Search results for: Aluminum chloride
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 445

Search results for: Aluminum chloride

175 Protective Effect of Thymoquinone against Nephrotoxicity Induced by Cadmium in Rats

Authors: Amr A. Fouad, Hamed A. Alwadaani, Iyad Jresat

Abstract:

The present study investigated the protective effect of thymoquinone (TQ), against cadmium-induced kidney injury in rats. Cadmium chloride (1.2 mg Cd/kg/day, s.c.), was given for nine weeks. TQ treatment (40 mg/kg/day, p.o.) started on the same day of cadmium administration and continued for nine weeks. TQ significantly decreased serum creatinine, renal malondialdehyde and nitric oxide, and significantly increased renal reduced glutathione in rats received cadmium. Histopathological examination showed that TQ markedly minimized renal tissue damage induced by cadmium. Immunohistochemical analysis revealed that TQ markedly decreased the cadmium-induced expression of inducible nitric oxide synthase, tumor necrosis factor-α, cyclooxygenase-2, and caspase-3 in renal tissue. It was concluded that TQ significantly protected against cadmium nephrotoxicity in rats, through its antioxidant, antiinflammatory, and antiapoptotic actions.

Keywords: Thymoquinone, cadmium, kidney, rats.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1700
174 Comparison of Chemical Coagulation and Electrocoagulation for Boron Removal from Synthetic Wastewater Using Aluminium

Authors: Kartikaningsih Danis, Yao-Hui Huang

Abstract:

Various techniques including conventional and advanced have been employed for the boron treatment from water and wastewater. The electrocoagulation involves an electrolytic reactor for coagulation/flotation with aluminium as anode and cathode. There is aluminium as coagulant to be used for removal which may induce secondary pollution in chemical coagulation. The purpose of this study is to investigate and compare the performance between electrocoagulation and chemical coagulation on boron removal from synthetic wastewater. The effect of different parameters, such as pH reaction, coagulant dosage, and initial boron concentration were examined. The results show that the boron removal using chemical coagulation was lower. At the optimum condition (e.g. pH 8 and 0.8 mol coagulant dosage), boron removal efficiencies for chemical coagulation and electrocoagulation were 61% and 91%, respectively. In addition, the electrocoagulation needs no chemical reagents and makes the boron treatment easy for application.

Keywords: Electrocoagulation, chemical coagulation, aluminum electrode, boron removal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1677
173 Synthesis and Characterization of Cu-NanoWire Arrays by EMD Using ITO-Template

Authors: Jyoti Narayan, S. Choudhary

Abstract:

Nanowire arrays of copper with uniform diameters have been synthesized by potentiostatic electrochemical metal deposition (EMD) of copper sulphate and potassium chloride solution within the nano-channels of porous Indium-Tin Oxide (ITO), also known as Tin doped Indium Oxide templates. The nanowires developed were fairly continuous with diameters ranging from 110-140 nm along the entire length. Single as well as poly-crystalline copper wires have been prepared by application of appropriate potential during the EMD process. Scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), small angle electron diffraction (SAED) and atomic force microscopy (AFM) were used to characterize the synthesized nano wires at room temperature. The electrochemical response of synthesized products was evaluated by cyclic voltammetry while surface energy analysis was carried out using a Goniometer.

Keywords: Electro-deposition, Metallic nano-wires, Nanomaterials, Template synthesis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2807
172 An Experimental Study and Influence of BHF and Die Radius in Deep Drawing Process on the Springback

Authors: A. Soualem

Abstract:

A lot of research made during these last 15 years showed that the quantification of the springback has a significant role in the industry of sheet metal forming. These studies were made with the objective of finding techniques and methods to minimize or completely avoid this permanent physical variation. Moreover, the use of steel and aluminum alloys in the car industry and aviation poses every day the problem of the springback. The determination in advance of the quantity of the springback allows consequently the design and manufacture of the tool. The aim of this paper is to study experimentally the influence of the blank holder force BHF and the radius of curvature of the die on the springback and their influence on the strain in various zone of specimen. The original of our purpose consist on tests which are ensured by adapting a U-type stretching-bending device on a tensile testing machine, where we studied and quantified the variation of the springback according to displacement.

