Search results for: Direct Simulation Mote Carlo method (DSMC)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11033

Search results for: Direct Simulation Mote Carlo method (DSMC)

10793 TBOR: Tree Based Opportunistic Routing for Mobile Ad Hoc Networks

Authors: Y. Harold Robinson, M. Rajaram, E. Golden Julie, S. Balaji

Abstract:

A mobile ad hoc network (MANET) is a wireless communication network where nodes that are not within direct transmission range establish their communication via the help of other nodes to forward data. Routing protocols in MANETs are usually categorized as proactive. Tree Based Opportunistic Routing (TBOR) finds a multipath link based on maximum probability of the throughput. The simulation results show that the presented method is performed very well compared to the existing methods in terms of throughput, delay and routing overhead.

Keywords: Mobile ad hoc networks, opportunistic data forwarding, proactive Source routing, BFS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1178
10792 Analysis of Electromagnetic Field Effects Using FEM for Transmission Lines Transposition

Authors: S. Tupsie, A. Isaramongkolrak, P. Pao-la-or

Abstract:

This paper presents the mathematical model of electric field and magnetic field in transmission system, which performs in second-order partial differential equation. This research has conducted analyzing the electromagnetic field radiating to atmosphere around the transmission line, when there is the transmission line transposition in case of long distance distribution. The six types of 500 kV transposed HV transmission line with double circuit will be considered. The computer simulation is applied finite element method that is developed by MATLAB program. The problem is considered to two dimensions, which is time harmonic system with the graphical performance of electric field and magnetic field. The impact from simulation of six types long distance distributing transposition will not effect changing of electric field and magnetic field which surround the transmission line.

Keywords: Transposition, Electromagnetic Field, Finite Element Method (FEM), Transmission Line, Computer Simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3971
10791 High Resolution Methods Based On Rank Revealing Triangular Factorizations

Authors: M. Bouri, S. Bourennane

Abstract:

In this paper, we propose a novel method for subspace estimation used high resolution method without eigendecomposition where the sample Cross-Spectral Matrix (CSM) is replaced by upper triangular matrix obtained from LU factorization. This novel method decreases the computational complexity. The method relies on a recently published result on Rank-Revealing LU (RRLU) factorization. Simulation results demonstrates that the new algorithm outperform the Householder rank-revealing QR (RRQR) factorization method and the MUSIC in the low Signal to Noise Ratio (SNR) scenarios.

Keywords: Factorization, Localization, Matrix, Signalsubspace.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1321
10790 Optimization of Inverse Kinematics of a 3R Robotic Manipulator using Genetic Algorithms

Authors: J. Ramírez A., A. Rubiano F.

Abstract:

In this paper the direct kinematic model of a multiple applications three degrees of freedom industrial manipulator, was developed using the homogeneous transformation matrices and the Denavit - Hartenberg parameters, likewise the inverse kinematic model was developed using the same method, verifying that in the workload border the inverse kinematic presents considerable errors, therefore a genetic algorithm was implemented to optimize the model improving greatly the efficiency of the model.

Keywords: Direct Kinematic, Genetic Algorithm, InverseKinematic, Optimization, Robot Manipulator

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3289
10789 CAD Based Predictive Models of the Undeformed Chip Geometry in Drilling

Authors: Panagiotis Kyratsis, Dr. Ing. Nikolaos Bilalis, Dr. Ing. Aristomenis Antoniadis

Abstract:

Twist drills are geometrical complex tools and thus various researchers have adopted different mathematical and experimental approaches for their simulation. The present paper acknowledges the increasing use of modern CAD systems and using the API (Application Programming Interface) of a CAD system, drilling simulations are carried out. The developed DRILL3D software routine, creates parametrically controlled tool geometries and using different cutting conditions, achieves the generation of solid models for all the relevant data involved (drilling tool, cut workpiece, undeformed chip). The final data derived, consist a platform for further direct simulations regarding the determination of cutting forces, tool wear, drilling optimizations etc.

