Search results for: Dynamic finite element
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3651

Search results for: Dynamic finite element

3441 Finite Element Analysis of Full Ceramic Crowns with and without Zirconia Framework

Authors: Porojan S., Sandu L., Topală F.

Abstract:

Simulation of occlusal function during laboratory material-s testing becomes essential in predicting long-term performance before clinical usage. The aim of the study was to assess the influence of chamfer preparation depth on failure risk of heat pressed ceramic crowns with and without zirconia framework by means of finite element analysis. 3D models of maxillary central incisor, prepared for full ceramic crowns with different depths of the chamfer margin (between 0.8 and 1.2 mm) and 6-degree tapered walls together with the overlying crowns were generated using literature data (Fig. 1, 2). The crowns were designed with and without a zirconia framework with a thickness of 0.4 mm. For all preparations and crowns, stresses in the pressed ceramic crown, zirconia framework, pressed ceramic veneer, and dentin were evaluated separately. The highest stresses were registered in the dentin. The depth of the preparations had no significant influence on the stress values of the teeth and pressed ceramics for the studied cases, only for the zirconia framework. The zirconia framework decreases the stress values in the veneer.

Keywords: Finite element analysis, full ceramic crown, zirconia framework, stresses.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577
3440 A Method for Evaluating the Mechanical Stress on Mandibular Advancement Devices

Authors: Tsung-yin Lin, Yi-yu Lee, Ching-hua Hung

Abstract:

This study focuses on the stress analysis of Mandibular Advancement Devices (MADs), which are considered as a standard treatment of snoring that promoted by American Academy of Sleep Medicine (AASM). Snoring is the most significant feature of sleep-disordered breathing (SDB). SDB will lead to serious problems in human health. Oral appliances are ensured in therapeutic effect and compliance, especially the MADs. This paper proposes a new MAD design, and the finite element analysis (FEA) is introduced to precede the stress simulation for this MAD.

Keywords: Finite element analysis, mandibular advancement devices, mechanical stress, snoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1852
3439 Implementation of State-Space and Super-Element Techniques for the Modeling and Control of Smart Structures with Damping Characteristics

Authors: Nader Ghareeb, R¨udiger Schmidt

Abstract:

Minimizing the weight in flexible structures means reducing material and costs as well. However, these structures could become prone to vibrations. Attenuating these vibrations has become a pivotal engineering problem that shifted the focus of many research endeavors. One technique to do that is to design and implement an active control system. This system is mainly composed of a vibrating structure, a sensor to perceive the vibrations, an actuator to counteract the influence of disturbances, and finally a controller to generate the appropriate control signals. In this work, two different techniques are explored to create two different mathematical models of an active control system. The first model is a finite element model with a reduced number of nodes and it is called a super-element. The second model is in the form of state-space representation, i.e. a set of partial differential equations. The damping coefficients are calculated and incorporated into both models. The effectiveness of these models is demonstrated when the system is excited by its first natural frequency and an active control strategy is developed and implemented to attenuate the resulting vibrations. Results from both modeling techniques are presented and compared.

Keywords: Finite element analysis, super-element, state-space model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 786
3438 Finite Element Analysis and Feasibility of Simple Stochastic Modeling in the Analysis of Fissuring in Grains during Soaking

Authors: Jonathan H. Perez, Fumihiko Tanaka, Daisuke Hamanaka, Toshitaka Uchino

Abstract:

A finite element analysis was conducted to determine the effect of moisture diffusion and hygroscopic swelling in rice. A parallel simple stochastic modeling was performed to predict the number of grains cracked as a result of moisture absorption and hygroscopic swelling. Rice grains were soaked in thermally (25 oC) controlled water and then tested for compressive stress. The destructive compressive stress tests revealed through compressive stress calculation that the peak force required to cause cracking in grains soaked in water reduced with time as soaking duration was extended. Results of the experiment showed that several grains had their value of the predicted compressive stress below the von Mises stress and were interpreted as grains which become cracked and/or broke during soaking. The technique developed in this experiment will facilitate the approximation of the number of grains which will crack during soaking.

Keywords: Cracking, Finite element analysis, hygroscopic swelling, moisture diffusion, von Mises stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1878
3437 Comparative Finite Element Simulation of Nonlinear Vibrations and Sensor Output Voltage of Smart Piezolaminated Structures

Authors: Ruediger Schmidt, Thang Duy Vu

Abstract:

Two geometrically nonlinear plate theories, based either on first- or third-order transverse shear deformation theory are used for finite element modeling and simulation of the transient response of smart structures incorporating piezoelectric layers. In particular the time histories of nonlinear vibrations and sensor voltage output of a thin beam with a piezoelectric patch bonded to the surface due to an applied step force are studied.