Keywords: Blank holder force, Deep-Drawing, Die radius, Forming, Springback.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1655
171 Removal of Arsenic (III) from Contaminated Waterby Synthetic Nano Size Zerovalent Iron

Authors: A. R. Rahmani, H. R. Ghaffari, M. T. Samadi

Abstract:

The present work was conducted for Arsenic (III) removal, which one of the most poisonous groundwater pollutants, by synthetic nano size zerovalent iron (nZVI). Batch experiments were performed to investigate the influence of As (III), nZVI concentration, pH of solution and contact time on the efficiency of As (III) removal. nZVI was synthesized by reduction of ferric chloride by sodium borohydrid. SEM and XRD were used to determine particle size and characterization of produced nanoparticles. Up to 99.9% removal efficiency for arsenic (III) was obtained by nZVI dosage of 1 g/L at time equal to 10 min. and pH=7. It could be concluded that the removal efficiency were enhanced with increasing of ZVI dosage and reaction time, but decreased with increasing of arsenic concentration and pH for nano sized ZVI. nZVI presented an outstanding ability to remove As (III) due to not only a high surface area and low particle size but also to high inherent activity.

Keywords: Arsenic removal, aqueous solution, zero valent iron.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2570
170 The Strength and Metallography of a Bimetallic Friction Stir Bonded Joint between AA6061 and High Hardness Steel

Authors: Richard E. Miller

Abstract:

12.7-mm thick plates of 6061-T6511 aluminum alloy and high hardness steel (528 HV) were successfully joined by a friction stir bonding process using a tungsten-rhenium stir tool. Process parameter variation experiments, which included tool design geometry, plunge and traverse rates, tool offset, spindle tilt, and rotation speed, were conducted to develop a parameter set which yielded a defect free joint. Laboratory tensile tests exhibited yield stresses which exceed the strengths of comparable AA6061-to-AA6061 fusion and friction stir weld joints. Scanning electron microscopy and energy dispersive X-ray spectroscopy analysis also show atomic diffusion at the material interface region.

Keywords: Dissimilar materials, friction stir, welding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2172
169 Enhancement of Pulsed Eddy Current Response Based on Power Spectral Density after Continuous Wavelet Transform Decomposition

Authors: A. Benyahia, M. Zergoug, M. Amir, M. Fodil

Abstract:

The main objective of this work is to enhance the Pulsed Eddy Current (PEC) response from the aluminum structure using signal processing. Cracks and metal loss in different structures cause changes in PEC response measurements. In this paper, time-frequency analysis is used to represent PEC response, which generates a large quantity of data and reduce the noise due to measurement. Power Spectral Density (PSD) after Wavelet Decomposition (PSD-WD) is proposed for defect detection. The experimental results demonstrate that the cracks in the surface can be extracted satisfactorily by the proposed methods. The validity of the proposed method is discussed.

Keywords: NDT, pulsed eddy current, continuous wavelet transform, Mexican hat wavelet mother, defect detection, power spectral density.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 710
168 CT Reconstruction from a Limited Number of X-Ray Projections

Authors: Tao Quang Bang, Insu Jeon

Abstract:

Most CT reconstruction system x-ray computed tomography (CT) is a well established visualization technique in medicine and nondestructive testing. However, since CT scanning requires sampling of radiographic projections from different viewing angles, common CT systems with mechanically moving parts are too slow for dynamic imaging, for instance of multiphase flows or live animals. A large number of X-ray projections are needed to reconstruct CT images, so the collection and calculation of the projection data consume too much time and harmful for patient. For the purpose of solving the problem, in this study, we proposed a method for tomographic reconstruction of a sample from a limited number of x-ray projections by using linear interpolation method. In simulation, we presented reconstruction from an experimental x-ray CT scan of a Aluminum phantom that follows to two steps: X-ray projections will be interpolated using linear interpolation method and using it for CT reconstruction based upon Ordered Subsets Expectation Maximization (OSEM) method.

Keywords: CT reconstruction, X-ray projections, Interpolation technique, OSEM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2353
167 In-situ Quasistatic Compression and Microstructural Characterization of Aluminum Foams of Different Cell Topology

Authors: M. A. Islam, P. J. Hazell, J. P. Escobedo, M. Saadatfar

Abstract:

Metallic foams have good potential for lightweight structures for impact and blast mitigation. Therefore it is important to find out the optimized foam structure (i.e. cell size, shape, relative density, and distribution) to maximise energy absorption. In this paper, quasistatic compression and microstructural characterization of closed-cell aluminium foams of different pore size and cell distributions have been carried out. We present results for two different aluminium metal foams of density 0.49-0.51 g/cc and 0.31- 0.34 g/cc respectively that have been tested in quasi-static compression. The influence of cell geometry and cell topology on quasistatic compression behaviour has been investigated using optical microscope and computed tomography (micro-CT) analysis. It is shown that the deformation is not uniform in the structure and collapse begins at the weakest point.