Keywords: Drilling, CAD based simulation, 3D-modelling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1842
10788 Backstepping Design and Fractional Derivative Equation of Chaotic System

Authors: Ayub Khan, Net Ram Garg, Geeta Jain

Abstract:

In this paper, Backstepping method is proposed to synchronize two fractional-order systems. The simulation results show that this method can effectively synchronize two chaotic systems.

Keywords: Backstepping method, Fractional order, Synchronization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2100
10787 3D Quantum Numerical Simulation of Horizontal Rectangular Dual Metal Gate\Gate All Around MOSFETs

Authors: M. Khaouani, A. Guen-Bouazza, B. Bouazza, Z. Kourdi

Abstract:

The integrity and issues related to electrostatic performance associated with scaling Si MOSFET bulk sub 10nm channel length promotes research in new device architectures such as SOI, double gate and GAA MOSFET. In this paper, we present some novel characteristic of horizontal rectangular gate\gate all around MOSFETs with dual metal of gate we obtained using SILVACO TCAD tools. We will also exhibit some simulation results we obtained relating to the influence of some parameters variation on our structure, that having a direct impact on their threshold voltage and drain current. In addition, our TFET showed reasonable ION/IOFF ratio of (104) and low drain induced barrier lowering (DIBL) of 39 mV/V.

Keywords: GAA, SILVACO, QUANTUM, MOSFETs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2804
10786 Ray Tracing Modified 3D Image Method Simulation of Picocellular Propagation Channel Environment

Authors: F. Alwafie

Abstract:

In this paper, we present the simulation of the propagation characteristics of the picocellular propagation channel environment. The first aim has been to find a correct description of the environment for received wave.

The result of the first investigations is that the environment of the indoor wave significantly changes as we change the electric parameters of material constructions. A modified 3D ray tracing image method tool has been utilized for the coverage prediction. A detailed analysis of the dependence of the indoor wave on the wideband characteristics of the channel: root mean square (RMS) delay spread characteristics and Mean excess delay, is also investigated.

Keywords: Propagation, Ray Tracing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1910
10785 Time Series Forecasting Using Independent Component Analysis

Authors: Theodor D. Popescu

Abstract:

The paper presents a method for multivariate time series forecasting using Independent Component Analysis (ICA), as a preprocessing tool. The idea of this approach is to do the forecasting in the space of independent components (sources), and then to transform back the results to the original time series space. The forecasting can be done separately and with a different method for each component, depending on its time structure. The paper gives also a review of the main algorithms for independent component analysis in the case of instantaneous mixture models, using second and high-order statistics. The method has been applied in simulation to an artificial multivariate time series with five components, generated from three sources and a mixing matrix, randomly generated.

Keywords: Independent Component Analysis, second order statistics, simulation, time series forecasting

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1743
10784 Diameter of Zero Divisor Graphs of Finite Direct Product of Lattices
10783 A Comparison between Heterogeneous and Homogeneous Gas Flow Model in Slurry Bubble Column Reactor for Direct Synthesis of DME

Authors: Sadegh Papari, Mohammad Kazemeini, Moslem Fattahi

Abstract:

In the present study, a heterogeneous and homogeneous gas flow dispersion model for simulation and optimisation of a large-scale catalytic slurry reactor for the direct synthesis of dimethyl ether (DME) from syngas and CO2, using a churn-turbulent regime was developed. In the heterogeneous gas flow model the gas phase was distributed into two bubble phases: small and large, however in the homogeneous one, the gas phase was distributed into only one large bubble phase. The results indicated that the heterogeneous gas flow model was in more agreement with experimental pilot plant data than the homogeneous one.

