Search results for: Energy consumption in hospitals
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3479

Search results for: Energy consumption in hospitals

3209 Range-Free Localization Schemes for Wireless Sensor Networks

Authors: R. Khadim, M. Erritali, A. Maaden

Abstract:

Localization of nodes is one of the key issues of Wireless Sensor Network (WSN) that gained a wide attention in recent years. The existing localization techniques can be generally categorized into two types: range-based and range-free. Compared with rang-based schemes, the range-free schemes are more costeffective, because no additional ranging devices are needed. As a result, we focus our research on the range-free schemes. In this paper we study three types of range-free location algorithms to compare the localization error and energy consumption of each one. Centroid algorithm requires a normal node has at least three neighbor anchors, while DV-hop algorithm doesn’t have this requirement. The third studied algorithm is the amorphous algorithm similar to DV-Hop algorithm, and the idea is to calculate the hop distance between two nodes instead of the linear distance between them. The simulation results show that the localization accuracy of the amorphous algorithm is higher than that of other algorithms and the energy consumption does not increase too much.

Keywords: Wireless Sensor Networks, Node Localization, Centroid Algorithm, DV–Hop Algorithm, Amorphous Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2595
3208 A Design Methodology and Tool to Support Ecodesign Implementation in Induction Hobs

Authors: Anna Costanza Russo, Daniele Landi, Michele Germani

Abstract:

Nowadays, the European Ecodesign Directive has emerged as a new approach to integrate environmental concerns into the product design and related processes. Ecodesign aims to minimize environmental impacts throughout the product life cycle, without compromising performances and costs. In addition, the recent Ecodesign Directives require products which are increasingly eco-friendly and eco-efficient, preserving high-performances. It is very important for producers measuring performances, for electric cooking ranges, hobs, ovens, and grills for household use, and a low power consumption of appliances represents a powerful selling point, also in terms of ecodesign requirements. The Ecodesign Directive provides a clear framework about the sustainable design of products and it has been extended in 2009 to all energy-related products, or products with an impact on energy consumption during the use. The European Regulation establishes measures of ecodesign of ovens, hobs, and kitchen hoods, and domestic use and energy efficiency of a product has a significant environmental aspect in the use phase which is the most impactful in the life cycle. It is important that the product parameters and performances are not affected by ecodesign requirements from a user’s point of view, and the benefits of reducing energy consumption in the use phase should offset the possible environmental impact in the production stage. Accurate measurements of cooking appliance performance are essential to help the industry to produce more energy efficient appliances. The development of ecodriven products requires ecoinnovation and ecodesign tools to support the sustainability improvement. The ecodesign tools should be practical and focused on specific ecoobjectives in order to be largely diffused. The main scope of this paper is the development, implementation, and testing of an innovative tool, which could be an improvement for the sustainable design of induction hobs. In particular, a prototypical software tool is developed in order to simulate the energy performances of the induction hobs. The tool is focused on a multiphysics model which is able to simulate the energy performances and the efficiency of induction hobs starting from the design data. The multiphysics model is composed by an electromagnetic simulation and a thermal simulation. The electromagnetic simulation is able to calculate the eddy current induced in the pot, which leads to the Joule heating of material. The thermal simulation is able to measure the energy consumption during the operational phase. The Joule heating caused from the eddy currents is the output of electromagnetic simulation and the input of thermal ones. The aims of the paper are the development of integrated tools and methodologies of virtual prototyping in the context of the ecodesign. This tool could be a revolutionary instrument in the field of industrial engineering and it gives consideration to the environmental aspects of product design and focus on the ecodesign of energy-related products, in order to achieve a reduced environmental impact.

Keywords: Ecodesign, induction hobs, virtual prototyping, energy efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1198
3207 Impact of Design Choices on the Life Cycle Energy of Modern Buildings

Authors: Mahsa Karimpour, Martin Belusko, Ke Xing, Frank Bruno

Abstract:

Traditionally, the embodied energy of design choices which reduce operational energy were assumed to have a negligible impact on the life cycle energy of buildings. However with new buildings having considerably lower operational energy, the significance of embodied energy increases. A life cycle assessment of a population of house designs was conducted in a mild and mixed climate zone. It was determined not only that embodied energy dominates life cycle energy, but that the impact on embodied of design choices was of equal significance to the impact on operational energy.