Keywords: Metal foams, micro-CT, cell topology, quasistatic compression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2757
166 Interface Analysis of Annealed Al/Cu Cladded Sheet

Authors: Joon Ho Kim, Tae Kwon Ha

Abstract:

Effect of aging treatment on microstructural aspects of interfacial layers of the Cu/Al clad sheet produced by differential speed rolling (DSR) process were studied by electron back scattered diffraction (EBSD). Clad sheet of Al/Cu has been fabricated by using DSR, which caused severe shear deformation between Al and Cu plate to easily bond to each other. Rolling was carried out at 100oC with speed ratio of 2, in which the total thickness reduction was 45%. Interface layers of clad sheet were analyzed by EBSD after subsequent annealing at 400oC for 30 to 120min. With increasing annealing time, thickness of interface layer and fraction of high angle grain boundary were increased and average grain size was decreased.

Keywords: Aluminum/Copper clad sheet, differential speed rolling, interface layer, microstructure, annealing, electron back scattered diffraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2043
165 Fluidity of A713 Cast Alloy with and without Scrap Addition using Double Spiral Fluidity Test: A Comparison

Authors: A.K. Birru, D Benny Karunakar, M. M. Mahapatra

Abstract:

Recycling of aluminum alloys often decrease fluidity, consequently influence the castability of the alloy. In this study, the fluidity of Al-Zn alloys, such as the standard A713 alloy with and without scrap addition has been investigated. The scrap added was comprised of contaminated alloy turning chips. Fluidity measurements were performed with double spiral fluidity test consisting of gravity casting of double spirals in green sand moulds with good reproducibility. The influence of recycled alloy on fluidity has been compared with that of the virgin alloy and the results showed that the fluidity decreased with the increase in recycled alloy at minimum pouring temperatures. Interestingly, an appreciable improvement in the fluidity was observed at maximum pouring temperature, especially for coated spirals.

Keywords: A713 alloy, Fluidity, Hexachloroethane, Pouring temperature, Recycling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2448
164 Performance Evaluation of an Aboveground LNG Storage Tank Cover using Nondestructive and Destructive Tests

Authors: Sungnam Hong, Sun-Kyu Park, Jieun Jeong, Jinwoong Choi

Abstract:

In this study, a new procedure for inspecting damages on LNG storage tanks was proposed with the use of structural diagnostic techniques: i.e., nondestructive inspection techniques such as macrography, the hammer sounding test, the Schmidt hammer test, and the ultrasonic pulse velocity test, and destructive inspection techniques such as the compressive strength test, the chloride penetration test, and the carbonation test. From the analysis of all the test results, it was concluded that the LNG storage tank cover was in good condition. Such results were also compared with the Korean concrete standard specifications and design values. In addition, the remaining life of the LNG storage tank was estimated by using existing models. Based on the results, an LNG storage tank cover performance evaluation procedure was suggested.

Keywords: Destructive test, LNG storage tank, Nondestructive test, Performance evaluation procedure, Remaining life.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3145
163 Therapeutic Product Preparation Bioprocess Modeling

Authors: Mihai Caramihai, Irina Severin, Ana Aurelia Chirvase, Adrian Onu, Cristina Tanase, Camelia Ungureanu

Abstract:

An immunomodulator bioproduct is prepared in a batch bioprocess with a modified bacterium Pseudomonas aeruginosa. The bioprocess is performed in 100 L Bioengineering bioreactor with 42 L cultivation medium made of peptone, meat extract and sodium chloride. The optimal bioprocess parameters were determined: temperature – 37 0C, agitation speed - 300 rpm, aeration rate – 40 L/min, pressure – 0.5 bar, Dow Corning Antifoam M-max. 4 % of the medium volume, duration - 6 hours. This kind of bioprocesses are appreciated as difficult to control because their dynamic behavior is highly nonlinear and time varying. The aim of the paper is to present (by comparison) different models based on experimental data. The analysis criteria were modeling error and convergence rate. The estimated values and the modeling analysis were done by using the Table Curve 2D. The preliminary conclusions indicate Andrews-s model with a maximum specific growth rate of the bacterium in the range of 0.8 h-1.