Keywords: Modelling, Slurry bubble column, Dimethyl ether synthesis, Homogeneous gas flow, Heterogeneous gas flow

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2130
10782 Determining the Width and Depths of Cut in Milling on the Basis of a Multi-Dexel Model

Authors: Jens Friedrich, Matthias A. Gebele, Armin Lechler, Alexander Verl

Abstract:

Chatter vibrations and process instabilities are the most important factors limiting the productivity of the milling process. Chatter can leads to damage of the tool, the part or the machine tool. Therefore, the estimation and prediction of the process stability is very important. The process stability depends on the spindle speed, the depth of cut and the width of cut. In milling, the process conditions are defined in the NC-program. While the spindle speed is directly coded in the NC-program, the depth and width of cut are unknown. This paper presents a new simulation based approach for the prediction of the depth and width of cut of a milling process. The prediction is based on a material removal simulation with an analytically represented tool shape and a multi-dexel approach for the workpiece. The new calculation method allows the direct estimation of the depth and width of cut, which are the influencing parameters of the process stability, instead of the removed volume as existing approaches do. The knowledge can be used to predict the stability of new, unknown parts. Moreover with an additional vibration sensor, the stability lobe diagram of a milling process can be estimated and improved based on the estimated depth and width of cut.

Keywords: Dexel, process stability, material removal, milling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2215
10781 Decision Tree for Competing Risks Survival Probability in Breast Cancer Study

Authors: N. A. Ibrahim, A. Kudus, I. Daud, M. R. Abu Bakar

Abstract:

Competing risks survival data that comprises of more than one type of event has been used in many applications, and one of these is in clinical study (e.g. in breast cancer study). The decision tree method can be extended to competing risks survival data by modifying the split function so as to accommodate two or more risks which might be dependent on each other. Recently, researchers have constructed some decision trees for recurrent survival time data using frailty and marginal modelling. We further extended the method for the case of competing risks. In this paper, we developed the decision tree method for competing risks survival time data based on proportional hazards for subdistribution of competing risks. In particular, we grow a tree by using deviance statistic. The application of breast cancer data is presented. Finally, to investigate the performance of the proposed method, simulation studies on identification of true group of observations were executed.

Keywords: Competing risks, Decision tree, Simulation, Subdistribution Proportional Hazard.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2336
10780 Optimization of Doubly Fed Induction Generator Equivalent Circuit Parameters by Direct Search Method

Authors: Mamidi Ramakrishna Rao

Abstract:

Doubly-fed induction generator (DFIG) is currently the choice for many wind turbines. These generators, when connected to the grid through a converter, is subjected to varied power system conditions like voltage variation, frequency variation, short circuit fault conditions, etc. Further, many countries like Canada, Germany, UK, Scotland, etc. have distinct grid codes relating to wind turbines. Accordingly, following the network faults, wind turbines have to supply a definite reactive current. To satisfy the requirements including reactive current capability, an optimum electrical design becomes a mandate for DFIG to function. This paper intends to optimize the equivalent circuit parameters of an electrical design for satisfactory DFIG performance. Direct search method has been used for optimization of the parameters. The variables selected include electromagnetic core dimensions (diameters and stack length), slot dimensions, radial air gap between stator and rotor and winding copper cross section area. Optimization for 2 MW DFIG has been executed separately for three objective functions - maximum reactive power capability (Case I), maximum efficiency (Case II) and minimum weight (Case III). In the optimization analysis program, voltage variations (10%), power factor- leading and lagging (0.95), speeds for corresponding to slips (-0.3 to +0.3) have been considered. The optimum designs obtained for objective functions were compared. It can be concluded that direct search method of optimization helps in determining an optimum electrical design for each objective function like efficiency or reactive power capability or weight minimization.