Keywords: Building life cycle energy, embodied energy, energy design measures, low energy buildings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1496
3206 Modified Energy and Link Failure Recovery Routing Algorithm for Wireless Sensor Network

Authors: M. Jayekumar, V. Nagarajan

Abstract:

Wireless sensor network finds role in environmental monitoring, industrial applications, surveillance applications, health monitoring and other supervisory applications. Sensing devices form the basic operational unit of the network that is self-battery powered with limited life time. Sensor node spends its limited energy for transmission, reception, routing and sensing information. Frequent energy utilization for the above mentioned process leads to network lifetime degradation. To enhance energy efficiency and network lifetime, we propose a modified energy optimization and node recovery post failure method, Energy-Link Failure Recovery Routing (E-LFRR) algorithm. In our E-LFRR algorithm, two phases namely, Monitored Transmission phase and Replaced Transmission phase are devised to combat worst case link failure conditions. In Monitored Transmission phase, the Actuator Node monitors and identifies suitable nodes for shortest path transmission. The Replaced Transmission phase dispatches the energy draining node at early stage from the active link and replaces it with the new node that has sufficient energy. Simulation results illustrate that this combined methodology reduces overhead, energy consumption, delay and maintains considerable amount of alive nodes thereby enhancing the network performance.

Keywords: Actuator node, energy efficient routing, energy hole, link failure recovery, link utilization, wireless sensor network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1152
3205 Integrated Energy-Aware Mechanism for MANETs using On-demand Routing

Authors: M. Tamilarasi, T.G. Palanivelu

Abstract:

Mobile Ad Hoc Networks (MANETs) are multi-hop wireless networks in which all nodes cooperatively maintain network connectivity. In such a multi-hop wireless network, every node may be required to perform routing in order to achieve end-to-end communication among nodes. These networks are energy constrained as most ad hoc mobile nodes today operate with limited battery power. Hence, it is important to minimize the energy consumption of the entire network in order to maximize the lifetime of ad hoc networks. In this paper, a mechanism involving the integration of load balancing approach and transmission power control approach is introduced to maximize the life-span of MANETs. The mechanism is applied on Ad hoc On-demand Vector (AODV) protocol to make it as energy aware AODV (EA_AODV). The simulation is carried out using GloMoSim2.03 simulator. The results show that the proposed mechanism reduces the average required transmission energy per packet compared to the standard AODV.

Keywords: energy aware routing, load balance, Mobile Ad HocNetworks, MANETs , on demand routing, transmission power control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1918
3204 Life Cycle Assessment as a Decision Making for Window Performance Comparison in Green Building Design

Authors: Ghada Elshafei, Abdelazim Negm

Abstract:

Life cycle assessment is a technique to assess the environmental aspects and potential impacts associated with a product, process, or service, by compiling an inventory of relevant energy and material inputs and environmental releases; evaluating the potential environmental impacts associated with identified inputs and releases; and interpreting the results to help you make a more informed decision. In this paper, the life cycle assessment of aluminum and beech wood as two commonly used materials in Egypt for window frames are heading, highlighting their benefits and weaknesses. Window frames of the two materials have been assessed on the basis of their production, energy consumption and environmental impacts. It has been found that the climate change of the windows made of aluminum and beech wood window, for a reference window (1.2m×1.2m), are 81.7 mPt and -52.5 mPt impacts respectively. Among the most important results are: fossil fuel consumption, potential contributions to the green building effect and quantities of solid waste tend to be minor for wood products compared to aluminum products; incineration of wood products can cause higher impacts of acidification and eutrophication than aluminum, whereas thermal energy can be recovered.

Keywords: Aluminum window, beech wood window, green building, life cycle assessment, life cycle analysis, SimaPro software, window frame.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3224
3203 Hybrid MAC Protocols Characteristics in Multi-hops Wireless Sensor Networks

Authors: M. Miladi, T. Ezzedine, R. Bouallegue

Abstract:

In the current decade, wireless sensor networks are emerging as a peculiar multi-disciplinary research area. By this way, energy efficiency is one of the fundamental research themes in the design of Medium Access Control (MAC) protocols for wireless sensor networks. Thus, in order to optimize the energy consumption in these networks, a variety of MAC protocols are available in the literature. These schemes were commonly evaluated under simple network density and a few results are published on their robustness in realistic network-s size. We, in this paper, provide an analytical study aiming to highlight the energy waste sources in wireless sensor networks. Then, we experiment three energy efficient hybrid CSMA/CA based MAC protocols optimized for wireless sensor networks: Sensor-MAC (SMAC), Time-out MAC (TMAC) and Traffic aware Energy Efficient MAC (TEEM). We investigate these protocols with different network densities in order to discuss the end-to-end performances of these schemes (i.e. in terms of energy efficiency, delay and throughput). Through Network Simulator (NS- 2) implementations, we explore the behaviors of these protocols with respect to the network density. In fact, this study may help the multihops sensor networks designers to design or select the MAC layer which matches better their applications aims.