Keywords: Nonlinear vibrations, piezoelectric patches, sensor voltage output, smart structures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1954
3436 Discontinuous Galerkin Method for Total Variation Minimization on Inpainting Problem

Authors: Xijian Wang

Abstract:

This paper is concerned with the numerical minimization of energy functionals in BV ( ) (the space of bounded variation functions) involving total variation for gray-scale 1-dimensional inpainting problem. Applications are shown by finite element method and discontinuous Galerkin method for total variation minimization. We include the numerical examples which show the different recovery image by these two methods.

Keywords: finite element method, discontinuous Galerkin method, total variation minimization, inpainting

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1301
3435 Tension Stiffening Parameter in Composite Concrete Reinforced with Inoxydable Steel: Laboratory and Finite Element Analysis

Authors: S. Alih, A. Khelil

Abstract:

In the present work, behavior of inoxydable steel as reinforcement bar in composite concrete is being investigated. The bar-concrete adherence in reinforced concrete (RC) beam is studied and focus is made on the tension stiffening parameter. This study highlighted an approach to observe this interaction behavior in bending test instead of direct tension as per reported in many references. The approach resembles actual loading condition of the structural RC beam. The tension stiffening properties are then applied to numerical finite element analysis (FEA) to verify their correlation with laboratory results. Comparison with laboratory shows a good correlation between the two. The experimental settings is able to determine tension stiffening parameters in RC beam and the modeling strategies made in ABAQUS can closely represent the actual condition. Tension stiffening model used can represent the interaction properties between inoxydable steel and concrete.

Keywords: Inoxydable steel, Finite element modeling, Reinforced concrete beam, Tension-stiffening.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4253
3434 Stress Evaluation of Rotary Injector Pump Parts in MF285 Tractor Using Finite Element Method

Authors: M. Azadbakht, Y. Fadakar

Abstract:

Since fuel must be injected with appropriate pressure and time for accurate performance of diesel engines, then proper function of engine is influenced by accurate function of injector pump. At first total pump was designed by SolidWorks 2012 software. Then the total relationship of rotor, roller, internal cam ring, pole shoe and plunger in injector pump in MF285 tractor and their performance was shown. During suction state rollers connect with dents in internal cam ring and in pressure course pole shoes have drawer move in rotor and perform tappet action between rollers and plungers. The maximum stress was obtained by using analysis of finite element method. The maximum stress in contact surface of roller and internal cam ring and on roller surface. The maximum amount of this stress is 288.12 MPa. According to conducted analyses, the minimum value for safety factor is related to roller surface and it equals to 2.0477.

Keywords: Rotary injector pump, MF285 tractor, finite element, stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3043
3433 Solution of Two Dimensional Quasi-Harmonic Equations with CA Approach

Authors: F. Rezaie Moghaddam, J. Amani, T. Rezaie Moghaddam

Abstract:

Many computational techniques were applied to solution of heat conduction problem. Those techniques were the finite difference (FD), finite element (FE) and recently meshless methods. FE is commonly used in solution of equation of heat conduction problem based on the summation of stiffness matrix of elements and the solution of the final system of equations. Because of summation process of finite element, convergence rate was decreased. Hence in the present paper Cellular Automata (CA) approach is presented for the solution of heat conduction problem. Each cell considered as a fixed point in a regular grid lead to the solution of a system of equations is substituted by discrete systems of equations with small dimensions. Results show that CA can be used for solution of heat conduction problem.

Keywords: Heat conduction, Cellular automata, convergencerate, discrete system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1728
3432 Finite Element Simulation of Multi-Stage Deep Drawing Processes and Comparison with Experimental Results

Authors: A. Pourkamali Anaraki, M. Shahabizadeh, B. Babaee

Abstract:

The plastic forming process of sheet plate takes an important place in forming metals. The traditional techniques of tool design for sheet forming operations used in industry are experimental and expensive methods. Prediction of the forming results, determination of the punching force, blank holder forces and the thickness distribution of the sheet metal will decrease the production cost and time of the material to be formed. In this paper, multi-stage deep drawing simulation of an Industrial Part has been presented with finite element method. The entire production steps with additional operations such as intermediate annealing and springback has been simulated by ABAQUS software under axisymmetric conditions. The simulation results such as sheet thickness distribution, Punch force and residual stresses have been extracted in any stages and sheet thickness distribution was compared with experimental results. It was found through comparison of results, the FE model have proven to be in close agreement with those of experiment.

