw material in the bioplastic production process. Nevertheless, process optimization is still required to compete with the petrochemicals counterparts.

Keywords: Circular economy, life cycle assessment, polyhydroxyalkanoates, waste valorization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4132
89 Investigation of Layer Thickness and Surface Roughness on Aerodynamic Coefficients of Wind Tunnel RP Models

Authors: S. Daneshmand, A. Ahmadi Nadooshan, C. Aghanajafi

Abstract:

Traditional wind tunnel models are meticulously machined from metal in a process that can take several months. While very precise, the manufacturing process is too slow to assess a new design's feasibility quickly. Rapid prototyping technology makes this concurrent study of air vehicle concepts via computer simulation and in the wind tunnel possible. This paper described the Affects layer thickness models product with rapid prototyping on Aerodynamic Coefficients for Constructed wind tunnel testing models. Three models were evaluated. The first model was a 0.05mm layer thickness and Horizontal plane 0.1μm (Ra) second model was a 0.125mm layer thickness and Horizontal plane 0.22μm (Ra) third model was a 0.15mm layer thickness and Horizontal plane 4.6μm (Ra). These models were fabricated from somos 18420 by a stereolithography (SLA). A wing-body-tail configuration was chosen for the actual study. Testing covered the Mach range of Mach 0.3 to Mach 0.9 at an angle-of-attack range of -2° to +12° at zero sideslip. Coefficients of normal force, axial force, pitching moment, and lift over drag are shown at each of these Mach numbers. Results from this study show that layer thickness does have an effect on the aerodynamic characteristics in general; the data differ between the three models by fewer than 5%. The layer thickness does have more effect on the aerodynamic characteristics when Mach number is decreased and had most effect on the aerodynamic characteristics of axial force and its derivative coefficients.

Keywords: Aerodynamic characteristics, stereolithography, layer thickness, Rapid prototyping, surface finish.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2890
88 Development of a Basic Robot System for Medical and Nursing Care for Patients with Glaucoma

Authors: Naoto Suzuki

Abstract:

Medical methods to completely treat glaucoma are yet to be developed. Therefore, ophthalmologists manage patients mainly to delay disease progression. Patients with glaucoma are mainly elderly individuals. In elderly people's houses, having an equipment that can provide medical treatment and care can release their family from their care. For elderly people with the glaucoma to live by themselves as much as possible, we developed a support robot having five functions: elderly people care, ophthalmological examination, trip assistance to the neighborhood, medical treatment, and data referral to a hospital. The medical and nursing care robot should approach the visual field that the patients can see at a speed suitable for their eyesight. This is because the robot will be dangerous if it approaches the patients from the visual field that they cannot see. We experimentally developed a robot that brings a white cane to elderly people with glaucoma. The base part of the robot is a carriage, which is a Megarover 1.1, and it has two infrared sensors. The robot moves along a white line on the floor using the infrared sensors and has a special arm, which does not use electricity. The arm can scoop the block attached to the white cane. Next, we also developed a direction detector comprised of a charge-coupled device camera (SVR41ResucueHD; Sun Mechatronics), goggles (MG-277MLF; Midori Anzen Co. Ltd.), and biconvex lenses with a focal length of 25 mm (Edmund Co.). Some young people were photographed using the direction detector, which was put on their faces. Image processing was performed using Scilab 6.1.0 and Image Processing and Computer Vision Toolbox 4.1.2. To measure the people's line of vision, we calculated the iris's center of gravity using five processes: reduction, trimming, binarization or gray scale, edge extraction, and Hough transform. We compared the binarization and gray scale processes in image processing. The binarization process was better than the gray scale process. For edge extraction, we compared five methods: Sobel, Prewitt, Laplacian of Gaussian, fast Fourier transform, and Canny. The Canny method was the optimal extraction method. We performed the Hough transform to search for the main coordinates from the iris's edge, and we found that the Hough transform could calculate the center point of the iris.