Keywords: Energy efficiency, medium access control, network density, wireless sensor networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1586
3202 Energy Conscious Builder Design Pattern with C# and Intermediate Language

Authors: Kayun Chantarasathaporn, Chonawat Srisa-an

Abstract:

Design Patterns have gained more and more acceptances since their emerging in software development world last decade and become another de facto standard of essential knowledge for Object-Oriented Programming developers nowadays. Their target usage, from the beginning, was for regular computers, so, minimizing power consumption had never been a concern. However, in this decade, demands of more complicated software for running on mobile devices has grown rapidly as the much higher performance portable gadgets have been supplied to the market continuously. To get along with time to market that is business reason, the section of software development for power conscious, battery, devices has shifted itself from using specific low-level languages to higher level ones. Currently, complicated software running on mobile devices are often developed by high level languages those support OOP concepts. These cause the trend of embracing Design Patterns to mobile world. However, using Design Patterns directly in software development for power conscious systems is not recommended because they were not originally designed for such environment. This paper demonstrates the adapted Design Pattern for power limitation system. Because there are numerous original design patterns, it is not possible to mention the whole at once. So, this paper focuses only in creating Energy Conscious version of existing regular "Builder Pattern" to be appropriated for developing low power consumption software.

Keywords: Design Patterns, Builder Pattern, Low Power Consumption, Object Oriented Programming, Power Conscious System, Software.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1946
3201 Performance of a Connected Random Covered Energy Efficient Wireless Sensor Network

Authors: M. Mahdavi, M. Ismail, K. Jumari, Z. M. Hanapi

Abstract:

For the sensor network to operate successfully, the active nodes should maintain both sensing coverage and network connectivity. Furthermore, scheduling sleep intervals plays critical role for energy efficiency of wireless sensor networks. Traditional methods for sensor scheduling use either sensing coverage or network connectivity, but rarely both. In this paper, we use random scheduling for sensing coverage and then turn on extra sensor nodes, if necessary, for network connectivity. Simulation results have demonstrated that the number of extra nodes that is on with upper bound of around 9%, is small compared to the total number of deployed sensor nodes. Thus energy consumption for switching on extra sensor node is small.

Keywords: Wireless sensor networks, energy efficient network, performance analysis, network coverage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1267
3200 Economical Analysis of Thermal Energy Storage by Partially Operation

Authors: Z. Noranai, M.Z. Md Yusof

Abstract:

Building Sector is the major electricity consumer and it is costly to building owners. Therefore the application of thermal energy storage (TES) has gained attractive to reduce energy cost. Many attractive tariff packages are being offered by the electricity provider to promote TES. The tariff packages offered higher cost of electricity during peak period and lower cost of electricity during off peak period. This paper presented the return of initial investment by implementing a centralized air-conditioning plant integrated with thermal energy storage with partially operation strategies. Building load profile will be calculated hourly according to building specification and building usage trend. TES operation conditions will be designed according to building load demand profile, storage capacity, tariff packages and peak/off peak period. The Payback Period analysis method was used to evaluate economic analysis. The investment is considered a good investment where by the initial cost is recovered less than ten than seven years.

Keywords: building load profile, energy consumption, payback period, thermal energy storage

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1965
3199 Ocean Wave Kinetic Energy Harvesting System for Automated Sub Sea Sensors

Authors: Amir Anvar, Dong Yang Li

Abstract:

This paper presents an overview of the Ocean wave kinetic energy harvesting system. Energy harvesting is a concept by which energy is captured, stored, and utilized using various sources by employing interfaces, storage devices, and other units. Ocean wave energy harvesting in which the kinetic and potential energy contained in the natural oscillations of Ocean waves are converted into electric power. The kinetic energy harvesting system could be used for a number of areas. The main applications that we have discussed in this paper are to how generate the energy from Ocean wave energy (kinetic energy) to electric energy that is to eliminate the requirement for continual battery replacement.