Keywords: Deep drawing, Finite element method, Simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5019
3431 Vibration Suppression of Timoshenko Beams with Embedded Piezoelectrics Using POF

Authors: T. C. Manjunath, B. Bandyopadhyay

Abstract:

This paper deals with the design of a periodic output feedback controller for a flexible beam structure modeled with Timoshenko beam theory, Finite Element Method, State space methods and embedded piezoelectrics concept. The first 3 modes are considered in modeling the beam. The main objective of this work is to control the vibrations of the beam when subjected to an external force. Shear piezoelectric sensors and actuators are embedded into the top and bottom layers of a flexible aluminum beam structure, thus making it intelligent and self-adaptive. The composite beam is divided into 5 finite elements and the control actuator is placed at finite element position 1, whereas the sensor is varied from position 2 to 5, i.e., from the nearby fixed end to the free end. 4 state space SISO models are thus developed. Periodic Output Feedback (POF) Controllers are designed for the 4 SISO models of the same plant to control the flexural vibrations. The effect of placing the sensor at different locations on the beam is observed and the performance of the controller is evaluated for vibration control. Conclusions are finally drawn.

Keywords: Smart structure, Timoshenko beam theory, Periodic output feedback control, Finite Element Method, State space model, SISO, Embedded sensors and actuators, Vibration control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2087
3430 Nonlinear and Chaotic Motions for a Shock Absorbing Structure Supported by Nonlinear Springs with Hysteresis Using Fast FEA

Authors: T. Yamaguchi, Y. Kurosawa, S. Maruyama, K. Tobita, Y. Hirano, K. Yokouchi, K. Kihara, T. Sunaga

Abstract:

This paper describes dynamic analysis using proposed fast finite element method for a shock absorbing structure including a sponge. The structure is supported by nonlinear concentrated springs. The restoring force of the spring has cubic nonlinearity and linear hysteresis damping. To calculate damping properties for the structures including elastic body and porous body, displacement vectors as common unknown variable are solved under coupled condition. Under small amplitude, we apply asymptotic method to complex eigenvalue problem of this system to obtain modal parameters. And then expressions of modal loss factor are derived approximately. This approach was proposed by one of the authors previously. We call this method as Modal Strain and Kinetic Energy Method (MSKE method). Further, using the modal loss factors, the discretized equations in physical coordinate are transformed into the nonlinear ordinary coupled equations using normal coordinate corresponding to linear natural modes. This transformation yields computation efficiency. As a numerical example of a shock absorbing structures, we adopt double skins with a sponge. The double skins are supported by nonlinear concentrated springs. We clarify influences of amplitude of the input force on nonlinear and chaotic responses.

Keywords: Dynamic response, Nonlinear and chaotic motions, Finite Element analysis, Numerical analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1935
3429 Sensitivity Parameter Analysis of Negative Moment Dynamic Load Allowance of Continuous T-Girder Bridge

Authors: Fan Yang, Ye-lu Wang, Yang Zhao

Abstract:

The dynamic load allowance, as an application result of the vehicle-bridge coupled vibration theory, is an important parameter for bridge design and evaluation. Based on the coupled vehicle-bridge vibration theory, the current work establishes a full girder model of a dynamic load allowance, selects a planar five-degree-of-freedom three-axis vehicle model, solves the coupled vehicle-bridge dynamic response using the APDL language in the spatial finite element program ANSYS, selects the pivot point 2 sections as the representative of the negative moment section, and analyzes the effects of parameters such as travel speed, unevenness, vehicle frequency, span diameter, span number and forced displacement of the support on the negative moment dynamic load allowance through orthogonal tests. The influence of parameters such as vehicle speed, unevenness, vehicle frequency, span diameter, span number, and forced displacement of the support on the negative moment dynamic load allowance is analyzed by orthogonal tests, and the influence law of each influencing parameter is summarized. It is found that the effects of vehicle frequency, unevenness, and speed on the negative moment dynamic load allowance are significant, among which vehicle frequency has the greatest effect on the negative moment dynamic load allowance; the effects of span number and span diameter on the negative moment dynamic load allowance are relatively small; the effects of forced displacement of the support on the negative moment dynamic load allowance are negligible.

