Search results for: AWJ cutting
270 The Impact of Cutting Tool Materials on Cutting Force
Authors: M.A. Kamely, M.Y. Noordin
Abstract:
A judicious choice of insert material, tool geometry and cutting conditions can make hard turning produce better surfaces than grinding. In the present study, an attempt has been made to investigate the effect of cutting tool materials on cutting forces (feed force, thrust force and cutting force) in finish hard turning of AISI D2 cold work tool steel. In conclusion of the results obtained with a constant depth of cut and feed rate, it is important to note that cutting force is directly affected by cutting tool material.Keywords: hard turning, cutting force, cutting tool materials, mixed ceramic, cbn
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3542269 Sandvik Ceramic Cutting Tool Tests with an Interrupted Cut Simulator
Authors: Robert Cep, Adam Janasek, Lenka Cepova, Josef Prochazka
Abstract:
The paper is dealing by testing of ceramic cutting tools with an interrupted machining. Tests will be provided on fixture – interrupted cut simulator. This simulator has 4 mouldings on circumference and cutting edge is put a shocks during 1 revolution. Criteria of tool wear are destruction of cutting tool or 6000 shocks. Like testing cutting tool material will be products of Sandvik Coromant 6190, 620, 650 and 670. Machined materials was be steels 15 128 (13MoCrV6). Cutting speed (408 m.min-1 and 580 m.min-1) and cutting feed (0,15 mm; 0,2 mm; 0,25 mm and 0,3 mm) were variable parameters and cutting depth was constant parameter.Keywords: Ceramic Cutting Tools, Interrupted Cut, Machining, Cutting Tests.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2438268 Energy Requirement for Cutting Corn Stalks (Single Cross 704 Var.)
Authors: M. Azadbakht, A. Rezaei Asl, K. Tamaskani Zahedi
Abstract:
Corn is cultivated in most countries because of high consumption, quality, and food value. This study evaluated needed energy for cutting corn stems in different levels of cutting height and moisture content. For this reason, test device was fabricated and then calibrated. The device works on the principle of conservation of energy. The results were analyzed using split plot design and SAS software. The results showed that effect of height and moisture content and their interaction effect on cutting energy are significant (P<1%). The maximum cutting energy was 3.22 kJ in 63 (w.b.%) moisture content and the minimum cutting energy was 1.63 kJ in 83.25 (w.b.%) moisture content.
Keywords: Cutting energy, Corn stalk, Cutting height, Moisture content, Impact cutting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3144267 Analysis of Tool-Chip Interface Temperature with FEM and Empirical Verification
Authors: M. Bagheri, P. Mottaghizadeh
Abstract:
Reliable information about tool temperature distribution is of central importance in metal cutting. In this study, tool-chip interface temperature was determined in cutting of ST37 steel workpiece by applying HSS as the cutting tool in dry turning. Two different approaches were implemented for temperature measuring: an embedded thermocouple (RTD) in to the cutting tool and infrared (IR) camera. Comparisons are made between experimental data and results of MSC.SuperForm and FLUENT software. An investigation of heat generation in cutting tool was performed by varying cutting parameters at the stable cutting tool geometry and results were saved in a computer; then the diagrams of tool temperature vs. various cutting parameters were obtained. The experimental results reveal that the main factors of the increasing cutting temperature are cutting speed (V ), feed rate ( S ) and depth of cut ( h ), respectively. It was also determined that simultaneously change in cutting speed and feed rate has the maximum effect on increasing cutting temperature.Keywords: Cutting parameters, Finite element modeling, Temperature measurement, Tool-chip interface temperature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2936266 The Effect of the Tool Geometry and Cutting Conditions on the Tool Deflection and Cutting Forces
Abstract:
In this paper by measuring the cutting forces the effect of the tool shape and qualifications (sharp and worn cutting tools of both vee and knife edge profile) and cutting conditions (depth of cut and cutting speed) in the turning operation on the tool deflection and cutting force is investigated. The workpiece material was mild steel and the cutting tool was made of high speed steel. Cutting forces were measured by a dynamometer (type P.E.I. serial No 154). The dynamometer essentially consisted of a cantilever structure which held the cutting tool. Deflection of the cantilever was measured by an L.V.D.T (Mercer 122) deflection indicator. No cutting fluid was used during the turning operations. A modern CNC lathe machine (Okuma LH35-N) was used for the tests. It was noted that worn vee profile tools tended to produce a greater increase in the vertical force component than the axial component, whereas knife tools tended to show a more pronounced increase in the axial component.Keywords: Cutting force, Tool deflection, Turning, Cuttingconditions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3352265 Neural Network Monitoring Strategy of Cutting Tool Wear of Horizontal High Speed Milling
Authors: Kious Mecheri, Hadjadj Abdechafik, Ameur Aissa
Abstract:
The wear of cutting tool degrades the quality of the product in the manufacturing processes. The on line monitoring of the cutting tool wear level is very necessary to prevent the deterioration of the quality of machining. Unfortunately there is not a direct manner to measure the cutting tool wear on line. Consequently we must adopt an indirect method where wear will be estimated from the measurement of one or more physical parameters appearing during the machining process such as the cutting force, the vibrations, or the acoustic emission etc…. In this work, a neural network system is elaborated in order to estimate the flank wear from the cutting force measurement and the cutting conditions.
Keywords: Flank wear, cutting forces, high speed milling, signal processing, neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2578264 Implementation of On-Line Cutting Stock Problem on NC Machines
Authors: Jui P. Hung, Hsia C. Chang, Yuan L. Lai
Abstract:
Introduction applicability of high-speed cutting stock problem (CSP) is presented in this paper. Due to the orders continued coming in from various on-line ways for a professional cutting company, to stay competitive, such a business has to focus on sustained production at high levels. In others words, operators have to keep the machine running to stay ahead of the pack. Therefore, the continuous stock cutting problem with setup is proposed to minimize the cutting time and pattern changing time to meet the on-line given demand. In this paper, a novel method is proposed to solve the problem directly by using cutting patterns directly. A major advantage of the proposed method in series on-line production is that the system can adjust the cutting plan according to the floating orders. Examples with multiple items are demonstrated. The results show considerable efficiency and reliability in high-speed cutting of CSP.
Keywords: Cutting stock, Optimization, Heuristics
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1729263 The Effect of Nose Radius on Cutting Force and Temperature during Machining Titanium Alloy (Ti-6Al-4V)
Authors: Moaz H. Ali, M. N. M. Ansari
Abstract:
This paper presents a study the effect of nose radius (Rz-mm) on cutting force components and temperatures during the machining simulation in an orthogonal cutting process for titanium alloy (Ti-6Al-4V). The cutting process was performed at various nose radiuses (Rz-mm) while the depth of cut (d-mm), feed rate (fmm/ tooth) and cutting speed (vc-m/ min) were remained constant. The main cutting force (Fc), feed cutting force (Ft) and temperatures were estimated by using finite element modeling (FEM) through ABAQUS/EXPLICIT software and the simulation was developed the two-dimension via an orthogonal cutting process during machining titanium alloy (Ti-6Al-4V). The results led to the conclusion that the nose radius (Rz-mm) has affected directly on the cutting force components. However, temperature gave no indication or has no significant relation with nose radius during machining titanium alloy (Ti-6Al-4V). Hence, any increase or decrease in the nose radius (Rzmm) during machining operation led to effect on the cutting forces and thus it will be effective on surface finish, quality, and quantity of products.