Keywords: Energy harvesting, power system, oceanic, sensors, autonomous.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4295
3198 Development of Energy Benchmarks Using Mandatory Energy and Emissions Reporting Data: Ontario Post-Secondary Residences

Authors: C. Xavier Mendieta, J. J McArthur

Abstract:

Governments are playing an increasingly active role in reducing carbon emissions, and a key strategy has been the introduction of mandatory energy disclosure policies. These policies have resulted in a significant amount of publicly available data, providing researchers with a unique opportunity to develop location-specific energy and carbon emission benchmarks from this data set, which can then be used to develop building archetypes and used to inform urban energy models. This study presents the development of such a benchmark using the public reporting data. The data from Ontario’s Ministry of Energy for Post-Secondary Educational Institutions are being used to develop a series of building archetype dynamic building loads and energy benchmarks to fill a gap in the currently available building database. This paper presents the development of a benchmark for college and university residences within ASHRAE climate zone 6 areas in Ontario using the mandatory disclosure energy and greenhouse gas emissions data. The methodology presented includes data cleaning, statistical analysis, and benchmark development, and lessons learned from this investigation are presented and discussed to inform the development of future energy benchmarks from this larger data set. The key findings from this initial benchmarking study are: (1) the importance of careful data screening and outlier identification to develop a valid dataset; (2) the key features used to develop a model of the data are building age, size, and occupancy schedules and these can be used to estimate energy consumption; and (3) policy changes affecting the primary energy generation significantly affected greenhouse gas emissions, and consideration of these factors was critical to evaluate the validity of the reported data.

Keywords: Building archetypes, data analysis, energy benchmarks, GHG emissions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 974
3197 Energy Efficient Clustering Algorithm with Global and Local Re-clustering for Wireless Sensor Networks

Authors: Ashanie Guanathillake, Kithsiri Samarasinghe

Abstract:

Wireless Sensor Networks consist of inexpensive, low power sensor nodes deployed to monitor the environment and collect data. Gathering information in an energy efficient manner is a critical aspect to prolong the network lifetime. Clustering  algorithms have an advantage of enhancing the network lifetime. Current clustering algorithms usually focus on global re-clustering and local re-clustering separately. This paper, proposed a combination of those two reclustering methods to reduce the energy consumption of the network. Furthermore, the proposed algorithm can apply to homogeneous as well as heterogeneous wireless sensor networks. In addition, the cluster head rotation happens, only when its energy drops below a dynamic threshold value computed by the algorithm. The simulation result shows that the proposed algorithm prolong the network lifetime compared to existing algorithms.

Keywords: Energy efficient, Global re-clustering, Local re-clustering, Wireless sensor networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2327
3196 A Proposed Framework for Improving IT Utilization in the Energy Industry

Authors: Jin Kyung Park, Ji Yeon Cho, Yong Ho Shim, Su Jin Kim, Bong Gyou Lee

Abstract:

The purpose of this study is to suggest direction for future study of the energy-IT industry that will be used for framework to increase IT utilization in the energy industry. Recently, Green IT is a becoming global issue because of global environmental pollution. Also, IT roles in energy industry are becoming more important. However, the related studies were IT industry oriented that is not sufficient to make plan for Green energy. Therefore, after analyzing existing studies related to Green energy and Green IT, re-categorization for Green energy-IT industry was suggested. Direction of framework is based on energy industry that enable to link between energy and IT. The results of this study suggest comprehensive insight to Green energy-IT industry. Thus it is able to provide useful implications and guidelines to increase IT utilization in the energy industry.

Keywords: Energy-IT Industry, Green Energy, Green IT, IT Utilization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1296
3195 The Future of Hospitals: A Systematic Review in the Field of Architectural Design with a Disruptive Research and Development Approach

Authors: María Araya Léon, Ainoa Abella, Aura Murillo, Ricardo Guasch, Laura Clèries

Abstract:

