Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31324
Simulation of the Finite Difference Time Domain in Two Dimension

Authors: Akram G., Jasmy Y.

Abstract:

The finite-difference time-domain (FDTD) method is one of the most widely used computational methods in electromagnetic. This paper describes the design of two-dimensional (2D) FDTD simulation software for transverse magnetic (TM) polarization using Berenger's split-field perfectly matched layer (PML) formulation. The software is developed using Matlab programming language. Numerical examples validate the software.

Keywords: Finite difference time domain (FDTD) method, perfectly matched layer (PML), split-filed formulation, transverse magnetic (TM) polarization

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1061767

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5273

References:


[1] K.S. Yee, "Numerical solution of initial boundary value problems involving Maxwell-s equations in isotropic media," IEEE Trans. Antennas & Propag., vol. 14, 1966, pp: 302-307.
[2] A. Taflove, and M.E. Brodwin, "Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell's equations," IEEE Trans. on Microwave Theo. & Tech., vol. 23, no. 8, 1975, pp.:623-630.
[3] A. Taflove, " Application of the finite-difference time-domain method to sinusoidal steady state electromagnetic penetration problems," IEEE Trans. Electromag. Compatibil., vol. 22, 1980, pp.: 191-202.
[4] A. Taflove, S. Hagness, " Computational Electrodynamics: The Finite- Difference Time-Domain Method," 3rd Ed.. Artech House Publishers. 2005.
[5] K. Umashankar, and A. Taflove, "A novel method to analyze electromagnetic scattering of complex objects," IEEE Trans. Electromag. Compatibil., vol. 24, 1982, pp.:397-405.
[6] J.P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys., vol. 114, 1994, pp.: 185-200.
[7] R. Harrington, "Time Harmonic Electromagnetic Fields," New York: McGraw-Hill. 1961.
[8] T. Moore, J. Blaschak, A. Taflove, and G. Kriegsmann, "Theory and application of radiation boundary operators," IEEE Trans. Antennas & Propagat., vol. 36, 1988, pp. 1797-1812.
[9] G. Mur, "Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations," IEEE Trans. Electromag. Compatibil., vol. 23, no. 4, 1981, pp. 377-382.