Keywords: Finite element modeling (FEM), nose radius, cutting force, temperature, titanium alloy (Ti-6Al-4V).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3010262 Development of a Water-Jet Assisted Underwater Laser Cutting Process
Authors: Suvradip Mullick, Yuvraj K. Madhukar, Subhranshu Roy, Ashish K. Nath
Abstract:
We present the development of a new underwater laser cutting process in which a water-jet has been used along with the laser beam to remove the molten material through kerf. The conventional underwater laser cutting usually utilizes a high pressure gas jet along with laser beam to create a dry condition in the cutting zone and also to eject out the molten material. This causes a lot of gas bubbles and turbulence in water, and produces aerosols and waste gas. This may cause contamination in the surrounding atmosphere while cutting radioactive components like burnt nuclear fuel. The water-jet assisted underwater laser cutting process produces much less turbulence and aerosols in the atmosphere. Some amount of water vapor bubbles is formed at the laser-metal-water interface; however, they tend to condense as they rise up through the surrounding water. We present the design and development of a water-jet assisted underwater laser cutting head and the parametric study of the cutting of AISI 304 stainless steel sheets with a 2 kW CW fiber laser. The cutting performance is similar to that of the gas assist laser cutting; however, the process efficiency is reduced due to heat convection by water-jet and laser beam scattering by vapor. This process may be attractive for underwater cutting of nuclear reactor components.Keywords: Laser, underwater cutting, water-jet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4661261 Effect of Dry Cutting on Force and Tool Life When Machining Aerospace Material
Authors: K.Kadirgama, M.M.Noor, K.A. Abou-El-Hossein, H.H.Habeeb, M.M. Rahman, B.Mohamad, R.A. Bakar
Abstract:
Cutting fluids, usually in the form of a liquid, are applied to the chip formation zone in order to improve the cutting conditions. Cutting fluid can be expensive and represents a biological and environmental hazard that requires proper recycling and disposal, thus adding to the cost of the machining operation. For these reasons dry cutting or dry machining has become an increasingly important approach; in dry machining no coolant or lubricant is used. This paper discussed the effect of the dry cutting on cutting force and tool life when machining aerospace materials (Haynes 242) with using two different coated carbide cutting tools (TiAlN and TiN/MT-TiCN/TiN). Response surface method (RSM) was used to minimize the number of experiments. ParTiAlN Swarm Optimisation (PSO) models were developed to optimize the machining parameters (cutting speed, federate and axial depth) and obtain the optimum cutting force and tool life. It observed that carbide cutting tool coated with TiAlN performed better in dry cutting compared with TiN/MT-TiCN/TiN. On other hand, TiAlN performed more superior with using of 100 % water soluble coolant. Due to the high temperature produced by aerospace materials, the cutting tool still required lubricant to sustain the heat transfer from the workpiece.Keywords: Dry cutting, partial swarm optimisation, response surface method, tool life
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2530260 Effect of Composite Material on Damping Capacity Improvement of Cutting Tool in Machining Operation Using Taguchi Approach
Authors: S. Ghorbani, N. I. Polushin
Abstract:
Chatter vibrations, occurring during cutting process, cause vibration between the cutting tool and workpiece, which deteriorates surface roughness and reduces tool life. The purpose of this study is to investigate the influence of cutting parameters and tool construction on surface roughness and vibration in turning of aluminum alloy AA2024. A new design of cutting tool is proposed, which is filled up with epoxy granite in order to improve damping capacity of the tool. Experiments were performed at the lathe using carbide cutting insert coated with TiC and two different cutting tools made of AISI 5140 steel. Taguchi L9 orthogonal array was applied to design of experiment and to optimize cutting conditions. By the help of signal-to-noise ratio and analysis of variance the optimal cutting condition and the effect of the cutting parameters on surface roughness and vibration were determined. Effectiveness of Taguchi method was verified by confirmation test. It was revealed that new cutting tool with epoxy granite has reduced vibration and surface roughness due to high damping properties of epoxy granite in toolholder.