Keywords: Glaucoma, support robot, elderly people, Hough transform, direction detector, line of vision.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 485
87 Effect of Filler Metal Diameter on Weld Joint of Carbon Steel SA516 Gr 70 and Filler Metal SFA 5.17 in Submerged Arc Welding SAW

Authors: A. Nait Salah, M. Kaddami

Abstract:

This work describes an investigation on the effect of filler metals diameter to weld joint, and low alloy carbon steel A516 Grade 70 is the base metal. Commercially SA516 Grade70 is frequently used for the manufacturing of pressure vessels, boilers and storage tank, etc. In fabrication industry, the hardness of the weld joint is between the important parameters to check, after heat treatment of the weld. Submerged arc welding (SAW) is used with two filler metal diameters, and this solid wire electrode is used for SAW non-alloy and for fine grain steels (SFA 5.17). The different diameters were selected (Ø = 2.4 mm and Ø = 4 mm) to weld two specimens. Both specimens were subjected to the same preparation conditions, heat treatment, macrograph, metallurgy micrograph, and micro-hardness test. Samples show almost similar structure with highest hardness. It is important to indicate that the thickness used in the base metal is 22 mm, and all specifications, preparation and controls were according to the ASME section IX. It was observed that two different filler metal diameters performed on two similar specimens demonstrated that the mechanical property (hardness) increases with decreasing diameter. It means that even the heat treatment has the same effect with the same conditions, the filler metal diameter insures a depth weld penetration and better homogenization. Hence, the SAW welding technique mentioned in the present study is favorable to implicate for the industry using the small filler metal diameter.

Keywords: ASME, base metal, filler metal, micro-hardness test, submerged arc welding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 809
86 Behavioral Studies on Multi-Directionally Reinforced 4-D Orthogonal Composites on Various Preform Configurations

Authors: Sriram Venkatesh, V. Murali Mohan, T. V. Karthikeyan

Abstract:

The main advantage of multidirectionally reinforced composites is the freedom to orient selected fiber types and hence derives the benefits of varying fibre volume fractions and there by accommodate the design loads of the final structure of composites. This technology provides the means to produce tailored composites with desired properties. Due to the high level of fibre integrity with through thickness reinforcement those composites are expected to exhibit superior load bearing characteristics with capability to carry load even after noticeable and apparent fracture. However, a survey of published literature indicates inadequacy in the design and test data base for the complete characterization of the multidirectional composites. In this paper the research objective is focused on the development and testing of 4-D orthogonal composites with different preform configurations and resin systems. A preform is the skeleton 4D reinforced composite other than the matrix. In 4-D performs fibre bundles are oriented in three directions at 1200 with respect to each other and they are on orthogonal plane with the fibre in 4th direction. This paper addresses the various types of 4-D composite manufacturing processes and the mechanical test methods followed for the material characterization. A composite analysis is also made, experiments on course and fine woven preforms are conducted and the findings of test results are discussed in this paper. The interpretations of the test results reveal several useful and interesting features. This should pave the way for more widespread use of the perform configurations for allied applications.

Keywords: Multidirectionally Reinforced Composites, 4-D Orthogonal Preform, Course weave, Fine weave.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1383
85 A Preliminary Literature Review of Digital Transformation Case Studies

Authors: Vesna Bosilj Vukšić, Lucija Ivančić, Dalia Suša Vugec

Abstract:

While struggling to succeed in today’s complex market environment and provide better customer experience and services, enterprises encompass digital transformation as a means for reaching competitiveness and foster value creation. A digital transformation process consists of information technology implementation projects, as well as organizational factors such as top management support, digital transformation strategy, and organizational changes. However, to the best of our knowledge, there is little evidence about digital transformation endeavors in organizations and how they perceive it – is it only about digital technologies adoption or a true organizational shift is needed? In order to address this issue and as the first step in our research project, a literature review is conducted. The analysis included case study papers from Scopus and Web of Science databases. The following attributes are considered for classification and analysis of papers: time component; country of case origin; case industry and; digital transformation concept comprehension, i.e. focus. Research showed that organizations – public, as well as private ones, are aware of change necessity and employ digital transformation projects. Also, the changes concerning digital transformation affect both manufacturing and service-based industries. Furthermore, we discovered that organizations understand that besides technologies implementation, organizational changes must also be adopted. However, with only 29 relevant papers identified, research positioned digital transformation as an unexplored and emerging phenomenon in information systems research. The scarcity of evidence-based papers calls for further examination of this topic on cases from practice.