Keywords: Direct search, DFIG, equivalent circuit parameters, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 869
10779 Research on a Forest Fire Spread Simulation Driven by the Wind Field in Complex Terrain

Authors: Ying Shang, Chencheng Wang

Abstract:

The wind field is the main driving factor for the spread of forest fires. For the simulation results of forest fire spread to be more accurate, it is necessary to obtain more detailed wind field data. Therefore, this paper studied the mountainous fine wind field simulation method coupled with WRF (Weather Research and Forecasting Model) and CFD (Computational Fluid Dynamics) to realize the numerical simulation of the wind field in a mountainous area with a scale of 30 m and a small measurement error. Local topographical changes have an important impact on the wind field. Based on the Rothermel fire spread model, a forest fire in Idaho in the western United States was simulated. The historical data proved that the simulation results had a good accuracy. They showed that the fire spread rate will decrease rapidly with time and then reach a steady state. After reaching a steady state, the fire spread growth area will not only be affected by the slope, but will also show a significant quadratic linear positive correlation with the wind speed change.

Keywords: Wind field, numerical simulation, forest fire spread, fire behavior model, complex terrain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 287
10778 Using Emotional Learning in Rescue Simulation Environment

Authors: Maziar Ahmad Sharbafi, Caro Lucas, Abolfazel Toroghi Haghighat, Omid AmirGhiasvand, Omid Aghazade

Abstract:

RoboCup Rescue simulation as a large-scale Multi agent system (MAS) is one of the challenging environments for keeping coordination between agents to achieve the objectives despite sensing and communication limitations. The dynamicity of the environment and intensive dependency between actions of different kinds of agents make the problem more complex. This point encouraged us to use learning-based methods to adapt our decision making to different situations. Our approach is utilizing reinforcement leaning. Using learning in rescue simulation is one of the current ways which has been the subject of several researches in recent years. In this paper we present an innovative learning method implemented for Police Force (PF) Agent. This method can cope with the main difficulties that exist in other learning approaches. Different methods used in the literature have been examined. Their drawbacks and possible improvements have led us to the method proposed in this paper which is fast and accurate. The Brain Emotional Learning Based Intelligent Controller (BELBIC) is our solution for learning in this environment. BELBIC is a physiologically motivated approach based on a computational model of amygdale and limbic system. The paper presents the results obtained by the proposed approach, showing the power of BELBIC as a decision making tool in complex and dynamic situation.

Keywords: Emotional learning, rescue, simulation environment, RoboCup, multi-agent system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1570
10777 Motion Parameter Estimation via Dopplerlet-Transform-Based Matched Field Processing

Authors: Hongyan Dai

Abstract:

This work presents a matched field processing (MFP) algorithm based on Dopplerlet transform for estimating the motion parameters of a sound source moving along a straight line and with a constant speed by using a piecewise strategy, which can significantly reduce the computational burden. Monte Carlo simulation results and an experimental result are presented to verify the effectiveness of the algorithm advocated.

Keywords: matched field processing; Dopplerlet transform; motion parameter estimation; piecewise strategy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1190
10776 Sliding-Mode Control of Synchronous Reluctance Motor

Authors: Mostafa.A. Fellani, Dawo.E. Abaid

Abstract:

This paper presents a controller design technique for Synchronous Reluctance Motor to improve its dynamic performance with fast response and high accuracy. The sliding mode control is the most attractive and suitable method to use for this purpose, since it is simple in design and for its insensitivity to parameter variations or external disturbances. When this method implemented it yields fast dynamic response without overshoot and a zero steady-state error. The current loop control with decentralized sliding mode is presented in this paper. The mathematical model for the synchronous machine, the inverter and the controller is developed. The stability of the sliding mode controller is analyzed. Simulation of synchronous reluctance motor and the controller with PWM-inverter has been curried out, using the SIMULINK software package of MATLAB. Simulation results are presented to show the effectiveness of the approach.