Keywords: ANOVA, damping capacity, surface roughness, Taguchi method, vibration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3065259 Prediction of Cutting Tool Life in Drilling of Reinforced Aluminum Alloy Composite Using a Fuzzy Method
Authors: Mohammed T. Hayajneh
Abstract:
Machining of Metal Matrix Composites (MMCs) is very significant process and has been a main problem that draws many researchers to investigate the characteristics of MMCs during different machining process. The poor machining properties of hard particles reinforced MMCs make drilling process a rather interesting task. Unlike drilling of conventional materials, many problems can be seriously encountered during drilling of MMCs, such as tool wear and cutting forces. Cutting tool wear is a very significant concern in industries. Cutting tool wear not only influences the quality of the drilled hole, but also affects the cutting tool life. Prediction the cutting tool life during drilling is essential for optimizing the cutting conditions. However, the relationship between tool life and cutting conditions, tool geometrical factors and workpiece material properties has not yet been established by any machining theory. In this research work, fuzzy subtractive clustering system has been used to model the cutting tool life in drilling of Al2O3 particle reinforced aluminum alloy composite to investigate of the effect of cutting conditions on cutting tool life. This investigation can help in controlling and optimizing of cutting conditions when the process parameters are adjusted. The built model for prediction the tool life is identified by using drill diameter, cutting speed, and cutting feed rate as input data. The validity of the model was confirmed by the examinations under various cutting conditions. Experimental results have shown the efficiency of the model to predict cutting tool life.
Keywords: Composite, fuzzy, tool life, wear.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2088258 The Effect of Multipass Cutting in Grinding Operation
Authors: M. A. Kamely, A. Y. Bani Hashim, S. H. Yahaya, H. Sihombing, H. Hazman
Abstract:
Grinding requires high specific energy and the consequent development of high temperature at tool-workpiece contact zone impairs workpiece quality by inducing thermal damage to the surface. Finishing grinding process requires component to be cut more than one pass. This paper deals with an investigation on the effect of multipass cutting on grinding performance in term of surface roughness and surface defect. An experimental set-up has been developed for this and a detailed comparison has been done with a single pass and various numbers of cutting pass. Results showed that surface roughness increase with the increase in a number of cutting pass. Good surface finish of 0.26μm was obtained for single pass cutting and 0.73μm for twenty pass cutting. It was also observed that the thickness of the white layer increased with the increased in a number of cutting pass.
Keywords: Cylindrical grinding, Multipass cutting, Surface roughness, Surface defect.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2578257 Analytical Cutting Forces Model of Helical Milling Operations
Authors: Changyi Liu, Gui Wang, Matthew Dargusch
Abstract:
Helical milling operations are used to generate or enlarge boreholes by means of a milling tool. The bore diameter can be adjusted through the diameter of the helical path. The kinematics of helical milling on a three axis machine tool is analysed firstly. The relationships between processing parameters, cutting tool geometry characters with machined hole feature are formulated. The feed motion of the cutting tool has been decomposed to plane circular feed and axial linear motion. In this paper, the time varying cutting forces acted on the side cutting edges and end cutting edges of the flat end cylinder miller is analysed using a discrete method separately. These two components then are combined to produce the cutting force model considering the complicated interaction between the cutters and workpiece. The time varying cutting force model describes the instantaneous cutting force during processing. This model could be used to predict cutting force, calculate statics deflection of cutter and workpiece, and also could be the foundation of dynamics model and predicting chatter limitation of the helical milling operations.Keywords: Helical milling, Hole machining, Cutting force, Analytical model, Time domain
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3148256 Testing of DISAL D240 and D420 Ceramic Tool Materials with an Interrupted Cut Simulator
Authors: Robert Cep, Marek Sadilek, Lenka Ocenasova, Josef Brychta, Michal Hatala, Branimir Barisic
Abstract:
This paper presents a solution for ceramic cutting tools availability in interrupted machining. Experiments were performed on a special fixture – the interrupted cut simulator. This fixture was constructed at our Department of Machining and Assembly within the scope of a project by the Czech Science Foundation. The goals of the tests were to contribute to the wider usage of these cutting materials in machining, especially in interrupted machining. Through the centuries, producers of ceramic cutting tools have taken big steps forward. Namely, increasing durability in maintaining high levels of strength and hardness lends an advantage. Some producers of these materials advise cutting inserts for interrupted machining at the present time [1, 2].
Keywords: Ceramic cutting tool, cutting tool tests, interrupted cutting, machining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1519255 A New Heuristic Approach for the Stock- Cutting Problems
Authors: Stephen C. H. Leung, Defu Zhang
Abstract:
This paper addresses a stock-cutting problem with rotation of items and without the guillotine cutting constraint. In order to solve the large-scale problem effectively and efficiently, we propose a simple but fast heuristic algorithm. It is shown that this heuristic outperforms the latest published algorithms for large-scale problem instances.