Keywords: Continuous T-girder bridge, dynamic load allowance, sensitivity analysis, vehicle-bridge coupling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 289
3428 Detection ofTensile Forces in Cable-Stayed Structures Using the Advanced Hybrid Micro-Genetic Algorithm

Authors: Sang-Youl Lee

Abstract:

This study deals with an advanced numerical techniques to detect tensile forces in cable-stayed structures. The proposed method allows us not only to avoid the trap of minimum at initial searching stage but also to find their final solutions in better numerical efficiency. The validity of the technique is numerically verified using a set of dynamic data obtained from a simulation of the cable model modeled using the finite element method. The results indicate that the proposed method is computationally efficient in characterizing the tensile force variation for cable-stayed structures.

Keywords: Tensile force detection, cable-stayed structures, hybrid system identification (h-SI), dynamic response.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2084
3427 Structural Safety Evaluation of Zip-Line Due to Dynamic Impact Load

Authors: Bu Seog Ju, Jae Sang Kim, Woo Young Jung

Abstract:

In recent year, with recent increase of interest towards leisure sports, increased number of Zip-Line or Zip-Wire facilities has built. Many researches have been actively conducted on the emphasis of the cable and the wire at the bridge. However, very limited researches have been conducted on the safety of the Zip-Line structure. In fact, fall accidents from Zip-Line have been reported frequently. Therefore, in this study, the structural safety of Zip-Line under dynamic impact loading condition were evaluated on the previously installed steel cable for leisure (Zip-Line), using 3-dimensional nonlinear Finite Element (FE) model. The result from current study would assist assurance of systematic stability of Zip-Line.

Keywords: Zip-Line, Wire, Cable, 3D FE Model, Safety.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4026
3426 Comparison of Electrical Parameters of Oil-Immersed and Dry-Type Transformer Using Finite Element Method

Authors: U. Amin, A. Talib, S. A. Qureshi, M. J. Hossain, G. Ahmad

Abstract:

The choice evaluation between oil-immersed and dry-type transformers is often controlled by cost, location, and application. This paper compares the electrical performance of liquid- filled and dry-type transformers, which will assist the customer to choose the right and efficient ones for particular applications. An accurate assessment of the time-average flux density, electric field intensity and voltage distribution in an oil-insulated and a dry-type transformer have been computed and investigated. The detailed transformer modeling and analysis has been carried out to determine electrical parameter distributions. The models of oil-immersed and dry-type transformers are developed and solved by using the finite element method (FEM) to compare the electrical parameters. The effects of non-uniform and non-coherent voltage gradient, flux density and electric field distribution on the power losses and insulation properties of transformers are studied in detail. The results show that, for the same voltage and kilo-volt-ampere (kVA) rating, oil-immersed transformers have better insulation properties and less hysteresis losses than the dry-type.

Keywords: Finite element method, flux density, transformer, voltage gradient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1180
3425 An Axisymmetric Finite Element Method for Compressible Swirling Flow

Authors: Raphael Zanella, Todd A. Oliver, Karl W. Schulz

Abstract:

This work deals with the finite element approximation of axisymmetric compressible flows with swirl velocity. We are interested in problems where the flow, while weakly dependent on the azimuthal coordinate, may have a strong azimuthal velocity component. We describe the approximation of the compressible Navier-Stokes equations with H1-conformal spaces of axisymmetric functions. The weak formulation is implemented in a C++ solver with explicit time marching. The code is first verified with a convergence test on a manufactured solution. The verification is completed by comparing the numerical and analytical solutions in a Poiseuille flow case and a Taylor-Couette flow case. The code is finally applied to the problem of a swirling subsonic air flow in a plasma torch geometry.

Keywords: Axisymmetric problem, compressible Navier- Stokes equations, continuous finite elements, swirling flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 277
3424 Effect of Surface Stress on the Deformation around a Nanosized Elliptical Hole: a Finite Element Study

Authors: Weifeng Wang, Xianwei Zeng, Jianping Ding

Abstract:

When the characteristic length of an elastic solid is down to the nanometer level, its deformation behavior becomes size dependent. Surface energy /surface stress have recently been applied to explain such dependency. In this paper, the effect of strain-independent surface stress on the deformation of an isotropic elastic solid containing a nanosized elliptical hole is studied by the finite element method. Two loading cases are considered, in the first case, hoop stress along the rim of the elliptical hole induced by pure surface stress is studied, in the second case, hoop stress around the elliptical opening under combined remote tension and surface stress is investigated. It has been shown that positive surface stress induces compressive hoop stress along the hole, and negative surface stress has opposite effect, maximum hoop stress occurs near the major semi-axes of the ellipse. Under combined loading of remote tension and surface stress, stress concentration around the hole can be either intensified or weakened depending on the sign of the surface stress.