Keywords: Dynamic Simulation, MATLAB, PWM-inverter, Reluctance Machine, Sliding-mode.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3063
10775 Object-Oriented Programming for Modeling and Simulation of Systems in Physiology

Authors: J. Fernandez de Canete

Abstract:

Object-oriented modeling is spreading in current simulation of physiological systems through the use of the individual components of the model and its interconnections to define the underlying dynamic equations. In this paper we describe the use of both the SIMSCAPE and MODELICA simulation environments in the object-oriented modeling of the closed loop cardiovascular system. The performance of the controlled system was analyzed by simulation in light of the existing hypothesis and validation tests previously performed with physiological data. The described approach represents a valuable tool in the teaching of physiology for graduate medical students.

Keywords: Object-Oriented Modeling, SIMSCAPE Simulation Language, MODELICA Simulation Language, Cardiovascular System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2822
10774 Parametric Analysis of Solid Oxide Fuel Cell Using Lattice Boltzmann Method

Authors: Abir Yahya, Hacen Dhahri, Khalifa Slimi

Abstract:

The present paper deals with a numerical simulation of temperature field inside a solid oxide fuel cell (SOFC) components. The temperature distribution is investigated using a co-flow planar SOFC comprising the air and fuel channel and two-ceramic electrodes, anode and cathode, separated by a dense ceramic electrolyte. The Lattice Boltzmann method (LBM) is used for the numerical simulation of the physical problem. The effects of inlet temperature, anode thermal conductivity and current density on temperature distribution are discussed. It was found that temperature distribution is very sensitive to the inlet temperature and the current density.

Keywords: Solid oxide fuel cell, Heat sources, temperature, Lattice Boltzmann method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 850
10773 PeliGRIFF: A Parallel DEM-DLM/FD Method for DNS of Particulate Flows with Collisions

Authors: Anthony Wachs, Guillaume Vinay, Gilles Ferrer, Jacques Kouakou, Calin Dan, Laurence Girolami

Abstract:

An original Direct Numerical Simulation (DNS) method to tackle the problem of particulate flows at moderate to high concentration and finite Reynolds number is presented. Our method is built on the framework established by Glowinski and his coworkers [1] in the sense that we use their Distributed Lagrange Multiplier/Fictitious Domain (DLM/FD) formulation and their operator-splitting idea but differs in the treatment of particle collisions. The novelty of our contribution relies on replacing the simple artificial repulsive force based collision model usually employed in the literature by an efficient Discrete Element Method (DEM) granular solver. The use of our DEM solver enables us to consider particles of arbitrary shape (at least convex) and to account for actual contacts, in the sense that particles actually touch each other, in contrast with the simple repulsive force based collision model. We recently upgraded our serial code, GRIFF 1 [2], to full MPI capabilities. Our new code, PeliGRIFF 2, is developed under the framework of the full MPI open source platform PELICANS [3]. The new MPI capabilities of PeliGRIFF open new perspectives in the study of particulate flows and significantly increase the number of particles that can be considered in a full DNS approach: O(100000) in 2D and O(10000) in 3D. Results on the 2D/3D sedimentation/fluidization of isometric polygonal/polyedral particles with collisions are presented.

Keywords: Particulate flow, distributed lagrange multiplier/fictitious domain method, discrete element method, polygonal shape, sedimentation, distributed computing, MPI

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2068
10772 Inverse Heat Transfer Analysis of a Melting Furnace Using Levenberg-Marquardt Method

Authors: Mohamed Hafid, Marcel Lacroix

Abstract:

This study presents a simple inverse heat transfer procedure for predicting the wall erosion and the time-varying thickness of the protective bank that covers the inside surface of the refractory brick wall of a melting furnace. The direct problem is solved by using the Finite-Volume model. The melting/solidification process is modeled using the enthalpy method. The inverse procedure rests on the Levenberg-Marquardt method combined with the Broyden method. The effect of the location of the temperature sensors and of the measurement noise on the inverse predictions is investigated. Recommendations are made concerning the location of the temperature sensor.