Keywords: bioprocess modeling, Pseudomonas aeruginosa, kinetic models,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1662
162 Sintering Properties of Mechanically Alloyed Ti-5Al-2.5Fe

Authors: Ridvan Yamanoglu, Erdinc Efendi, Ismail Daoud

Abstract:

In this study, Ti-5Al-2.5Fe alloy was prepared by powder metallurgy. The elemental titanium, aluminum, and iron powders were mechanically alloyed for 10 h in a vacuum atmosphere. A stainless steel jar and stainless steel balls were used for mechanical alloying. The alloyed powders were then sintered by vacuum hot pressing at 950 °C for a soaking time of 30 minutes. Pure titanium was also sintered at the same conditions for comparison of mechanical properties and microstructural behavior. The samples were investigated by scanning electron microscopy, XRD analysis, and optical microscopy. Results showed that, after mechanical alloying, a homogeneous distribution of the elements was obtained, and desired a-b structure was determined. Ti-5Al-2.5Fe alloy was successfully produced, and the alloy showed enhanced mechanical properties compared to the commercial pure titanium.

Keywords: Ti5Al2.5Fe, mechanical alloying, hot pressing, sintering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1216
161 Degradation Propensity of Welded Mild Steel in Coastal Soil of University of Lagos

Authors: S. O. Adeosun, O. S. Sanni

Abstract:

Study on corrosion propensity of welded mild steel- bar in soil media around the coastal area of University of Lagos has been carried out using gravimetric method. Six (6) samples each for welded and unwelded mild steels were cut, their initial weights were recorded and buried in two selected soil. The weight losses of these coupons were measured at regular intervals for a period of six months (180 days).

The corrosiveness of the soil media varied widely depending on the potency level of its constituents. The results revealed that soil in the studied area have marked variations in composition and contents. Soil medium with a lower pH and higher chloride ion concentration aggressively attacked the coupons with the welded steel coupon corroding faster than unwelded one. The medium resistivity to the flow of current is another strong factor affecting corrosion rate.

Keywords: Coastal area, corrosion rate, mild steel, soil media, welds.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2299
160 PTFE Capillary-Based DNA Amplification within an Oscillatory Thermal Cycling Device

Authors: Jyh J. Chen, Fu H. Yang, Ming H. Liao

Abstract:

This study describes a capillary-based device integrated with the heating and cooling modules for polymerase chain reaction (PCR). The device consists of the reaction polytetrafluoroethylene (PTFE) capillary, the aluminum blocks, and is equipped with two cartridge heaters, a thermoelectric (TE) cooler, a fan, and some thermocouples for temperature control. The cartridge heaters are placed into the heating blocks and maintained at two different temperatures to achieve the denaturation and the extension step. Some thermocouples inserted into the capillary are used to obtain the transient temperature profiles of the reaction sample during thermal cycles. A 483-bp DNA template is amplified successfully in the designed system and the traditional thermal cycler. This work should be interesting to persons involved in the high-temperature based reactions and genomics or cell analysis.

Keywords: Polymerase chain reaction, thermal cycles, capillary, TE cooler.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2006
159 Utilization of Agro-Industrial Waste in Metal Matrix Composites: Towards Sustainability

Authors: L. Lancaster, M. H. Lung, D. Sujan

Abstract:

The application of agro-industrial waste in Aluminum Metal Matrix Composites has been getting more attention as they can reinforce particles in metal matrix which enhance the strength properties of the composites. In addition, by applying these agroindustrial wastes in useful way not only save the manufacturing cost of products but also reduce the pollutions on environment. This paper represents a literature review on a range of industrial wastes and their utilization in metal matrix composites. The paper describes the synthesis methods of agro-industrial waste filled metal matrix composite materials and their mechanical, wear, corrosion, and physical properties. It also highlights the current application and future potential of agro-industrial waste reinforced composites in aerospace, automotive and other construction industries.