Keywords: Combinatorial optimization, heuristic, large-scale, stock-cutting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1685254 Method and Experiment of Fabricating and Cutting the Burr for Y Shape Nanochannel
Authors: Zone-Ching Lin, Hao-Yuan Jheng, Shih-Hung Ma
Abstract:
The present paper proposes using atomic force microscopy (AFM) and the concept of specific down force energy (SDFE) to establish a method for fabricating and cutting the burr for Y shape nanochannel on silicon (Si) substrate. For fabricating Y shape nanochannel, it first makes the experimental cutting path planning for fabricating Y shape nanochannel until the fifth cutting layer. Using the constant down force by AFM and SDFE theory and following the experimental cutting path planning, the cutting depth and width of each pass of Y shape nanochannel can be predicted by simulation. The paper plans the path for cutting the burr at the edge of Y shape nanochannel. Then, it carries out cutting the burr along the Y nanochannel edge by using a smaller down force. The height of standing burr at the edge is required to be below the set value of 0.54 nm. The results of simulation and experiment of fabricating and cutting the burr for Y shape nanochannel is further compared.Keywords: Atomic force microscopy, nanochannel, specific down force energy, Y shape, burr, silicon.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1082253 3D Modeling of Temperature by Finite Element in Machining with Experimental Authorization
Authors: P. Mottaghizadeh, M. Bagheri
Abstract:
In the present paper, the three-dimensional temperature field of tool is determined during the machining and compared with experimental work on C45 workpiece using carbide cutting tool inserts. During the metal cutting operations, high temperature is generated in the tool cutting edge which influence on the rate of tool wear. Temperature is most important characteristic of machining processes; since many parameters such as cutting speed, surface quality and cutting forces depend on the temperature and high temperatures can cause high mechanical stresses which lead to early tool wear and reduce tool life. Therefore, considerable attention is paid to determine tool temperatures. The experiments are carried out for dry and orthogonal machining condition. The results show that the increase of tool temperature depends on depth of cut and especially cutting speed in high range of cutting conditions.Keywords: Finite element method, Machining, Temperature measurement, Thermal fields
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2075252 New Regression Model and I-Kaz Method for Online Cutting Tool Wear Monitoring
Authors: Jaharah A. Ghani, Muhammad Rizal, Ahmad Sayuti, Mohd Zaki Nuawi, Mohd Nizam Ab. Rahman, Che Hassan Che Haron
Abstract:
This study presents a new method for detecting the cutting tool wear based on the measured cutting force signals using the regression model and I-kaz method. The detection of tool wear was done automatically using the in-house developed regression model and 3D graphic presentation of I-kaz 3D coefficient during machining process. The machining tests were carried out on a CNC turning machine Colchester Master Tornado T4 in dry cutting condition, and Kistler 9255B dynamometer was used to measure the cutting force signals, which then stored and displayed in the DasyLab software. The progression of the cutting tool flank wear land (VB) was indicated by the amount of the cutting force generated. Later, the I-kaz was used to analyze all the cutting force signals from beginning of the cut until the rejection stage of the cutting tool. Results of the IKaz analysis were represented by various characteristic of I-kaz 3D coefficient and 3D graphic presentation. The I-kaz 3D coefficient number decreases when the tool wear increases. This method can be used for real time tool wear monitoring.Keywords: mathematical model, I-kaz method, tool wear
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2399251 Using Single Decision Tree to Assess the Impact of Cutting Conditions on Vibration
Authors: S. Ghorbani, N. I. Polushin
Abstract:
Vibration during machining process is crucial since it affects cutting tool, machine, and workpiece leading to a tool wear, tool breakage, and an unacceptable surface roughness. This paper applies a nonparametric statistical method, single decision tree (SDT), to identify factors affecting on vibration in machining process. Workpiece material (AISI 1045 Steel, AA2024 Aluminum alloy, A48-class30 Gray Cast Iron), cutting tool (conventional, cutting tool with holes in toolholder, cutting tool filled up with epoxy-granite), tool overhang (41-65 mm), spindle speed (630-1000 rpm), feed rate (0.05-0.075 mm/rev) and depth of cut (0.05-0.15 mm) were used as input variables, while vibration was the output parameter. It is concluded that workpiece material is the most important parameters for natural frequency followed by cutting tool and overhang.Keywords: Cutting condition, vibration, natural frequency, decision tree, CART algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1434250 Influence of Thermal and Mechanical Shocks to Cutting Edge Tool Life