This article aims to examine scientific theory framed within the term hospitals of the future from a multidisciplinary and cross-sectional perspective. To understand the connection that the various cross-sectional areas, we studied have with architectural spaces and to determine the future outlook of the works examined and how they can be classified into the categories of need/solution, evolution/revolution, collective/individual, and preventive/corrective. The changes currently taking place within the context of healthcare demonstrate how important these projects are and the need for companies to face future changes. A systematic review has been carried out focused on what will the hospitals of the future be like in relation to the elements that form part of their use, design, and architectural space experience, using the WOS database from 2016 to 2019. The large number of works about sensoring & big data and the scarce amount related to the area of materials is worth highlighting. Furthermore, no growth concerning future issues is envisaged over time. Regarding classifications, the articles we reviewed address evolutionary and collective solutions more, and in terms of preventive and corrective solutions, they were found at a similar level. Although our research focused on the future of hospitals, there is little evidence representing this approach. We also detected that, given the relevance of the research on how the built environment influences human health and well-being, these studies should be promoted within the context of healthcare. This article allows to find evidence on the future perspective from within the domain of hospital architecture, in order to create bridges between the productive sector of architecture and scientific theory. This will make it possible to detect R&D opportunities in each analyzed cross-section.

Keywords: Hospitals, trends, architectural space, disruptive approach.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 213
3194 Optimal Green Facility Planning - Implementation of Organic Rankine Cycle System for Factory Waste Heat Recovery

Authors: Chun-Wei Lin, Yu-Lin Chen

Abstract:

As global industry developed rapidly, the energy demand also rises simultaneously. In the production process, there’s a lot of energy consumed in the process. Formally, the energy used in generating the heat in the production process. In the total energy consumption, 40% of the heat was used in process heat, mechanical work, chemical energy and electricity. The remaining 50% were released into the environment. It will cause energy waste and environment pollution. There are many ways for recovering the waste heat in factory. Organic Rankine Cycle (ORC) system can produce electricity and reduce energy costs by recovering the waste of low temperature heat in the factory. In addition, ORC is the technology with the highest power generating efficiency in low-temperature heat recycling. However, most of factories executives are still hesitated because of the high implementation cost of the ORC system, even a lot of heat are wasted. Therefore, this study constructs a nonlinear mathematical model of waste heat recovery equipment configuration to maximize profits. A particle swarm optimization algorithm is developed to generate the optimal facility installation plan for the ORC system.

Keywords: Green facility planning, organic rankine cycle, particle swarm optimization, waste heat recovery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1942
3193 The Techno-Economic and Environmental Assessments of Grid-Connected Photovoltaic Systems in Bhubaneswar, India

Authors: A. K. Pradhan, M. K. Mohanty, S. K. Kar

Abstract:

The power system utility has started to think about the green power technology in order to have an eco-friendly environment. The green power technology utilizes renewable energy sources for reduction of GHG emissions. Odisha state (India) is very rich in potential of renewable energy sources especially in solar energy (about 300 solar days), for installation of grid connected photovoltaic system. This paper focuses on the utilization of photovoltaic systems in an Institute building of Bhubaneswar city, Odisha. Different data like solar insolation (kW/m2/day), sunshine duration has been collected from metrological stations for Bhubaneswar city. The required electrical power and cost are calculated for daily load of 1.0 kW. The HOMER (Hybrid Optimization Model of Electric Renewable) software is used to estimate system size and its performance analysis. The simulation result shows that the cost of energy (COE) is $ 0.194/kWh, the Operating cost is $63/yr and the net present cost (NPC) is $3,917. The energy produced from PV array is 1,756kWh/yr and energy purchased from grid is 410kWh/yr. The AC primary load consumption is 1314 kWh/yr and the Grid sales are 746 kWh/yr. One battery is connected in parallel with 12V DC Bus and the usable nominal capacity 2.4 kWh with 9.6 h autonomy capacity.

Keywords: Economic assessment, HOMER, Optimization, Photovoltaic (PV), Renewable energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2160
3192 Studying the Environmental Effects of using Biogas Energy in Iran

Authors: Kambiz Tahvildari, Shakila ila Motamedi

Abstract:

Presently and in line with the United Nations (EPA), human thinking system has shifted towards clean fuels so as to maintain a cleaner environment and to save our planet earth. One of the most successful studies in order to achieve new energies includes the use of animal wastes and their organic residues, and the result of these researches has been represented in the form of very simple and cheap methods called biogas technology. Biogas technology has developed a lot in the recent decades; its reason is the high cost of fossil fuels and the greater attention of countries to the environmental pollutions due to the consumption of this kind of fuels. IRAN is ready for the optimized application of renewable energies, having much enriched resources of this kind of energies; so a special place could be considered for it when making programs. The purpose of biogas technology is the recovery of energy and finally the protection of the environment, which is much appropriate for the third world farmers with respect to their technical abilities and economic potentials. Studies show that the production and consumption of biogas is appropriate and economic in IRAN, because of the high amount of waste in the agriculture sector, the significant amount of animal and human excrement production, the great volume of garbage produced and the most important the specific social, climatic and agricultural conditions in IRAN, in order to proceed towards the reduction of pollution due to the use of fossil fuels.