Keywords: Digital strategy, digital technologies, digital transformation, literature review.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6698
84 Logistical Optimization of Nuclear Waste Flows during Decommissioning

Authors: G. Dottavio, M. F. Andrade, F. Renard, V. Cheutet, A.-L. L. S. Vercraene, P. Hoang, S. Briet, R. Dachicourt, Y. Baizet

Abstract:

An important number of technological equipment and high-skilled workers over long periods of time have to be mobilized during nuclear decommissioning processes. The related operations generate complex flows of waste and high inventory levels, associated to information flows of heterogeneous types. Taking into account that more than 10 decommissioning operations are on-going in France and about 50 are expected toward 2025: A big challenge is addressed today. The management of decommissioning and dismantling of nuclear installations represents an important part of the nuclear-based energy lifecycle, since it has an environmental impact as well as an important influence on the electricity cost and therefore the price for end-users. Bringing new technologies and new solutions into decommissioning methodologies is thus mandatory to improve the quality, cost and delay efficiency of these operations. The purpose of our project is to improve decommissioning management efficiency by developing a decision-support framework dedicated to plan nuclear facility decommissioning operations and to optimize waste evacuation by means of a logistic approach. The target is to create an easy-to-handle tool capable of i) predicting waste flows and proposing the best decommissioning logistics scenario and ii) managing information during all the steps of the process and following the progress: planning, resources, delays, authorizations, saturation zones, waste volume, etc. In this article we present our results from waste nuclear flows simulation during decommissioning process, including discrete-event simulation supported by FLEXSIM 3-D software. This approach was successfully tested and our works confirms its ability to improve this type of industrial process by identifying the critical points of the chain and optimizing it by identifying improvement actions. This type of simulation, executed before the start of the process operations on the basis of a first conception, allow ‘what-if’ process evaluation and help to ensure quality of the process in an uncertain context. The simulation of nuclear waste flows before evacuation from the site will help reducing the cost and duration of the decommissioning process by optimizing the planning and the use of resources, transitional storage and expensive radioactive waste containers. Additional benefits are expected for the governance system of the waste evacuation since it will enable a shared responsibility of the waste flows.

Keywords: Nuclear decommissioning, logistical optimization, decision-support framework, waste management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1509
83 Human Factors as the Main Reason of the Accident in Scaffold Use Assessment

Authors: Krzysztof J. Czarnocki, E. Czarnocka, K. Szaniawska

Abstract:

Main goal of the research project is Scaffold Use Risk Assessment Model (SURAM) formulation, developed for the assessment of risk levels as a various construction process stages with various work trades. Finally, in 2016, the project received financing by the National Center for Research and development according to PBS3/A2/19/2015–Research Grant. The presented data, calculations and analyzes discussed in this paper were created as a result of the completion on the first and second phase of the PBS3/A2/19/2015 project. Method: One of the arms of the research project is the assessment of worker visual concentration on the sight zones as well as risky visual point inadequate observation. In this part of research, the mobile eye-tracker was used to monitor the worker observation zones. SMI Eye Tracking Glasses is a tool, which allows us to analyze in real time and place where our eyesight is concentrated on and consequently build the map of worker's eyesight concentration during a shift. While the project is still running, currently 64 construction sites have been examined, and more than 600 workers took part in the experiment including monitoring of typical parameters of the work regimen, workload, microclimate, sound vibration, etc. Full equipment can also be useful in more advanced analyses. Because of that technology we have verified not only main focus of workers eyes during work on or next to scaffolding, but we have also examined which changes in the surrounding environment during their shift influenced their concentration. In the result of this study it has been proven that only up to 45.75% of the shift time, workers’ eye concentration was on one of three work-related areas. Workers seem to be distracted by noisy vehicles or people nearby. In opposite to our initial assumptions and other authors’ findings, we observed that the reflective parts of the scaffoldings were not more recognized by workers in their direct workplaces. We have noticed that the red curbs were the only well recognized part on a very few scaffoldings. Surprisingly on numbers of samples, we have not recognized any significant number of concentrations on those curbs. Conclusion: We have found the eye-tracking method useful for the construction of the SURAM model in the risk perception and worker’s behavior sub-modules. We also have found that the initial worker's stress and work visual conditions seem to be more predictive for assessment of the risky developing situation or an accident than other parameters relating to a work environment.