Authors: Robert Cep, Lenka Ocenasova, Jana Novakova, Karel Kouril, Jan Valicek, Branimir Barisic
Abstract:
This paper deals with the problem of thermal and mechanical shocks, which rising during operation, mostly at interrupted cut. Here will be solved their impact on the cutting edge tool life, the impact of coating technology on resistance to shocks and experimental determination of tool life in heating flame. Resistance of removable cutting edges against thermal and mechanical shock is an important indicator of quality as well as its abrasion resistance. Breach of the edge or its crumble may occur due to cyclic loading. We can observe it not only during the interrupted cutting (milling, turning areas abandoned hole or slot), but also in continuous cutting. This is due to the volatility of cutting force on cutting. Frequency of the volatility in this case depends on the type of rising chips (chip size element). For difficult-to-machine materials such as austenitic steel particularly happened at higher cutting speeds for the localization of plastic deformation in the shear plane and for the inception of separate elements substantially continuous chips. This leads to variations of cutting forces substantially greater than for other types of steel.Keywords: Cutting Tool Life, Heating, Mechanical Shocks, Thermal Shocks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2031249 Optimization of Cutting Parameters during Machining of Fine Grained Cemented Carbides
Authors: Josef Brychta, Jiri Kratochvil, Marek Pagac
Abstract:
The group of progressive cutting materials can include non-traditional, emerging and less-used materials that can be an efficient use of cutting their lead to a quantum leap in the field of machining. This is essentially a “superhard” materials (STM) based on polycrystalline diamond (PCD) and polycrystalline cubic boron nitride (PCBN) cutting performance ceramics and development is constantly "perfecting" fine coated cemented carbides. The latter cutting materials are broken down by two parameters, toughness and hardness. A variation of alloying elements is always possible to improve only one of each parameter. Reducing the size of the core on the other hand doing achieves "contradictory" properties, namely to increase both hardness and toughness.
Keywords: Grained cutting materials difficult to machine materials, optimum utilization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1573248 Progressive Strategy of Milling by means of Tool Axis Inclination Angle
Authors: Sadílek M., Čep R.
Abstract:
This work deals with problems of tool axis inclination angles in ball-end milling. Tool axis inclination angle contributes to improvement of functional surface properties (surface integrity - surface roughness, residual stress, micro hardness, etc.), decreasing cutting forces and improving production. By milling with ball-end milling tool, using standard way of cutting, when work piece and cutting tool contain right angle, we have zero cutting speed on edge. At this point cutting tool only pushes material into the work piece. Here we can observe the following undesirable effects - chip contraction, increasing of cutting temperature, increasing vibrations or creation of built-up edge. These effects have negative results – low quality of surface and decreasing of tool life (in the worse case even it is pinching out). These effects can be eliminated with the tilt of cutting tool or tilt of work piece.
Keywords: CAD/CAM system, tool axis inclination angle, ballend milling, surface roughness, cutting forces.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1853247 Development of a Methodology for Processing of Drilling Operations
Authors: Majid Tolouei-Rad, Ankit Shah
Abstract:
Drilling is the most common machining operation and it forms the highest machining cost in many manufacturing activities including automotive engine production. The outcome of this operation depends upon many factors including utilization of proper cutting tool geometry, cutting tool material and the type of coating used to improve hardness and resistance to wear, and also cutting parameters. With the availability of a large array of tool geometries, materials and coatings, is has become a challenging task to select the best tool and cutting parameters that would result in the lowest machining cost or highest profit rate. This paper describes an algorithm developed to help achieve good performances in drilling operations by automatically determination of proper cutting tools and cutting parameters. It also helps determine machining sequences resulting in minimum tool changes that would eventually reduce machining time and cost where multiple tools are used.