Keywords: Bond layer, Interfacial shear stress, Bi-layered assembly, Thermal mismatch, Flip Chip Ball Grid Array.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4528
158 Effect of Calcium Chloride on Rheological Properties and Structure of Inulin - Whey Protein Gels

Authors: Pawel Glibowski, Agnieszka Glibowska

Abstract:

The rheological properties, structure and potential synergistic interactions of whey proteins (1-6%) and inulin (20%) in mixed gels in the presence of CaCl2 was the aim of this study. Whey proteins have a strong influence on inulin gel formation. At low concentrations (2%) whey proteins did not impair in inulin gel formation. At higher concentration (4%) whey proteins impaired inulin gelation and inulin impaired the formation of a Ca2+-induced whey protein network. The presence of whey proteins at a level allowing for protein gel network formation (6%) significantly increased the rheological parameters values of the gels. SEM micrographs showed that whey protein structure was coated by inulin moieties which could make the mixed gels firmer. The protein surface hydrophobicity measurements did not exclude synergistic interactions between inulin and whey proteins, however. The use of an electrophoretic technique did not show any stable inulin-whey protein complexes.

Keywords: gels, hydrophobicity, inulin, SEM, whey proteins.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2257
157 Evaluation of Guaiacol and Syringol Emission upon Wood Pyrolysis for some Fast Growing Species

Authors: Sherif S. Z. Hindi

Abstract:

Wood pyrolysis for Casuarina glauca, Casuarina cunninghamiana, Eucalyptus camaldulensis, Eucalyptus microtheca was made at 450°C with 2.5°C/min. in a flowing N2-atmosphere. The Eucalyptus genus wood gave higher values of specific gravity, ash , total extractives, lignin, N2-liquid trap distillate (NLTD) and water trap distillate (WSP) than those for Casuarina genus. The GHC of NLTD was higher for Casuarina genus than that for Eucalyptus genus with the highest value for Casuarina cunninghamiana. Guiacol, 4-ethyl-2-methoxyphenol and syringol were observed in the NLTD of all the four wood species reflecting their parent hardwood lignin origin. Eucalyptus camaldulensis wood had the highest lignin content (28.89%) and was pyrolyzed to the highest values of phenolics (73.01%), guaiacol (11.2%) and syringol (32.28%) contents in methylene chloride fraction (MCF) of NLTD. Accordingly, recoveries of syringol and guaiacol may become economically attractive from Eucalyptus camaldulensis.

Keywords: Wood, Pyrolysis, Guaiacol, Syringol

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2327
156 Cladding of Al and Cu by Differential Speed Rolling

Authors: Tae Yun Chung, Jungho Moon, Tae Kwon Ha

Abstract:

Al/Cu clad sheet has been fabricated by using differential speed rolling (DSR) process, which caused severe shear deformation between Al and Cu plate to easily bond to each other. Rolling was carried out at 100 and 150oC with speed ratios from 1.4 to 2.2, in which the total thickness reduction was in the range between 14 and 46%. Interfacial microstructure and mechanical properties of Al/Cu clad were investigated by scanning electron microscope equipped with energy dispersive X-ray detector, and tension tests. The DSR process was very effective to provide a good interface for atoms diffusion during subsequent annealing. The strength of bonding was higher with the increasing speed ratio. Post heat treatment enhanced the mechanical properties of clad sheet by forming intermetallic compounds in the interface area. 

Keywords: Aluminum/Copper clad sheet, Differential speed rolling, Interface microstructure, Annealing, Tensile test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2311
155 Experimental Investigation of the Transient Cooling Characteristics of an Industrial Glass Tempering Unit

Authors: Hilmi Yazici, Mehmet Akcay, Mustafa Golcu, Mehmet F. Koseoglu, Yakup Sekmen

Abstract:

Energy consumption rate during the cooling process of industrial glass tempering process is considerably high. In this experimental study the effect of dimensionless jet to jet distance (S/D) and jet to plate distance (H/D) on the cooling time have been investigated. In the experiments 4 mm thick glass samples have been used. Cooling unit consists of 16 mutually placed seamless aluminum nozzles of 8 mm in diameter and 80 mm in length. Nozzles were in staggered arrangement. Experiments were conducted with circular jets for H/D values between 1 and 10, and for S/D values between 2 and 10. During the experiments Reynolds number has been kept constant at 30000. Experimental results showed that the longest cooling time with 87 seconds has been observed in the experiments for S/D=10 and H/D=10 values, while the shortest cooling time with 42.5 seconds has been measured in the experiments for S/D=2 and H/D=4 values.