Keywords: Accident assessment model, eye tracking, occupational safety, scaffolding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1097
82 Waste-Based Surface Modification to Enhance Corrosion Resistance of Aluminium Bronze Alloy

Authors: Wilson Handoko, Farshid Pahlevani, Isha Singla, Himanish Kumar, Veena Sahajwalla

Abstract:

Aluminium bronze alloys are well known for their superior abrasion, tensile strength and non-magnetic properties, due to the co-presence of iron (Fe) and aluminium (Al) as alloying elements and have been commonly used in many industrial applications. However, continuous exposure to the marine environment will accelerate the risk of a tendency to Al bronze alloys parts failures. Although a higher level of corrosion resistance properties can be achieved by modifying its elemental composition, it will come at a price through the complex manufacturing process and increases the risk of reducing the ductility of Al bronze alloy. In this research, the use of ironmaking slag and waste plastic as the input source for surface modification of Al bronze alloy was implemented. Microstructural analysis conducted using polarised light microscopy and scanning electron microscopy (SEM) that is equipped with energy dispersive spectroscopy (EDS). An electrochemical corrosion test was carried out through Tafel polarisation method and calculation of protection efficiency against the base-material was determined. Results have indicated that uniform modified surface which is as the result of selective diffusion process, has enhanced corrosion resistance properties up to 12.67%. This approach has opened a new opportunity to access various industrial utilisations in commercial scale through minimising the dependency on natural resources by transforming waste sources into the protective coating in environmentally friendly and cost-effective ways.

Keywords: Aluminium bronze, waste-based surface modification, Tafel polarisation, corrosion resistance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1008
81 Students' Perception of Virtual Learning Environment (VLE) Skills in Setting up the Simulator Welding Technology

Authors: Mohd Afif Md Nasir, Faizal Amin NurYunus, Jamaluddin Hashim, Abd Samad Hassan Basari, A. Halim Sahelan

Abstract:

The aim of this study is to identify the suitability of Virtual Learning Environment (VLE) in welding simulator application towards Computer-Based Training (CBT) in developing skills upon new students at the Advanced Technology Training Center (ADTEC) Batu Pahat, Johor, Malaysia and GIATMARA, Batu Pahat, Johor, Malaysia. The significance of the study is to create a computer-based skills development approach in welding technology among new students in ADTEC and GIATMARA as well as to cultivate the elements of general skills among them. This study is also important in elevating the number of individual knowledge workers (K-workers) working in manufacturing industry in order to achieve a national vision which is to be an industrial nation in the year of 2020. The design of the study is a survey type of research which using questionnaires as the instruments and some 136 students from ADTEC and GIATMARA were interviewed. Descriptive analysis is used to identify the frequency and mean values. The findings of the study show that the welding technology has developed skills in the students because of the application of VLE simulated at a high level and the respondents agreed that the skills could be embedded through the application of the VLE simulator. In summary, the VLE simulator is suitable in welding skills development training in terms of exposing new students with the relevant characteristics of welding skills and at the same time spurring the students’ interest towards learning more about the skills.

Keywords: Computer-Based Training (CBT), knowledge workers (K-workers), virtual learning environment, welding simulator, welding technology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2058
80 Does Material Choice Drive Sustainability of 3D Printing?

Authors: Jeremy Faludi, Zhongyin Hu, Shahd Alrashed, Christopher Braunholz, Suneesh Kaul, Leulekal Kassaye

Abstract:

Environmental impacts of six 3D printers using various materials were compared to determine if material choice drove sustainability, or if other factors such as machine type, machine size, or machine utilization dominate. Cradle-to-grave life-cycle assessments were performed, comparing a commercial-scale FDM machine printing in ABS plastic, a desktop FDM machine printing in ABS, a desktop FDM machine printing in PET and PLA plastics, a polyjet machine printing in its proprietary polymer, an SLA machine printing in its polymer, and an inkjet machine hacked to print in salt and dextrose. All scenarios were scored using ReCiPe Endpoint H methodology to combine multiple impact categories, comparing environmental impacts per part made for several scenarios per machine. Results showed that most printers’ ecological impacts were dominated by electricity use, not materials, and the changes in electricity use due to different plastics was not significant compared to variation from one machine to another. Variation in machine idle time determined impacts per part most strongly. However, material impacts were quite important for the inkjet printer hacked to print in salt: In its optimal scenario, it had up to 1/38th the impacts coreper part as the worst-performing machine in the same scenario. If salt parts were infused with epoxy to make them more physically robust, then much of this advantage disappeared, and material impacts actually dominated or equaled electricity use. Future studies should also measure DMLS and SLS processes / materials.