Keywords: Surface stress, finite element method, stress concentration, nanosized elliptical hole

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2022
3423 Theoretical, Numerical and Experimental Assessment of Elastomeric Bearing Stability

Authors: Manuel A. Guzman, Davide Forcellini, Ricardo Moreno, Diego H. Giraldo

Abstract:

Elastomeric bearings (EB) are used in many applications, such as base isolation of bridges, seismic protection and vibration control of other structures and machinery. Their versatility is due to their particular behavior since they have different stiffness in the vertical and horizontal directions, allowing to sustain vertical loads and at the same time horizontal displacements. Therefore, vertical, horizontal and bending stiffnesses are important parameters to take into account in the design of EB. In order to acquire a proper design methodology of EB all three, theoretical, finite element analysis and experimental, approaches should be taken into account to assess stability due to different loading states, predict their behavior and consequently their effects on the dynamic response of structures, and understand complex behavior and properties of rubber-like materials respectively. In particular, the recent large-displacement theory on the stability of EB formulated by Forcellini and Kelly is validated with both numerical simulations using the finite element method, and experimental results set at the University of Antioquia in Medellin, Colombia. In this regard, this study reproduces the behavior of EB under compression loads and investigates the stability behavior with the three mentioned points of view.

Keywords: Elastomeric bearings, experimental tests, numerical simulations, stability, large-displacement theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 766
3422 Development a New Model of EEVC/WG17 Lower Legform for Pedestrian Safety

Authors: Alireza Noorpoor, Akbar Abvabi, Mehdi Saeed Kiasat

Abstract:

Development, calibration and validation of a threedimensional model of the Legform impactor for pedestrian crash with bumper are presented. Lower limb injury is becoming an increasingly important concern in vehicle safety for both occupants and pedestrians. In order to prevent lower extremity injuries to a pedestrian when struck by a car, it is important to elucidate the loadings from car front structures on the lower extremities and the injury mechanism caused by these loadings. An impact test procedure with a legform addressing lower limb injuries in car pedestrian accidents has been proposed by EEVC/WG17. In this study a modified legform impactor is introduced and validated against EEVC/WG17 criteria. The finite element model of this legform is developed using LS-DYNA software. Total mass of legform impactor is 13.4 kg.Technical specifications including the mass and location of the center of gravity and moment of inertia about a horizontal axis through the respective centre of gravity in femur and tibia are determined. The obtained results of legform impactor static and dynamic tests are as specified in the EEVC/WG17.

Keywords: Legform impactor, Pedestrian safety, Finite element model, Knee joint, EEVC/WG17.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3001
3421 Elastic and Plastic Collision Comparison Using Finite Element Method

Authors: Gustavo Rodrigues, Hans Weber, Larissa Driemeier

Abstract:

The prevision of post-impact conditions and the behavior of the bodies during the impact have been object of several collision models. The formulation from Hertz’s theory is generally used dated from the 19th century. These models consider the repulsive force as proportional to the deformation of the bodies under contact and may consider it proportional to the rate of deformation. The objective of the present work is to analyze the behavior of the bodies during impact using the Finite Element Method (FEM) with elastic and plastic material models. The main parameters to evaluate are, the contact force, the time of contact and the deformation of the bodies. An advantage of using the FEM approach is the possibility to apply a plastic deformation to the model according to the material definition: there will be used Johnson–Cook plasticity model whose parameters are obtained through empirical tests of real materials. This model allows analyzing the permanent deformation caused by impact, phenomenon observed in real world depending on the forces applied to the body. These results are compared between them and with the model-based Hertz theory.