Keywords: Agriculture, Biogas, Energy, Environment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1740
3191 A Review of Current Trends in Thin Film Solar Cell Technologies

Authors: Adekanmi M. Adeyinka, Onyedika V. Mbelu, Yaqub B. Adediji, Daniel I. Yahya

Abstract:

Growing energy demand and the world's dependence on fossil fuel-based energy systems causing greenhouse gas emissions and climate change have intensified the need for utilizing renewable energy sources. Solar energy can be converted directly into electricity via photovoltaic solar cells. Thin-film solar cells are preferred due to their cost effectiveness, less material consumption, flexibility, and rising trend in efficiency. In this paper, Gallium arsenide (GaAs), Amorphous silicon (a-Si), Copper Indium Gallium Selenide (CIGS), and Cadmium Telluride (CdTe) thin film solar cells are reviewed. The evolution, structures, fabrication methods, stability and degradation methods, and trend in the efficiency of the thin-film solar cells over the years are discussed in detail. Also, a comparison of the thin-film solar cells reviewed with crystalline silicon in terms of physical properties and performance is made.

Keywords: Climate change, conversion efficiency, solar energy, thin-film solar cell.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1006
3190 Tree Based Data Aggregation to Resolve Funneling Effect in Wireless Sensor Network

Authors: G. Rajesh, B. Vinayaga Sundaram, C. Aarthi

Abstract:

In wireless sensor network, sensor node transmits the sensed data to the sink node in multi-hop communication periodically. This high traffic induces congestion at the node which is present one-hop distance to the sink node. The packet transmission and reception rate of these nodes should be very high, when compared to other sensor nodes in the network. Therefore, the energy consumption of that node is very high and this effect is known as the “funneling effect”. The tree based-data aggregation technique (TBDA) is used to reduce the energy consumption of the node. The throughput of the overall performance shows a considerable decrease in the number of packet transmissions to the sink node. The proposed scheme, TBDA, avoids the funneling effect and extends the lifetime of the wireless sensor network. The average case time complexity for inserting the node in the tree is O(n log n) and for the worst case time complexity is O(n2).

Keywords: Data Aggregation, Funneling Effect, Traffic Congestion, Wireless Sensor Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1270
3189 The Design and Construction of the PV-Wind Autonomous System for Greenhouse Plantations in Central Thailand

Authors: Napat Watjanatepin, Wikorn Wong-SatieanNapat Watjanatepin, Wikorn Wong-Satiean

Abstract:

The objective of this research is to design and construct the PV-Wind hybrid autonomous system for the greenhouse plantation, and analyze the technical performance of the PV-Wind energy system. This design depends on the water consumption in the greenhouse by using 24 of the fogging mist each with the capability of 24 liter/min. The operating time is 4 times per day, each round for 15 min. The fogging system is being driven by water pump with AC motor rating 0.5 hp. The load energy consumed is around 1.125 kWh/d. The designing results of the PV-Wind hybrid energy system is that sufficient energy could be generated by this system. The results of this study can be applied as a technical data reference for other areas in the central part of Thailand.

Keywords: Central part of Thailand, fogging system, greenhouse plantation, PV-Wind hybrid autonomous system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1910
3188 Evaluating the Standards of Hospital Pharmacies in Therapeutic Centers Affiliated with Kermanshah University of Medical Sciences, Iran

Authors: Tahvilian R., Siahi Shadbad MR., Hamishehkar H., Aghababa Gharehbagh V.

Abstract:

Nowadays pharmaceutical care departments located in hospitals are amongst the important pillars of the healthcare system. The aim of this study was to evaluate quality of hospital drugstores affiliated with Kermanshah University of Medical Sciences. In this cross-sectional study a validated questionnaire was used. The questionnaire was filled in by the one of the researchers in all seventeen hospital drugstores located in the teaching and nonteaching hospitals affiliated with Kermanshah University of Medical Sciences. The results shows that in observed hospitals,24% of pharmacy environments, 25% of pharmacy store and storage conditions, 49% of storage procedure, 25% of ordering drugs and supplies, 73% of receiving supplies (proper procedure are fallowed for receiving supplies), 35% of receiving supplies (prompt action taken if deterioration of drugs received is suspected), 23.35% of drugs delivery to patients and finally 0% of stock cards are used for proper inventory control have full compliance with standards.