Keywords: Melting furnace, inverse heat transfer, enthalpy method, Levenberg–Marquardt Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1266
10771 A Discrete-Event-Simulation Approach for Logistic Systems with Real Time Resource Routing and VR Integration

Authors: Gerrit Alves, Jürgen Roßmann, Roland Wischnewski

Abstract:

Today, transport and logistic systems are often tightly integrated in the production. Lean production and just-in-time delivering create multiple constraints that have to be fulfilled. As transport networks often have evolved over time they are very expensive to change. This paper describes a discrete-event-simulation system which simulates transportation models using real time resource routing and collision avoidance. It allows for the specification of own control algorithms and validation of new strategies. The simulation is integrated into a virtual reality (VR) environment and can be displayed in 3-D to show the progress. Simulation elements can be selected through VR metaphors. All data gathered during the simulation can be presented as a detailed summary afterwards. The included cost-benefit calculation can help to optimize the financial outcome. The operation of this approach is shown by the example of a timber harvest simulation.

Keywords: Discrete-Event-Simulation, Logistic, Simulation, Virtual Reality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1840
10770 Architecture Design of the Robots Operability Assessment Simulation Testbed

Authors: Sang Yeong Choi, Woo Sung Park

Abstract:

This paper presents the architecture design of the robot operability assessment simulation testbed (called "ROAST") for the resolution of robot operability problems occurred during interactions between human operators and robots. The basic idea of the ROAST architecture design is to enable the easy composition of legacy or new simulation models according to its purpose. ROAST architecture is based on IEEE1516 High Level Architecture (HLA) of defense modeling and simulation. The ROAST architecture is expected to provide the foundation framework for the easy construction of a simulation testbed to order to assess the robot operability during the robotic system design. Some of ROAST implementations and its usefulness are demonstrated through a simple illustrative example.

Keywords: Robotic system, modeling and simulation, Simulation architecture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1294
10769 Study of Characteristics of Multi-Layer Piezoelectric Transformers by using 3-D Finite Element Method

Authors: C. Panya-Isara, T. Kulworawanichpong, P. Pao-La-Or

Abstract:

Piezoelectric transformers are electronic devices made from piezoelectric materials. The piezoelectric transformers as the name implied are used for changing voltage signals from one level to another. Electrical energy carried with signals is transferred by means of mechanical vibration. Characterizing in both electrical and mechanical properties leads to extensively use and efficiency enhancement of piezoelectric transformers in various applications. In this paper, study and analysis of electrical and mechanical properties of multi-layer piezoelectric transformers in forms of potential and displacement distribution throughout the volume, respectively. This paper proposes a set of quasi-static mathematical model of electromechanical coupling for piezoelectric transformer by using a set of partial differential equations. Computer-based simulation utilizing the three-dimensional finite element method (3-D FEM) is exploited as a tool for visualizing potentials and displacements distribution within the multi-layer piezoelectric transformer. This simulation was conducted by varying a number of layers. In this paper 3, 5 and 7 of the circular ring type were used. The computer simulation based on the use of the FEM has been developed in MATLAB programming environment.

Keywords: Multi-layer Piezoelectric Transformer, 3-D Finite Element Method (3-D FEM), Electro-mechanical Coupling, Mechanical Vibration

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1603
10768 Modified Levenberg-Marquardt Method for Neural Networks Training

Authors: Amir Abolfazl Suratgar, Mohammad Bagher Tavakoli, Abbas Hoseinabadi

Abstract:

In this paper a modification on Levenberg-Marquardt algorithm for MLP neural network learning is proposed. The proposed algorithm has good convergence. This method reduces the amount of oscillation in learning procedure. An example is given to show usefulness of this method. Finally a simulation verifies the results of proposed method.

Keywords: Levenberg-Marquardt, modification, neural network, variable learning rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4992
10767 Simulation of the Finite Difference Time Domain in Two Dimension

Authors: Akram G., Jasmy Y.