Keywords: Collision, finite element method, Hertz’s Theory, impact models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 716
3420 Finite Element Prediction and Experimental Verification of the Failure Pattern of Proximal Femur using Quantitative Computed Tomography Images

Authors: Majid Mirzaei, Saeid Samiezadeh , Abbas Khodadadi, Mohammad R. Ghazavi

Abstract:

This paper presents a novel method for prediction of the mechanical behavior of proximal femur using the general framework of the quantitative computed tomography (QCT)-based finite element Analysis (FEA). A systematic imaging and modeling procedure was developed for reliable correspondence between the QCT-based FEA and the in-vitro mechanical testing. A speciallydesigned holding frame was used to define and maintain a unique geometrical reference system during the analysis and testing. The QCT images were directly converted into voxel-based 3D finite element models for linear and nonlinear analyses. The equivalent plastic strain and the strain energy density measures were used to identify the critical elements and predict the failure patterns. The samples were destructively tested using a specially-designed gripping fixture (with five degrees of freedom) mounted within a universal mechanical testing machine. Very good agreements were found between the experimental and the predicted failure patterns and the associated load levels.

Keywords: Bone, Osteoporosis, Noninvasive methods, Failure Analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2050
3419 Electrical Field Around the Overhead Transmission Lines

Authors: S.S. Razavipour, M. Jahangiri, H. Sadeghipoor

Abstract:

In this paper, the computation of the electrical field distribution around AC high-voltage lines is demonstrated. The advantages and disadvantages of two different methods are described to evaluate the electrical field quantity. The first method is a seminumerical method using the laws of electrostatic techniques to simulate the two-dimensional electric field under the high-voltage overhead line. The second method which will be discussed is the finite element method (FEM) using specific boundary conditions to compute the two- dimensional electric field distributions in an efficient way.

Keywords: Electrical field, unloaded transmission lines, finite element method, electrostatic images technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8331
3418 Investigation of Gas Tungsten Arc Welding Parameters on Residual Stress of Heat Affected Zone in Inconel X750 Super Alloy Welding Using Finite Element Method

Authors: Kimia Khoshdel Vajari, Saber Saffar

Abstract:

Reducing the residual stresses caused by welding is desirable for the industry. The effect of welding sequence, as well as the effect of yield stress on the number of residual stresses generated in Inconel X750 superalloy sheets and beams, have been investigated. The finite element model used in this research is a three-dimensional thermal and mechanical model, and the type of analysis is indirect coupling. This analysis is done in two stages. First, thermal analysis is performed, and then the thermal changes of the first analysis are used as the applied load in the second analysis. ABAQUS has been used for modeling, and the Dflux subroutine has been used in the Fortran programming environment to move the arc and the molten pool. The results of this study show that the amount of tensile residual stress in symmetric, discontinuous, and symmetric-discontinuous welds is reduced to a maximum of 27%, 54%, and 37% compared to direct welding, respectively. The results also show that the amount of residual stresses created by welding increases linearly with increasing yield stress with a slope of 40%.

Keywords: Residual stress, X750 superalloy, finite element, welding, thermal analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 108
3417 Nonlinear Impact Responses for a Damped Frame Supported by Nonlinear Springs with Hysteresis Using Fast FEA

Authors: T. Yamaguchi, M. Watanabe, M. Sasajima, C. Yuan, S. Maruyama, T. B. Ibrahim, H. Tomita

Abstract:

This paper deals with nonlinear vibration analysis using finite element method for frame structures consisting of elastic and viscoelastic damping layers supported by multiple nonlinear concentrated springs with hysteresis damping. The frame is supported by four nonlinear concentrated springs near the four corners. The restoring forces of the springs have cubic non-linearity and linear component of the nonlinear springs has complex quantity to represent linear hysteresis damping. The damping layer of the frame structures has complex modulus of elasticity. Further, the discretized equations in physical coordinate are transformed into the nonlinear ordinary coupled differential equations using normal coordinate corresponding to linear natural modes. Comparing shares of strain energy of the elastic frame, the damping layer and the springs, we evaluate the influences of the damping couplings on the linear and nonlinear impact responses. We also investigate influences of damping changed by stiffness of the elastic frame on the nonlinear coupling in the damped impact responses.

Keywords: Dynamic response, Nonlinear impact response, Finite Element analysis, Numerical analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1681
3416 Electric Field and Potential Distributions along Surface of Silicone Rubber Polymer Insulators Using Finite Element Method

Authors: B. Marungsri, W. Onchantuek, A. Oonsivilai

Abstract:

This paper presents the simulation the results of electric field and potential distributions along surface of silicone rubber polymer insulators. Near the same leakage distance subjected to 15 kV in 50 cycle salt fog ageing test, alternate sheds silicone rubber polymer insulator showed better contamination performance than straight sheds silicone rubber polymer insulator. Severe surface ageing was observed on the straight sheds insulator. The objective of this work is to elucidate that electric field distribution along straight sheds insulator higher than alternate shed insulator in salt fog ageing test. Finite element method (FEM) is adopted for this work. The simulation results confirmed the experimental data, as well.