Keywords: Glass tempering, cooling, Reynolds number, nozzle

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1768
154 Experimental Study on Quasi-Static Response of Multi-layer Sandwich Composite Structures

Authors: S. Jedari Salami

Abstract:

In this paper the effects of adding an extra layer within a sandwich panel and core- types in top and bottom cores on quasi- static loading are studied experimentally. The panel includes polymer composite laminated sheets for faces and the internal laminated sheet called extra layer sheet, and two types of crushable foams are selected as the core material. Quasi- static tests were done by ZWICK testing machine on fully backed specimens with two foam cores, Poly Urethane Rigid (PUR) and Poly Vinyl Chloride (PVC). It was found that the core material type has made significant role on improving the sandwich panel’s behavior compared with the effect of extra layer location.

Keywords: Multi-layer sandwich structures, Internal sheet, Crushable foam, Top core, Bottom core.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2144
153 Using Single Decision Tree to Assess the Impact of Cutting Conditions on Vibration

Authors: S. Ghorbani, N. I. Polushin

Abstract:

Vibration during machining process is crucial since it affects cutting tool, machine, and workpiece leading to a tool wear, tool breakage, and an unacceptable surface roughness. This paper applies a nonparametric statistical method, single decision tree (SDT), to identify factors affecting on vibration in machining process. Workpiece material (AISI 1045 Steel, AA2024 Aluminum alloy, A48-class30 Gray Cast Iron), cutting tool (conventional, cutting tool with holes in toolholder, cutting tool filled up with epoxy-granite), tool overhang (41-65 mm), spindle speed (630-1000 rpm), feed rate (0.05-0.075 mm/rev) and depth of cut (0.05-0.15 mm) were used as input variables, while vibration was the output parameter. It is concluded that workpiece material is the most important parameters for natural frequency followed by cutting tool and overhang.

Keywords: Cutting condition, vibration, natural frequency, decision tree, CART algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1378
152 Characterization of Adhesive Layers in Sandwich Composites by Nondestructive Technique

Authors: E. Barkanov, E. Skukis, M. Wesolowski, A. Chate

Abstract:

New nondestructive technique, namely an inverse technique based on vibration tests, to characterize nonlinear mechanical properties of adhesive layers in sandwich composites is developed. An adhesive layer is described as a viscoelastic isotropic material with storage and loss moduli which are both frequency dependent values in wide frequency range. An optimization based on the planning of experiments and response surface technique to minimize the error functional is applied to decrease considerably the computational expenses. The developed identification technique has been tested on aluminum panels and successfully applied to characterize viscoelastic material properties of 3M damping polymer ISD-112 used as a core material in sandwich panels.

Keywords: Adhesive layer, finite element method, inverse technique, sandwich panel, vibration test, viscoelastic material properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2214
151 Numerical Simulation and Experiment of a Lifting Body with Leading-Edge Rotating Cylinder

Authors: A. Badarudin, C. S. Oon, S. N. Kazi, N. Nik-Ghazali, Y. J. Lee, W. T. Chong

Abstract:

An experimental and simulation flight test has been carried out to evaluate the longitudinal gliding characteristics of a lifting body with blunted half-cone geometry. The novelty here is the lifting body's pitch control mechanism, which consists of a pair of leading-edge rotating cylinders. Flight simulation uses aerodynamic data from computational fluid dynamics supported by wind-tunnel test. Flight test consists of releasing an aluminum lifting body model from a moving vehicle at the appropriate wind speed while measuring the lifting body's variation of altitude against time of flight. Results show that leading-edge rotating cylinder is able to give small amounts of improvement to the longitudinal stability and pitch control to the lifting body.

Keywords: Lifting body, pitch control, aerodynamic, rotating cylinder.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1886
150 Micro-Study of Dissimilar Welded Materials

Authors: E. M. Anawa, A. G. Olabi

Abstract:

The dissimilar joint between aluminum/titanium alloys (Al 6082 and Ti G2) were successfully achieved by CO2 laser welding with a single pass and without filler material using the overlap joint design. Laser welding parameters ranges combinations were experimentally determined using Taguchi approach with the objective of producing welded joint with acceptable welding profile and high quality of mechanical properties. In this study a joining of dissimilar Al 6082 / Ti G2 was resulted in three distinct regions fusion area in the weldment. These regions are studied in terms of its microstructural characteristics and microhardness which are directly affecting the welding quality. The weld metal was mainly composed of martensite alpha prime. In two different metals in the two different sides of joint HAZ, grain growth was detected. The microhardness of the joint distribution also has shown microhardness increasing in the HAZ of two base metals and a varying microhardness in fusion zone.