Keywords: 3D printing, Additive Manufacturing, Sustainability, Life-cycle assessment, Design for Environment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3562
79 Development of a Robust Supply Chain for Dynamic Operating Environment

Authors: Shilan Li, Ivan Arokiam, Peter Jarvis, Wendy Garner, Gazelleh Moradi, Stuart Wakefield

Abstract:

Development of a Robust Supply Chain for Dynamic Operating Environment as we move further into the twenty first century, organisations are under increasing pressure to deliver a high product variation at a reasonable cost without compromise in quality. In a number of cases this will take the form of a customised or high variety low volume manufacturing system that requires prudent management of resources, among a number of functions, to achieve competitive advantage. Purchasing and Supply Chain management is one of such function and due to the substantial interaction with external elements needs to be strategically managed. This requires a number of primary and supporting tools that will enable the appropriate decisions to be made rapidly. This capability is especially vital in a dynamic environment as it provides a pivotal role in increasing the profit margin of the product. The management of this function can be challenging by itself and even more for Small and Medium Enterprises (SMEs) due to the limited resources and expertise available at their disposal. This paper discusses the development of tools and concepts towards effectively managing the purchasing and supply chain function. The developed tools and concepts will provide a cost effective way of managing this function within SMEs. The paper further shows the use of these tools within Contechs, a manufacturer of luxury boat interiors, and the associated benefits achieved as a result of this implementation. Finally a generic framework towards use in such environments is presented.

Keywords: Lean, Supply Chain, High variety Low volume, Small and Medium Enterprises.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1424
78 Effect of Natural Fibres Inclusion in Clay Bricks: Physico-Mechanical Properties

Authors: Chee-Ming Chan

Abstract:

In spite of the advent of new materials, clay bricks remain, arguably, the most popular construction materials today. Nevertheless the low cost and versatility of clay bricks cannot always be associated with high environmental and sustainable values, especially in terms of raw material sources and manufacturing processes. At the same time, the worldwide agricultural footprint is fast growing, with vast agricultural land cultivation and active expansion of the agro-based industry. The resulting large quantities of agricultural wastes, unfortunately, are not always well managed or utilised. These wastes can be recycled, such as by retrieving fibres from disposed leaves and fruit bunches, and then incorporated in brick-making. This way the clay bricks are made a 'greener' building material and the discarded natural wastes can be reutilised, avoiding otherwise wasteful landfill and harmful open incineration. This study examined the physical and mechanical properties of clay bricks made by adding two natural fibres to a clay-water mixture, with baked and non-baked conditions. The fibres were sourced from pineapple leaves (PF) and oil palm fruit bunch (OF), and added within the range of 0.25-0.75 %. Cement was added as a binder to the mixture at 5-15 %. Although the two fibres had different effects on the bricks produced, cement appeared to dominate the compressive strength. The non-baked bricks disintegrated when submerged in water, while the baked ones displayed cement-dependent characteristics in water-absorption and density changes. Interestingly, further increase in fibre content did not cause significant density decrease in both the baked and non-baked bricks.

Keywords: natural fibres, clay bricks, strength, water absorption, density.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4601
77 Physicochemical Characterization of Medium Alkyd Resins Prepared with a Mixture of Linum usitatissimum L. and Plukenetia volubilis L. Oils

Authors: Antonella Hadzich, Santiago Flores

Abstract:

Alkyds have become essential raw materials in the coating and paint industry, due to their low cost, good application properties and lower environmental impact in comparison with petroleum-based polymers. The properties of these oil-modified materials depend on the type of polyunsaturated vegetable oil used for its manufacturing, since a higher degree of unsaturation provides a better crosslinking of the cured paint. Linum usitatissimum L. (flax) oil is widely used to develop alkyd resins due to its high degree of unsaturation. Although it is intended to find non-traditional sources and increase their commercial value, to authors’ best knowledge a natural source that can replace flaxseed oil has not yet been found. However, Plukenetia volubilis L. oil, of Peruvian origin, contains a similar fatty acid polyunsaturated content to the one reported for Linum usitatissimum L. oil. In this perspective, medium alkyd resins were prepared with a mixture of 50% of Linum usitatissimum L. oil and 50% of Plukenetia volubilis L. oil. Pure Linum usitatissimum L. oil was also used for comparison purposes. Three different resins were obtained by varying the amount of glycerol and pentaerythritol. The synthesized alkyd resins were characterized by FT-IR, and physicochemical properties like acid value, colour, viscosity, density and drying time were evaluated by standard methods. The pencil hardness and chemical resistance behaviour of the cured resins were also studied. Overall, it can be concluded that medium alkyd resins containing Plukenetia volubilis L. oil have an equivalent behaviour compared to those prepared purely with Linum usitatissimum L. oil. Both Plukenetia volubilis L. oil and pentaerythritol have a remarkable influence on certain physicochemical properties of medium alkyd resins.

