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Abstract—The paper presents a method for multivariate time
series forecasting using Independent Component Analysis (ICA),
as a preprocessing tool. The idea of this approach is to do the
forecasting in the space of independent components (sources),
and then to transform back the results to the original time series
space. The forecasting can be done separately and with a different
method for each component, depending on its time structure. The
paper gives also a review of the main algorithms for independent
component analysis in the case of instantaneous mixture models,
using second and high-order statistics. The method has been
applied in simulation to an artificial multivariate time series
with five components, generated from three sources and a mixing
matrix, randomly generated.

Index Terms—Independent Component Analysis, second order
statistics, simulation, time series forecasting.

I. INDEPENDENT COMPONENT ANALYSIS

A. Problem Formulation

INDEPENDENT Component Analysis (ICA) is a statistical
and computational technique, that can be seen as an ex-

tension to Principal Component Analysis (PCA) and Factor
Analysis (FA), [1]. ICA is a much more powerful technique,
capable of  nding the underlying factors or sources when these
classic methods fail completely. The data analyzed by ICA
could originate from many different kinds of application  elds,
including digital images, economic indicators and psychome-
tric measurements.

The simple ICA model assumes the existence of n indepen-
dent components s1(t), . . . , sn(t) and the observation of as
many mixtures x1(t), . . . , xn(t), these mixtures being linear
and instantaneous, i.e.

xi(t) =
n∑

j=1

aijsj(t) (1)

for each i = 1, n. This is compactly represented by the mixing
equation

x(t) = As(t) (2)

where s(t) = [s1(t), . . . , sn(t)]T is an n × 1 column vector
collecting the source components, vector x(t) collects the n

observed variables and the square n × n ”mixing matrix” A

contains the mixture coef cients. The ICA problem consists in
recovering the source vector s(t) using only the observed data
x(t), the assumption of independence between the entries of
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Fig. 1. Mixing and separating. Unobserved variables: s; observations: x;
estimated source components: ŝ

the input vector s(t) and possible some a priori information
about the probability distribution of the inputs. It can be
formulated as the computation of an n×n ”separating matrix”
B whose output ŝ(t)

ŝ(t) = Bx(t) (3)

is an estimate of the vector s(t) of the source signals (see Fig.
1).

ICA is closely related to the method Blind Source Sep-
aration (BSS) problem. A ”source” means here an original
component, i.e. independent component. ”Blind” means that
we no very little, if anything, on the mixing matrix, and
make little assumptions on the source components. ICA is one
method, perhaps the most widely used, for performing blind
source separation.

In many applications, it would be more realistic to assume
that there is some noise in the measurement data, which would
mean adding a noise term in the model:

y(t) = As(t) (4)
x(t) = y(t) + n(t)

B. Identificability of the ICA model

The identi cability of the noise-free ICA model has been
treated in Comon, [2]. By imposing the following fundamental
restrictions (in addition to the basic assumption of statistical
independence), the identi ab ility of the model can be assured:

1) All the independent components si with the possible
exception of one component, must be non-Gaussian.

2) The number of the observed linear mixtures m must
be at least as large as the number of independent
components n, i.e. m ≥ n.

3) The matrix A must be of full column rank.
Usually, it is also assumed that x and s are centered. If x

and s are interpreted as stochastic processes instead of simply
random variables, additional restrictions are necessary. At the
minimum, one has to assume that the stochastic processes are

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences

 Vol:3, No:1, 2009 

41International Scholarly and Scientific Research & Innovation 3(1) 2009 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 M
at

he
m

at
ic

al
 a

nd
 C

om
pu

ta
tio

na
l S

ci
en

ce
s 

V
ol

:3
, N

o:
1,

 2
00

9 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
01

99
.p

df



stationary in the strict sense. Some restriction of ergodicity
with respect to the quantities estimated are also necessary.

In the ICA model of eq. (2), it is easy to see that the
following ambiguities will hold:

1) We cannot determine the variances (energies) of the
independent components. The reason is that, both s and
A being unknown, any scalar multiplier in one of the
sources si could always be canceled by dividing the
corresponding column ai in A by the same scalar. As
a consequence we may quite as well  x the magnitudes
of the independent components; as they are random
variables, the most natural way to do this is to assume
that each has unit variance: E[s2

i
] = 1. Then the matrix

A will be adapted in the ICA solution methods to take
into account this restriction.