Keywords: Micro-hardness, Microstructure, laser welding, dissimilar jointed materials.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1723
149 On the Wave Propagation in Layered Plates of General Anisotropic Media

Authors: K. L. Verma

Abstract:

Analysis for the propagation of elastic waves in arbitrary anisotropic plates is investigated, commencing with a formal analysis of waves in a layered plate of an arbitrary anisotropic media, the dispersion relations of elastic waves are obtained by invoking continuity at the interface and boundary of conditions on the surfaces of layered plate. The obtained solutions can be used for material systems of higher symmetry such as monoclinic, orthotropic, transversely isotropic, cubic, and isotropic as it is contained implicitly in the analysis. The cases of free layered plate and layered half space are considered separately. Some special cases have also been deduced and discussed. Finally numerical solution of the frequency equations for an aluminum epoxy is carried out, and the dispersion curves for the few lower modes are presented. The results obtained theoretically have been verified numerically and illustrated graphically.

Keywords: Anisotropic, layered, dispersion, elastic waves, frequency equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1895
148 Influence of Solution Chemistry on Adsorption of Perfluorooctanesulfonate (PFOS) and Perfluorooctanoate (PFOA) on Boehmite

Authors: Fei Wang, Kaimin Shih

Abstract:

The persistent nature of perfluorochemicals (PFCs) has attracted global concern in recent years. Perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) are the most commonly found PFC compounds, and thus their fate and transport play key roles in PFC distribution in the natural environment. The kinetic behavior of PFOS or PFOA on boehmite consists of a fast adsorption process followed by a slow adsorption process which may be attributed to the slow transport of PFOS or PFOA into the boehmite pore surface. The adsorption isotherms estimated the maximum adsorption capacities of PFOS and PFOA on boehmite as 0.877 μg/m2 and 0.633 μg/m2, with the difference primarily due to their different functional groups. The increase of solution pH led to a moderate decrease of PFOS and PFOA adsorption, owing to the increase of ligand exchange reactions and the decrease of electrostatic interactions. The presence of NaCl in solution demonstrated negative effects for PFOS and PFOA adsorption on boehmite surfaces, with potential mechanisms being electrical double layer compression, competitive adsorption of chloride.

Keywords: PFOS, PFOA, adsorption, electrostatic interaction, ligand exchange

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2317
147 Investigation of Cascade Loop Heat Pipes

Authors: Nandy Putra, Atrialdipa Duanovsah, Kristofer Haliansyah

Abstract:

The aim of this research is to design a LHP with low thermal resistance and low condenser temperature. A Self-designed cascade LHP was tested by using biomaterial, sintered copper powder, and aluminum screen mesh as the wick. Using pure water as the working fluid for the first level of the LHP and 96% alcohol as the working fluid for the second level of LHP, the experiments were run with 10W, 20W, and 30W heat input. Experimental result shows that the usage of biomaterial as wick could reduce more temperature at evaporator than by using sintered copper powder and screen mesh up to 22.63% and 37.41% respectively. The lowest thermal resistance occurred during the usage of biomaterial as wick of heat pipe, which is 2.06 oC/W. The usage of cascade system could be applied to LHP to reduce the temperature at condenser and reduced thermal resistance up to 17.6%.

Keywords: Biomaterial, cascade loop heat pipe, screen mesh, sintered Cu.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 872
146 A Statistical Approach for Predicting and Optimizing Depth of Cut in AWJ Machining for 6063-T6 Al Alloy

Authors: Farhad Kolahan, A. Hamid Khajavi

Abstract:

In this paper, a set of experimental data has been used to assess the influence of abrasive water jet (AWJ) process parameters in cutting 6063-T6 aluminum alloy. The process variables considered here include nozzle diameter, jet traverse rate, jet pressure and abrasive flow rate. The effects of these input parameters are studied on depth of cut (h); one of most important characteristics of AWJ. The Taguchi method and regression modeling are used in order to establish the relationships between input and output parameters. The adequacy of the model is evaluated using analysis of variance (ANOVA) technique. In the next stage, the proposed model is embedded into a Simulated Annealing (SA) algorithm to optimize the AWJ process parameters. The objective is to determine a suitable set of process parameters that can produce a desired depth of cut, considering the ranges of the process parameters. Computational results prove the effectiveness of the proposed model and optimization procedure.

Keywords: AWJ machining, Mathematical modeling, Simulated Annealing, Optimization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1725