Keywords: Alkyd resins, flaxseed oil, pentaerythritol, Plukenetia volubilis L. oil, protective coating.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 692
76 A Microcontroller Implementation of Model Predictive Control

Authors: Amira Abbes Kheriji, Faouzi Bouani, Mekki Ksouri, Mohamed Ben Ahmed

Abstract:

Model Predictive Control (MPC) is increasingly being proposed for real time applications and embedded systems. However comparing to PID controller, the implementation of the MPC in miniaturized devices like Field Programmable Gate Arrays (FPGA) and microcontrollers has historically been very small scale due to its complexity in implementation and its computation time requirement. At the same time, such embedded technologies have become an enabler for future manufacturing enterprises as well as a transformer of organizations and markets. Recently, advances in microelectronics and software allow such technique to be implemented in embedded systems. In this work, we take advantage of these recent advances in this area in the deployment of one of the most studied and applied control technique in the industrial engineering. In fact in this paper, we propose an efficient framework for implementation of Generalized Predictive Control (GPC) in the performed STM32 microcontroller. The STM32 keil starter kit based on a JTAG interface and the STM32 board was used to implement the proposed GPC firmware. Besides the GPC, the PID anti windup algorithm was also implemented using Keil development tools designed for ARM processor-based microcontroller devices and working with C/Cµ langage. A performances comparison study was done between both firmwares. This performances study show good execution speed and low computational burden. These results encourage to develop simple predictive algorithms to be programmed in industrial standard hardware. The main features of the proposed framework are illustrated through two examples and compared with the anti windup PID controller.

Keywords: Embedded systems, Model Predictive Control, microcontroller, Keil tool.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5454
75 Effect of Acids with Different Chain Lengths Modified by Methane Sulfonic Acid and Temperature on the Properties of Thermoplastic Starch/Glycerin Blends

Authors: Chi-Yuan Huang, Mei-Chuan Kuo, Ching-Yi Hsiao

Abstract:

In this study, acids with various chain lengths (C6, C8, C10 and C12) modified by methane sulfonic acid (MSA) and temperature were used to modify tapioca starch (TPS), then the glycerol (GA) were added into modified starch, to prepare new blends. The mechanical properties, thermal properties and physical properties of blends were studied. This investigation was divided into two parts.  First, the biodegradable materials were used such as starch and glycerol with hexanedioic acid (HA), suberic acid (SBA), sebacic acid (SA), decanedicarboxylic acid (DA) manufacturing with different temperatures (90, 110 and 130 °C). And then, the solution was added into modified starch to prepare the blends by using single-screw extruder. The FT-IR patterns indicated that the characteristic peak of C=O in ester was observed at 1730 cm-1. It is proved that different chain length acids (C6, C8, C10 and C12) reacted with glycerol by esterification and these are used to plasticize blends during extrusion. In addition, the blends would improve the hydrolysis and thermal stability. The water contact angle increased from 43.0° to 64.0°.  Second, the HA (110 °C), SBA (110 °C), SA (110 °C), and DA blends (130 °C) were used in study, because they possessed good mechanical properties, water resistances and thermal stability. On the other hand, the various contents (0, 0.005, 0.010, 0.020 g) of MSA were also used to modify the mechanical properties of blends. We observed that the blends were added to MSA, and then the FT-IR patterns indicated that the C=O ester appeared at 1730 cm-1. For this reason, the hydrophobic blends were produced. The water contact angle of the MSA blends increased from 55.0° to 71.0°. Although break elongation of the MSA blends reduced from the original 220% to 128%, the stress increased from 2.5 MPa to 5.1 MPa. Therefore, the optimal composition of blends was the DA blend (130 °C) with adding of MSA (0.005 g).