Keywords: Hospital pharmacy standards, Kermanshah, pharmacy management

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1799
3187 Fashion Consumption for Fashion Innovators: A Study of Fashion Consumption Behavior of Innovators and Non-Innovators

Authors: Vaishali P. Joshi, Pallav Joshi

Abstract:

The objective of this study is to examine the differences fashion innovators and non-fashion innovators in their fashion consumption behavior in terms of their pre-purchase behavior, purchase behavior and post purchase behavior. The questionnaire was distributed to a female college student for data collection for achieving the objective of the first part of the study. Question-related to fashion innovativeness and fashion consumption behavior was asked. The sample was comprised of 81 college females ages 18 through 30 who were attending Business Management degree. A series of attitude questions was used to categorize respondents on the Innovativeness Scale. 32 respondents with a score of 21 and above were designated as Fashion innovators and the remainder (49) as Non-fashion innovators. Findings showed that there exist significant differences between innovators and non-innovators in their fashion consumption behavior. Data was analyzed through frequency distribution table. Many differences were found in the behavior of innovators and non-innovators in terms of their pre-purchase, actual purchase, and post-purchase behavior.

Keywords: Consumption behavior, fashion, innovativeness, frequency distribution table.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1764
3186 Evaluating Alternative Fuel Vehicles from Technical, Environmental and Economic Perspectives: Case of Light-Duty Vehicles in Iran

Authors: Vahid Aryanpur , Ehsan Shafiei

Abstract:

This paper presents an environmental and technoeconomic evaluation of light duty vehicles in Iran. A comprehensive well-to-wheel (WTW) analysis is applied to compare different automotive fuel chains, conventional internal combustion engines and innovative vehicle powertrains. The study examines the competitiveness of 15 various pathways in terms of energy efficiencies, GHG emissions, and levelized cost of different energy carriers. The results indicate that electric vehicles including battery electric vehicles (BEV), fuel cell vehicles (FCV) and plug-in hybrid electric vehicles (PHEV) increase the WTW energy efficiency by 54%, 51% and 46%, respectively, compared to common internal combustion engines powered by gasoline. On the other hand, greenhouse gas (GHG) emissions per kilometer of FCV and BEV would be 48% lower than that of gasoline engines. It is concluded that BEV has the lowest total cost of energy consumption and external cost of emission, followed by internal combustion engines (ICE) fueled by CNG. Conventional internal combustion engines fueled by gasoline, on the other hand, would have the highest costs.

Keywords: Well-to-Wheel analysis, Energy Efficiency, GHG emissions, Levelized cost of energy, Alternative fuel vehicles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1703
3185 Systematic Approach for Energy-Supply-Orientated Production Planning

Authors: F. Keller, G. Reinhart

Abstract:

The efficient and economic allocation of resources is one main goal in the field of production planning and control. Nowadays, a new variable gains in importance throughout the planning process: Energy. Energy-efficiency has already been widely discussed in literature, but with a strong focus on reducing the overall amount of energy used in production. This paper provides a brief systematic approach, how energy-supply-orientation can be used for an energy-cost-efficient production planning and thus combining the idea of energy-efficiency and energy-flexibility.

Keywords: Production planning and control, energy, efficiency, flexibility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1584
3184 Thermal Performance and Environmental Assessment of Evaporative Cooling Systems: Case of Mina Valley, Saudi Arabia

Authors: A. Alharbi, R. Boukhanouf, T. Habeebullah, H. Ibrahim

Abstract:

This paper presents a detailed description of evaporative cooling systems used for space cooling in Mina Valley, Saudi Arabia. The thermal performance and environmental impact of the evaporative coolers were evaluated. It was found that the evaporative cooling systems used for space cooling in pilgrims’ accommodations and in the train stations could reduce energy consumption by as much as 75% and cut carbon dioxide emission by 78% compared to traditional vapour compression systems.