Abstract:

The finite-difference time-domain (FDTD) method is one of the most widely used computational methods in electromagnetic. This paper describes the design of two-dimensional (2D) FDTD simulation software for transverse magnetic (TM) polarization using Berenger's split-field perfectly matched layer (PML) formulation. The software is developed using Matlab programming language. Numerical examples validate the software.

Keywords: Finite difference time domain (FDTD) method, perfectly matched layer (PML), split-filed formulation, transverse magnetic (TM) polarization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5570
10766 Optimization of Air Pollution Control Model for Mining

Authors: Zunaira Asif, Zhi Chen

Abstract:

The sustainable measures on air quality management are recognized as one of the most serious environmental concerns in the mining region. The mining operations emit various types of pollutants which have significant impacts on the environment. This study presents a stochastic control strategy by developing the air pollution control model to achieve a cost-effective solution. The optimization method is formulated to predict the cost of treatment using linear programming with an objective function and multi-constraints. The constraints mainly focus on two factors which are: production of metal should not exceed the available resources, and air quality should meet the standard criteria of the pollutant. The applicability of this model is explored through a case study of an open pit metal mine, Utah, USA. This method simultaneously uses meteorological data as a dispersion transfer function to support the practical local conditions. The probabilistic analysis and the uncertainties in the meteorological conditions are accomplished by Monte Carlo simulation. Reasonable results have been obtained to select the optimized treatment technology for PM2.5, PM10, NOx, and SO2. Additional comparison analysis shows that baghouse is the least cost option as compared to electrostatic precipitator and wet scrubbers for particulate matter, whereas non-selective catalytical reduction and dry-flue gas desulfurization are suitable for NOx and SO2 reduction respectively. Thus, this model can aid planners to reduce these pollutants at a marginal cost by suggesting control pollution devices, while accounting for dynamic meteorological conditions and mining activities.

Keywords: Air pollution, linear programming, mining, optimization, treatment technologies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1537
10765 Wasteless Solid-Phase Method for Conversion of Iron Ores Contaminated with Silicon and Phosphorus Compounds

Authors: А. V. Panko, Е. V. Ablets, I. G. Kovzun, М. А. Ilyashov

Abstract:

Based upon generalized analysis of modern know-how in the sphere of processing, concentration and purification of iron-ore raw materials (IORM), in particular, the most widespread ferrioxide-silicate materials (FOSM), containing impurities of phosphorus and other elements compounds, noted special role of nanotechnological initiatives in improvement of such processes. Considered ideas of role of nanoparticles in processes of FOSM carbonization with subsequent direct reduction of ferric oxides contained in them to metal phase, as well as in processes of alkali treatment and separation of powered iron from phosphorus compounds. Using the obtained results the wasteless method of solid-phase processing, concentration and purification of IORM and FOSM from compounds of phosphorus, silicon and other impurities was developed and it excels known methods of direct iron reduction from iron ores and metallurgical slimes.

Keywords: Iron ores, solid-phase reduction, nanoparticles in reduction and purification of iron from silicon and phosphorus, wasteless method of ores processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1754
10764 Simulation of the Performance of Novel Nonlinear Optimal Control Technique on Two Cart-inverted Pendulum System

Authors: B. Baigzadeh, V.Nazarzehi, H.Khaloozadeh

Abstract:

The two cart inverted pendulum system is a good bench mark for testing the performance of system dynamics and control engineering principles. Devasia introduced this system to study the asymptotic tracking problem for nonlinear systems. In this paper the problem of asymptotic tracking of the two-cart with an inverted-pendulum system to a sinusoidal reference inputs via introducing a novel method for solving finite-horizon nonlinear optimal control problems is presented. In this method, an iterative method applied to state dependent Riccati equation (SDRE) to obtain a reliable algorithm. The superiority of this technique has been shown by simulation and comparison with the nonlinear approach.

Keywords: Nonlinear optimal control, State dependent Riccatiequation, Asymptotic tracking, inverted pendulum

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1549