Evaluation of Guaiacol and Syringol Emission upon Wood Pyrolysis for some Fast Growing Species
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Evaluation of Guaiacol and Syringol Emission upon Wood Pyrolysis for some Fast Growing Species

Authors: Sherif S. Z. Hindi

Abstract:

Wood pyrolysis for Casuarina glauca, Casuarina cunninghamiana, Eucalyptus camaldulensis, Eucalyptus microtheca was made at 450°C with 2.5°C/min. in a flowing N2-atmosphere. The Eucalyptus genus wood gave higher values of specific gravity, ash , total extractives, lignin, N2-liquid trap distillate (NLTD) and water trap distillate (WSP) than those for Casuarina genus. The GHC of NLTD was higher for Casuarina genus than that for Eucalyptus genus with the highest value for Casuarina cunninghamiana. Guiacol, 4-ethyl-2-methoxyphenol and syringol were observed in the NLTD of all the four wood species reflecting their parent hardwood lignin origin. Eucalyptus camaldulensis wood had the highest lignin content (28.89%) and was pyrolyzed to the highest values of phenolics (73.01%), guaiacol (11.2%) and syringol (32.28%) contents in methylene chloride fraction (MCF) of NLTD. Accordingly, recoveries of syringol and guaiacol may become economically attractive from Eucalyptus camaldulensis.

Keywords: Wood, Pyrolysis, Guaiacol, Syringol

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1333044

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2368

References:


[1] X. J. Guo, S. R. Wang, K. G. Wang and Z. Y. Luo. 2011. Experimental researches on milled wood lignin pyrolysis based on analysis of bio-oil. Chem. Res. Chinese Universities, vol. 27, pp. 426-430.
[2] V. Bridgwater and G. V. C. Peacocke. 2000. Fast pyrolysis processes for biomass. Renewable and Sustainable Energy Reviews, vol. 4, pp. 1- 73.
[3] J. Kjällstrand, O. Ramnäs and G. Petersson. 2000. Methoxyphenols from burning of Scandinavian forest plant materials. Chemosphere, vol. 41, pp. 735-741.
[4] E. Ranzi, A. Cuoci, T. Faravelli, A. Frassoldati, G. Migliavacca, S. Pierucci, S. Sommariva. 2008. Chemical kinetics of biomass pyrolysis. Energy Fuels, vol. 22, pp. 4292-4300.
[5] J. A. Caballero, R. Font, A. Marcilla. 1996. Kinetic study of the secondary thermal decomposition of Kraft lignin. J. Anal. Appl. Pyrolysis, vol. 38, pp. 131-152.
[6] J. Li, B. Li, X. Zhang. 2002. Comparative studies of thermal degradation between larch lignin and manchurian ash lignin. Polym. Degrad. Stab., vol. 78, pp. 279-285.
[7] M. Brebu and C. Vasile. 2010. Thermal degradation of lignin- A review. Cellulose Chem. Technol., vol. 44 , pp. 353-363.
[8] Q. Liu, S. Wang, Y. Zheng, Z. Luo and K. Cen. 2008. Mechanism study of wood lignin pyrolysis by using TG-FTIR analysis. Journal of Analytical and Applied Pyrolysis, vol. 82, pp. 170-177.
[9] M. Kleen and G. Gellerstedt. 1991. Characterization of chemical and mechanical pulps by pyrolysis - gas chromatography / mass spectrometry, J Anal Appl Pyrolysis. Vol. 19, pp. 139-152.
[10] B. R. T. Simoneit, W. F. Rogge, M. A. Mazurek, L. J. Standley, L. M. Hi1demann and G. R. Cass. 1993. Lignin pyrolysis products, lignans, and resin acids as specific tracers of plant classes in emissions from biomass combustion, Environ. Sci. Techno, vol. 27, pp. 2533-2541.
[11] L. M. McKenzie, W. M. Hao, G. N. Richards and D. E. Ward. 1995. Measurement and modeling of air toxins from smoldering combustion of biomass, Environ Sci Technol, vol. 29, pp. 2047-2054.
[12] D. K. Shen, S. Gu, K. H. Luo, S. R. Wang, M. X. Fang. 2010. The pyrolytic degradation of wood-derived lignin from pulping process. Bioresource Technology, vol. 101, pp. 6136-6146.
[13] I.Brodin, E. Sjöholm and G. Gellerstedt. 2010. The behavior of kraft lignin during thermal treatment. Journal of Analytical and Applied Pyrolysis, vol. 87, pp. 70-77.
[14] J. Jungho, A. T. Geoffrey, L. Yu-Chuan, R. C. Torren, S. Jiacheng, Z. Taiying, Y. Bin, E. W. Charles, C. W. Curtis and W. H. George. 2010. Depolymerization of lignocellulosic biomass to fuel precursors: maximizing carbon efficiency by combining hydrolysis with pyrolysis. Energy Environ. Sci., vol. 3, pp. 358-365.
[15] J. N. Murwanashyaka, H. Pakdel and C. Roy. 2001. Separation of syringol from birch wood-derived vacuum pyrolysis oil. Separation and Purification Technology, vol. 24, pp. 155-165.
[16] J. Kjällstrand, O. Ramnäs and G. Petersson. 1998. Gas chromatographic and mass spectrometric analysis of 36 lignin-related methoxyphenols from uncontrolled combustion of wood. J. Chromatogr. A. 824: 205- 210.
[17] B. R. Pimenta, M. Vital, R. Bayona and R. Alzaga. 1998. Characterization of polycyclic aromatic hydrocarbons in liquid products from pyrolysis of Eucalyptus grandis by supercritical fluid extraction and GC/MS determination. Fuel, vol.77, pp. 1133-1139.