Keywords: Chain length acids, methane sulfonic acid, tapioca starch, tensile stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 881
74 A Novel, Cost-effective Design to Harness Ocean Energy in the Developing Countries

Authors: S. Ayub, S.N. Danish, S.R. Qureshi

Abstract:

The world's population continues to grow at a quarter of a million people per day, increasing the consumption of energy. This has made the world to face the problem of energy crisis now days. In response to the energy crisis, the principles of renewable energy gained popularity. There are much advancement made in developing the wind and solar energy farms across the world. These energy farms are not enough to meet the energy requirement of world. This has attracted investors to procure new sources of energy to be substituted. Among these sources, extraction of energy from the waves is considered as best option. The world oceans contain enough energy to meet the requirement of world. Significant advancements in design and technology are being made to make waves as a continuous source of energy. One major hurdle in launching wave energy devices in a developing country like Pakistan is the initial cost. A simple, reliable and cost effective wave energy converter (WEC) is required to meet the nation-s energy need. This paper will present a novel design proposed by team SAS for harnessing wave energy. This paper has three major sections. The first section will give a brief and concise view of ocean wave creation, propagation and the energy carried by them. The second section will explain the designing of SAS-2. A gear chain mechanism is used for transferring the energy from the buoy to a rotary generator. The third section will explain the manufacturing of scaled down model for SAS-2 .Many modifications are made in the trouble shooting stage. The design of SAS-2 is simple and very less maintenance is required. SAS-2 is producing electricity at Clifton. The initial cost of SAS-2 is very low. This has proved SAS- 2 as one of the cost effective and reliable source of harnessing wave energy for developing countries.

Keywords: Clean Energy, Wave energy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1802
73 Spatial Structure and Spatial Impacts of the Jakarta Metropolitan Area: A Southeast Asian EMR Perspective

Authors: Ikhwan Hakim, Bruno Parolin

Abstract:

This paper investigates the spatial structure of employment in the Jakarta Metropolitan Area (JMA), with reference to the concept of the Southeast Asian extended metropolitan region (EMR). A combination of factor analysis and local Getis-Ord (Gi*) hot-spot analysis is used to identify clusters of employment in the region, including those of the urban and agriculture sectors. Spatial statistical analysis is further used to probe the spatial association of identified employment clusters with their surroundings on several dimensions, including the spatial association between the central business district (CBD) in Jakarta city on employment density in the region, the spatial impacts of urban expansion on population growth and the degree of urban-rural interaction. The degree of spatial interaction for the whole JMA is measured by the patterns of commuting trips destined to the various employment clusters. Results reveal the strong role of the urban core of Jakarta, and the regional CBD, as the centre for mixed job sectors such as retail, wholesale, services and finance. Manufacturing and local government services, on the other hand, form corridors radiating out of the urban core, reaching out to the agriculture zones in the fringes. Strong associations between the urban expansion corridors and population growth, and urban-rural mix, are revealed particularly in the eastern and western parts of JMA. Metropolitan wide commuting patterns are focussed on the urban core of Jakarta and the CBD, while relatively local commuting patterns are shown to be prevalent for the employment corridors.

Keywords: Jakarta Metropolitan Area, Southeast Asian EMR, spatial association, spatial statistics, spatial structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2549
72 Enhancing Hand Efficiency of Smart Glass Cleaning Robot through Generative Design Module

Authors: Pankaj Gupta, Amit Kumar Srivastava, Nitesh Pandey

Abstract:

This article explores the domain of generative design in order to enhance the development of robot designs for innovative and efficient maintenance approaches for tall buildings. This study aims to optimize the design of robotic hands by focusing on minimizing mass and volume while ensuring they can withstand the specified pressure with equal strength. The research procedure is structured and systematic. The purpose of optimization is to enhance the efficiency of the robot and reduce the manufacturing expenses. The project seeks to investigate the application of generative design in order to optimize products. Autodesk Fusion 360 offers the capability to immediately apply the generative design functionality to the solid model. The effort involved creating a solid model of the Smart Glass Cleaning Robot and optimizing one of its components, the Hand, using generative techniques. The article has thoroughly examined the designs, outcomes, and procedure. These loads serve as a benchmark for creating designs that can endure the necessary level of pressure and preserve their structural integrity. The efficacy of the generative design process is contingent upon the selection of materials, as different materials possess distinct physical attributes. The study utilizes five different materials, namely Steel, Stainless Steel, Titanium, Aluminum, and CFRP (Carbon Fiber Reinforced Polymer), in order to investigate a range of design possibilities.

Keywords: Generative design, mass and volume optimization, material strength analysis, generative design, smart glass cleaning robot.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 109