Keywords: Evaporative cooling, vapour compression, electricity consumption and CO2 emission.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2983
3183 Air Conditioning Energy Saving by Rooftop Greenery System in Subtropical Climate in Australia

Authors: M. Anwar, M. G. Rasul, M. M. K. Khan

Abstract:

The benefits of rooftop greenery systems (such as energy savings, reduction of greenhouse gas emission for mitigating climate change and maintaining sustainable development, indoor temperature control etc.) in buildings are well recognized, however there remains very little research conducted for quantifying the benefits in subtropical climates such as in Australia. This study mainly focuses on measuring/determining temperature profile and air conditioning energy savings by implementing rooftop greenery systems in subtropical Central Queensland in Australia. An experimental set-up was installed at Rockhampton campus of Central Queensland University, where two standard shipping containers (6m x 2.4m x 2.4m) were converted into small offices, one with green roof and one without. These were used for temperature, humidity and energy consumption data collection. The study found that an energy savings of up to 11.70% and temperature difference of up to 4°C can be achieved in March in subtropical Central Queensland climate in Australia. It is expected that more energy can be saved in peak summer days (December/February) as temperature difference between green roof and non-green roof is higher in December- February.

Keywords: Extensive green roof, Rooftop greenery system, Subtropical climate, Shipping container.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2005
3182 Alternative Animal Feed Additive Obtain with Different Drying Methods from Carrot Unsuitable for Human Consumption

Authors: Rabia Göçmen, Gülşah Kanbur, Sinan Sefa Parlat

Abstract:

This study was conducted to determine that carrot powder obtain by different drying methods (oven and vacuum-freeze dryer) of carrot unfit for human consumption that whether feed additives in animal nutrition or not. Carrots randomly divided 2 groups. First group was dried by using oven, second group was by using vacuum freeze dryer methods. Dried carrot prepared from fresh carrot was analysed nutrient matter (energy, crude protein, crude oil, crude ash, beta carotene, mineral concentration and colour). The differences between groups in terms of energy, crude protein, ash, Ca and Mg was not significant (P>0,05). Crude oil, P, beta carotene content and colour values (L, a, b) with vacuum-freeze dryer group was greater than oven group (P<0,05). Consequently, carrot powder obtained by drying the vacuum-freeze dryer method can be used as a source of carotene. 

Keywords: Carrot, vacuum freeze dryer, oven, beta carotene.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1941
3181 Electricity Consumption Prediction Model using Neuro-Fuzzy System

Authors: Rahib Abiyev, Vasif H. Abiyev, C. Ardil

Abstract:

In this paper the development of neural network based fuzzy inference system for electricity consumption prediction is considered. The electricity consumption depends on number of factors, such as number of customers, seasons, type-s of customers, number of plants, etc. It is nonlinear process and can be described by chaotic time-series. The structure and algorithms of neuro-fuzzy system for predicting future values of electricity consumption is described. To determine the unknown coefficients of the system, the supervised learning algorithm is used. As a result of learning, the rules of neuro-fuzzy system are formed. The developed system is applied for predicting future values of electricity consumption of Northern Cyprus. The simulation of neuro-fuzzy system has been performed.

Keywords: Fuzzy logic, neural network, neuro-fuzzy system, neuro-fuzzy prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1951
3180 A Study to Assess the Energy Saving Potential and Economic Analysis of an Agro Based Industry in Karnataka, India

Authors: Sangamesh G. Sakri, Akash N. Patil, Sadashivappa M. Kotli

Abstract:

Agro based industries in India are considered as the micro, small and medium enterprises (MSME). In India, MSMEs contribute approximately 8 percent of the country’s GDP, 42 percent of the manufacturing output and 40 percent of exports. The toor dal (scientific name Cajanus cajan, commonly known as yellow gram, pigeon pea) is the second largest pulse crop in India accounting for about 20% of total pulse production. The toor dal milling industry in India is one of the major agro-processing industries in the country. Most of the dal mills are concentrated in pulse producing areas, which are spread all over the country. In Karnataka state, Gulbarga is a district, where toor dal is the main crop and is grown extensively. There are more than 500 dal mills in and around the Gulbarga district to process dal. However, the majority of these dal milling units use traditional methods of processing which are energy and capital intensive. There exists a huge energy saving potential in these mills. An energy audit is conducted on a dal mill in Gulbarga to understand the energy consumption pattern to assess the energy saving potential, and an economic analysis is conducted to identify energy conservation opportunities.

Keywords: Conservation, demand side management, load curve, toor dal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1484