2) We cannot determine the order of the independent com-
ponents. The reason is that, again both s and A being
unknown, we can freely change the order of the terms in
the sum (1), and call any of the independent components
the  rst one.

C. Algorithms for ICA

Though many papers purport to introduce ”new” methods
of solution, the existing framework (and solutions) for blind
source separation are often the same. Speci cally, the criterion
for source separation is a measure of independence, typically
represented by some cost function J. The extremum of J,
with respect to parameters of some inverse mixing processes,
will correspond to more or less independent outputs. Algo-
rithms which rely on this concept, the separation-independence
equivalence, may be closed as those performing Independent
Component Analysis. The problem of blind source separation
is then reduced to a mathematical optimization problem,
and a multitude of techniques are reported. The principal
differences rest on the varieties of cost functions utilized,
based on the kurtosis, mutual information, cross power-spectra,
negentropy and log-likelihood. In many cases these approaches
are the result of different formalisms, and can be shown to be
mathematically equivalent.

When the signals are temporal coherent, it is possible to
solve ICA problem using only the second-order statistics. If
the signals are temporal white or have identical normalized
spectral densities, without any information on a priori source
distributions, the solution will need higher-order statistics. If
the source signal distributions are known, the problem could
be solved by maximum likelihood method.

In the next sections we present two algorithms for ICA
in the case of an instantaneous mixture model (1): the  rst,
SOBI (Second Order Blind Identi cation) algorithm, supposes
the signals temporal coherent and exploits the second-order
statistics using intercovariance matrix of observations, and
the second, JADE (Joint Approximate Diagonalization of
Eigen-matrices), supposes the components white temporal and
exploit high-order statistics, using non-linear functions.

II. SOBI ALGORITHM

A. Second-Order Information

The  rst step of the procedure, [3] consists of prewhitening
the signal part y(t) of the observation. This is done via a
whitening matrix W, i.e. a n × m matrix (we consider n

sources and m mixtures) such that Wy(t) is spatially white.
The whiteness condition is

In = WRy(0)WT = WAAT WT (5)

where In denotes the n × n identity matrix. Equations (5)
implies that WA is a unitary matrix: for any whitening matrix
W, it then exists a unitary matrix U such that WA = U. As
a consequence, matrix A can be factored as

A = W#U = W#[u1, . . . ,un] (6)

where # denotes the pseudo-inverse and U is unitary. The
use of second-order information - in the form of an estimate
of Ry(0) which is used to solve for W in (5) - reduces
the determination of the m × n mixing matrix A to the
determination of a unitary n × n matrix U. The whitened
process xw(t) = Wx(t) still obeys a linear model:

xw(t)
def

= Wx(t) = W(As(t) + n(t)) = Us(t) + Wn(t)
(7)

The signal part of the whitened process now is a unitary
mixture of the source signals. Note that all the information
contained in the covariance is ’exhausted’ after the whitening,
in the sense that changing U in (7) to any other unitary matrix
leaves unchanged the covariance of xw(t).

B. Whitening Matrix Computation

This step is implemented via eigendecomposition of the
sample covariance matrix R̂x(0). We consider here that the
noise covariance is of the form Rn(0) = σ

2In. The whitening
procedure is the following:

1) Estimate the covariance matrix R̂x(0) using T samples
of the observations:

R̂x(0) =
1
T

T∑
t=1

x(t)x(t)T
, (8)

2) Perform the eigendecomposition of the R̂x(0) covari-
ance matrix

R̂x(0) = HΔHT (9)

where

H = [h1, ...,hm]

and

Δ = diag[λ1, . . . , λm]

with λi ≥ λj for i < j. The number of sources can be
estimated starting from the spectrum Δ [4], [5].
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3) Estimate noise variance σ̂
2 as the average of the m−n

smallest eigenvalues of Δ

σ̂
2 =

1
m − n

m∑
i=n+1

λi (10)

4) Compute the whitening matrix Ŵ as:

Ŵ = Δ
′

H
′
T (11)

where

Δ
′

= diag[(λ1 − σ̂
2)−1/2

, . . . , (λn − σ̂
2)−1/2]

and

H
′

= [h1, . . . ,hn]

This resulted matrix is used to obtain the whitened process

x̂w(t) = Ŵx(t), t = 1, . . . , T (12)

C. Intercovariance Matrix Estimation

Starting from the whitened process xw(t), K intercovari-
ance matrices of this process are computed:

R̂w(k) =
1

T − k

T∑
t=k+1

xw(t)xw(t − k)T (13)

where 1 ≥ k ≥ K . The resulted matrices are of n×n dimen-
sion, and the computation effort does not depend of number
of sensors, m. The value of K will be selected to realize
a trade off between the statistic ef cien cy and computation
effort. The value of the delays used in computation depends
also on the length of the signal correlations. If we have a priori
information on spectral density of sources, the value of K can
be optimal chosen.