Keywords: Electric field distribution, potential distribution, silicone rubber polymer insulator, finite element method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2055
3415 Large Amplitude Free Vibration of a Very Sag Marine Cable

Authors: O. Punjarat, S. Chucheepsakul, T. Phanyasahachart

Abstract:

This paper focuses on a variational formulation of large amplitude free vibration behavior of a very sag marine cable. In the static equilibrium state, the marine cable has a very large sag configuration. In the motion state, the marine cable is assumed to vibrate in in-plane motion with large amplitude from the static equilibrium position. The total virtual work-energy of the marine cable at the dynamic state is formulated which involves the virtual strain energy due to axial deformation, the virtual work done by effective weight, and the inertia forces. The equations of motion for the large amplitude free vibration of marine cable are obtained by taking into account the difference between the Euler’s equation in the static state and the displaced state. Based on the Galerkin finite element procedure, the linear and nonlinear stiffness matrices, and mass matrices of the marine cable are obtained and the eigenvalue problem is solved. The natural frequency spectrum and the large amplitude free vibration behavior of marine cable are presented.

Keywords: Axial deformation, free vibration, Galerkin Finite Element Method, large amplitude, variational method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 762
3414 Modal Dynamic Analysis of a Mechanism with Deformable Elements from an Oil Pump Unit Structure

Authors: N. Dumitru, S. Dumitru, C. Copilusi, N. Ploscaru

Abstract:

On this research, experimental analyses have been performed in order to determine the oil pump mechanism dynamics and stability from an oil unit mechanical structure. The experimental tests were focused on the vibrations which occur inside of the rod element during functionality of the oil pump unit. The oil pump mechanism dynamic parameters were measured and also determined through numerical computations. Entire research is based on the oil pump unit mechanical system virtual prototyping. For a complete analysis of the mechanism, the frequency dynamic response was identified, mainly for the mechanism driven element, based on two methods: processing and virtual simulations with MSC Adams aid and experimental analysis. In fact, through this research, a complete methodology is presented where numerical simulations of a mechanism with deformed elements are developed on a dynamic mode and these can be correlated with experimental tests.

Keywords: Modal dynamic analysis, oil pump, vibrations, flexible elements, frequency response.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1334
3413 Numerical Modeling and Computer Simulation of Ground Movement above Underground Mine

Authors: A. Nuric, S. Nuric, L. Kricak, I. Lapandic, R. Husagic

Abstract:

This paper describes topic of computer simulation with regard to the ground movement above an underground mine. Simulation made with software package ADINA for nonlinear elastic-plastic analysis with finite elements method. The one of representative profiles from Mine 'Stara Jama' in Zenica has been investigated. A collection and selection of both geo-mechanical data and geometric parameters of the mine was necessary for performing these simulations. Results of estimation have been compared with measured values (vertical displacement of surface), and then simulation performed with assumed dynamic and dimensions of excavation, over a period of time. Results are presented with bitmaps and charts.

Keywords: Computer, finite element method, mine, nonlinear analysis, numerical modeling, simulation, subsidence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2792
3412 Analysis of Electric Field and Potential Distributions along Surface of Silicone Rubber Insulators under Various Contamination Conditions Using Finite Element Method

Authors: B. Marungsri, W. Onchantuek, A. Oonsivilai, T. Kulworawanichpong

Abstract:

This paper presents the simulation results of electric field and potential distributions along surface of silicone rubber polymer insulators under clean and various contamination conditions with/without water droplets. Straight sheds insulator having leakage distance 290 mm was used in this study. Two type of contaminants, playwood dust and cement dust, have been studied the effect of contamination on the insulator surface. The objective of this work is to comparison the effect of contamination on potential and electric field distributions along the insulator surface when water droplets exist on the insulator surface. Finite element method (FEM) is adopted for this work. The simulation results show that contaminations have no effect on potential distribution along the insulator surface while electric field distributions are obviously depended on contamination conditions.

Keywords: electric field distribution, potential distribution, silicone rubber polymer insulator, finite element method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3246