D. Joint Diagonalization

Let Rw = {Rw(k)|1 ≤ k ≤ K} be a set of K matrices
with common size n × n. A joint diagonalizer of the set Rw

is de n ed as a unitary maximizer of the criterion

C(U)
def

=
K∑

k=1

|diag(UT Rw(k)U)|2 (14)

where |diag(·)| is the norm of the vector build from the
diagonal of the matrix argument. The problem is solved by
a generalization of Jacobi technique [6], [7], [8].

E. Mixing Matrix and Source Signals Estimation

Let Û = [û1, . . . , ûn] be the unitary matrix resulted by joint
diagonalization. If the objective of the blind identi cation is
source separation, a brute estimation of these can be computed
by:

ŝ(t) = ÛT x̂w(t) (15)

To estimate the mixing matrix need to inverse the effect of
whitening, and the mixing matrix can be estimated by

Â = Ŵ#Û (16)

To obtain at the output of the separator a maximum sig-
nal/noise ratio the source signals are estimated by

ŝ(t) = ÂT R̂x(0)−1x(t) (17)

F. The Algorithm

The general scheme of the SOBI algorithm (Second Order
Blind Identi catio n) can now be described by the following
steps:

Step 1. Form the sample covariance R̂x(0) and compute the
whitening matrix Ŵ

Step 2. Whitening the data provided by the sensors:

x̂w(t) = Ŵx(t), t = 1, . . . , T

Step 3. Estimate K intercovariance matrices R̂w(k) of x̂w(t)
for different time delay k = 1, . . . , K

Step 4. Jointly diagonalize the set of intercovariace matrices
in a base Û = [û1, . . . , ûn]
Step 5. Estimate the mixing matrix with

Â = Ŵ#Û

Step 6. Estimate the source signals by

ŝ(t) = ÂT R̂x(0)−1x(t)

Note that at the second step of the algorithm the observa-
tion dimension is reduced to n, the source number, and the
intercovariance matrices estimation is performed in a space of
reduced dimension.

III. JADE ALGORITHM

A. Notations and Assumptions

Let be the mixing model given by eq. (4) with n sources
and m observed variables and A a matrix m× n. We discuss
this approach for complex data. It exploits the fourth-order
cumulants of the output. For v a complex d- dimensional
random vector with coordinates v1, . . . , vd şi and  nite 4th-
order cumulants, we de ne a cumulant set denoted Qv as:

Qv

def

= {Cum(vi, v
∗

j , vk, v
∗

l |1 ≤ i, j, k, l ≤ d} (18)

For a complex stationary process v(t) we also denote Qv

rather than Q
v(t), since the latter does not depend on t. We

assume
1) The processes n(t), s1(t), . . . , sn(t) are jointly station-

ary. The kurtosis of the p-th source is the real number

kp

def

= Cum{sp(t), s∗p(t), sp(t), s∗p(t)} (19)

A source is to be said kurtic if it has a non zero kurtosis.
We restrict ourselves to the case where:
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2) There is at most one non kurtic source. The crucial
assumptions blind identi catio n relies on the related to
independence, exploited in the paper by assuming non
Gaussian signals. More speci c ally, we assume:

3) All vectors a1, . . . ,an of matrix A are linearly indepen-
dent but otherwise arbitrary.

4) The variables s1(t), . . . , sn(t) are statistically indepen-
dent for each t. Under Assumptions 1-3, the matrix A is
essentially determined from Ry

def

= E{y(t)yT (t)} and
Qy . For these quantities to be consistently estimated, it
is further assumed that:

5) There exist consistent estimates for Rx and şi Qx.
6) The additive noise is normally distributed and indepen-

dent from the sources.
7) The additive noise is spatially white Rn = σIm with

unknown variance σ and n < m.
By Assumption 5, an estimate of Qx also is an estimate of

Qy since cumulants are additive for independent variables and
since high-order cumulants are zero for normaly distributed
variables. By Assumption 6, an estimate of Ry can be clasi-
cally constructed from the eigendecomposition of an estimate
of Rx. The Assumptions 4-6 could be replaced by any other
assumption set serving the same purpose: the existence of
consistent estimates for Ry şi Qy .

B. Using Second-Order Information

We consider exploiting second order information by whiten-
ing the signal part y(t) of the observation. This is done via
a whitening matrix W(n × m) such that Wy(t) is spatially
white. The whiteness condition is:

In = WRyW
H = WAAHWH (20)

where In denotes n×n identity matrix. Equation (20) implies
that WA is a unitary matrix: for any whitening matrix W,
it then exists a unitary matrix U such that WA = U. As a
consequence, matrix A can be factored as

A = W#U = W#[u1, . . . ,un] (21)

where U is unitary, and # denot a pseudo-inverse. The use
of second-order information - in the form of an estimate
of Ry which is used to solve for W in (20) - reduces
the determination of the m × n mixing matrix A to the
determination of a unitary , n × n matrix U. The whitened
process xw(t) = Wx(t) still obeys a linear model:

xw(t)
def

= Wx(t) = W(As(t) + n(t)) = Us(t) + Wn(t)
(22)

The signal part of the whitened process now is a unitary
mixture of the source signals. Note that all information con-
tained in the covariance is ’exhausted’ after the whitening, in
the sense that changing U in (28) to any other unitary matrix
leaves unchanged the covariance of xw(t).

C. Determining the Unitary Factor

Two approaches for the determination of the unitary factor
U in A = W#U have been reported. In the  rst approach, U
is computed as the diagonalizer of a n × n cumulant matrix.
These ’eigenbased’ techniques are computationally simple
but, being based only on n

2 cumulant statistics, they may
show poor statistical performance. Another approach obtains
an estimate of U as the optimizer of some identi catio n
criterion which is a function of the whole cumulant set Qxw

;
better performance is expected at the expense of solving
an optimization problem. These approached are reviewed by
Cardoso şi Souloumiac in [9].

D. The Algorithm

A blind identi catio n algorithms by Joint Approximate
Diagonalization of Eigen-matrices (JADE) can be described
by the following steps:

Step 1. Form the sample covariance R̂x and compute a
whitening matrix Ŵ.
Step 2. Form the sample 4th-order cumulants Q̂xw

, of the
whitened process x̂w(t) = Ŵx(t); compute the n most
signi cant eigenpairs {λ̂r, M̂r|1 ≤ r ≤ n}.

The cumulant matrices are de ned as follows. To any
n×n matrix M, is associated a ’cumulant matrix’, Qxw

(M),
de ned by

N = Qxw
(M)

def

⇐⇒ nij =
∑

k,l=1,n

Cum(xw,i, x
∗

w,j
, xw,k, x

∗

w,l
)mlk

(23)
for 1 ≤ i, j ≤ n

For a any d - dimensional complex random vector v with
4th - order cumulants, there exist d

2 real number λ1, . . . , λd2

and d
2 matrices M1, . . . ,Md2 , called eigenmatrices verifying,

[9]:

Qv(Mr) = λrMr, T r(MrM
H

s ) = δ(r, s) (24)

for 1 ≤ r, s ≤ d
2

Step 3. Jointly diagonalize the set {λ̂rM̂r|1 ≤ r ≤ n} by a
unitary matrix U.

For a set of s matrices with common size n × n, N =
{Nr|1 ≤ r ≤ s}, a joint diagonalizer of the set is de ned as
a unitary matrix U maximizer of the criterion

C(U,N ) =
∑

r=1,s

|diag(UHNrU|

2 (25)

where |diag(.)| is the norm of the vector build from the
diagonal of the matrix argument. When the set N contain
only one hermitian matrix, joint diagonalization is equivalent
to usual unitary diagonalization. If the set N cannot be exactly
jointly diagonalized ( this is the case when sample cumulants
are processed), the unitary maximization de nes a somewhat
arbitrary but quite natural ’joint approximate diagonalization’.
Step 4. An estimate of A is A = W#U.
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Step 1 is concerned with 2nd-order statistics and is standard
under the Assumption 5-6; it is implemented via eigende-
composition of R̂x. Due to the white noise assumption, an
estimate σ̂ of the noise variance is the average of the m − n

smallest eigenvalues of R̂x. Denote μ1, . . . , μn the n largest
eigenvalues and h1, . . . ,hn the corresponding eigenvectors of
R̂x. A whitener is

Ŵ = [(μ1 − σ̂)−1/2h1, . . . , (μn − σ̂)−1/2hn]H (26)

In Step 2, computation of the eigenmatrices amounts to
diagonalizing a n

2
×n

2 matrix made from the elements of Qz .
A standard algorithm for eigendecomposition of o hermitian
matrices can be used, but more ef cient implementations can
be also be devised, by taking into account additional cumu-
lants symmetries or the fact that only the n most signi c ant
eigenpairs are needed, [?].

The Step 3 is implemented by extending the single-matrix
Jacobi technique to several matrices as described by Cardoso şi
Souloumiac, [?]. Note that when n = 2, the Jacobi technique
is not iterative: a unique Givens rotation achieves (joint)
diagonalization. Also recall that joint diagonalization may be
initialized with the (usual) diagonalizer of a single cumulant
matrix.

In Step 4, the pseudo-inverse of Ŵ needs not be explicitly
computed: the eigendecomposition of R̂x may be recycled by
Ŵ# = [(μ1 − σ̂)1/2h1, . . . , (μn − σ̂)−1/2hn].

IV. TIME SERIES FORECASTING BY ICA

The idea of multivariate time series forecasting by ICA is
to estimate the independent sources from the observation data,
to do the forecasting for these in the source space, and then to
come back with the results in original observation space, using
the estimation of the mixing matrix A. The forecasting can
be done separately, for each source, with a different method
for each component, depending on its time structure. The
following procedure can be used:

1) After substracting the mean of each time series, the
independent components sj(t) and the mixing matrix
A are estimated.

2) For each independent component sj(t) a suitable  l-
tering procedure is applied to reduce the effect of
noise-smoothing for components that contain very low
frequency (trend, slow cyclical variations), and high-pass
 ltering for components containing high frequencies
and/or sudden shocks.

3) Each smoothed independent component is predicted
separately, for instance using some method of autore-
gressive (AR) or autoregressive and moving average
(ARMA) modeling. The prediction is done for a number
of steps into the future.

4) The predictions for each independent component are
combined by weighting them with the mixing coef-
 cien ts, aij , to obtain the predictions, x

p

i
(t) for the

original time series components xi(t).
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Fig. 2. Original sources
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Fig. 3. Time series analyzed

V. EXPERIMENTAL RESULTS

To test the method, procedure been applied to an arti cial
multivariate time series with  ve components, generated from
three sources and a mixing matrix A, randomly generated.

The original sources used in this application are given in
Fig. 2. The mixing signals - the synthetic data - resulted are
represented in Fig. 3.

The sources signals have been estimated from the mixing
signals using JADE algorithm. The estimated sources are
represented in Fig. 4. The estimated sources, have been
assimilated to three monovariable time series and the following
ARIMA models resulted for s1, s2 and s3, respectively, where
εt is innovation and Bxt = xt − xt−1:

(1 − B)s1t = (1 − 0.402B − 0.239B
2)εt (27)

with σ
2
ε = 0.330

s2t = −9.066 + (1 + 0.467B − 0.188B
4)εt (28)

with σ
2
ε

= 0.552

(1 + 0.181B
3)s3t = 1.076 + (1 + 0.472B)εt (29)
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Fig. 4. Estimated sources
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Fig. 5. Forecasting of the estimated sources

with σ
2
ε

= 0.571
Starting from the resulted models we performed forecasting

for the estimated sources, for a forecasting horizon of 12 steps.
The con dence interval for forecasting has been chosen 95%.
The resulted are presented in Fig. 5. Based on the forecasting
results of the estimated sources and knowing the mixing matrix
it was possible to determine the forecasting values of the
multivariate time series investigated. The forecasting results
with the con dence intervals are given in Fig. 6.

VI. CONCLUSIONS

The results are promising as the ICA based forecasting is
expected to work better than direct forecasting. It is known
that multivariate time series modeling put many problems con-
cerning canonical representation of these series. The presented
approach will need to be intensive investigated for other real
time series, and the results compared with those provided in
literature by other classical methods.
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