Keywords: Cutting tool, drilling, machining, algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3350246 Surface Roughness and MRR Effect on Manual Plasma Arc Cutting Machining
Authors: R. Bhuvenesh, M.H. Norizaman, M.S. Abdul Manan
Abstract:
Industrial surveys shows that manufacturing companies define the qualities of thermal removing process based on the dimension and physical appearance of the cutting material surface. Therefore, the roughness of the surface area of the material cut by the plasma arc cutting process and the rate of the removed material by the manual plasma arc cutting machine was importantly considered. Plasma arc cutter Selco Genesis 90 was used to cut Standard AISI 1017 Steel of 200 mm x100 mm x 6 mm manually based on the selected parameters setting. The material removal rate (MRR) was measured by determining the weight of the specimens before and after the cutting process. The surface roughness (SR) analysis was conducted using Mitutoyo CS-3100 to determine the average roughness value (Ra). Taguchi method was utilized to achieve optimum condition for both outputs studied. The microstructure analysis in the region of the cutting surface is performed using SEM. The results reveal that the SR values are inversely proportional to the MRR values. The quality of the surface roughness depends on the dross peak that occurred after the cutting process.Keywords: Material removal rate, plasma arc cutting, surface roughness, Taguchi method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5677245 Advance in Monitoring and Process Control of Surface Roughness
Authors: Somkiat Tangjitsitcharoen, Siripong Damrongthaveesak
Abstract:
This paper presents an advance in monitoring and process control of surface roughness in CNC machine for the turning and milling processes. An integration of the in-process monitoring and process control of the surface roughness is proposed and developed during the machining process by using the cutting force ratio. The previously developed surface roughness models for turning and milling processes of the author are adopted to predict the inprocess surface roughness, which consist of the cutting speed, the feed rate, the tool nose radius, the depth of cut, the rake angle, and the cutting force ratio. The cutting force ratios obtained from the turning and the milling are utilized to estimate the in-process surface roughness. The dynamometers are installed on the tool turret of CNC turning machine and the table of 5-axis machining center to monitor the cutting forces. The in-process control of the surface roughness has been developed and proposed to control the predicted surface roughness. It has been proved by the cutting tests that the proposed integration system of the in-process monitoring and the process control can be used to check the surface roughness during the cutting by utilizing the cutting force ratio.
Keywords: Turning, milling, monitoring, surface roughness, cutting force ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2126244 An Efficient Approach for Shear Behavior Definition of Plant Stalk
Authors: M. R. Kamandar, J. Massah
Abstract:
The information of the impact cutting behavior of plants stalk plays an important role in the design and fabrication of plants cutting equipment. It is difficult to investigate a theoretical method for defining cutting properties of plants stalks because the cutting process is complex. Thus, it is necessary to set up an experimental approach to determine cutting parameters for a single stalk. To measure the shear force, shear energy and shear strength of plant stalk, a special impact cutting tester was fabricated. It was similar to an Izod impact cutting tester for metals but a cutting blade and data acquisition system were attached to the end of pendulum's arm. The apparatus was included four strain gages and a digital indicator to show the real-time cutting force of plant stalk. To measure the shear force and also testing the apparatus, two plants’ stalks, like buxus and privet, were selected. The samples (buxus and privet stalks) were cut under impact cutting process at four loading rates 1, 2, 3 and 4 m.s-1 and three internodes fifth, tenth and fifteenth by the apparatus. At buxus cutting analysis: the minimum value of cutting energy was obtained at fifth internode and loading rate 4 m.s-1 and the maximum value of shear energy was obtained at fifteenth internode and loading rate 1 m.s-1. At privet cutting analysis: the minimum value of shear consumption energy was obtained at fifth internode and loading rate: 4 m.s-1 and the maximum value of shear energy was obtained at fifteenth internode and loading rate: 1 m.s-1. The statistical analysis at both plants showed that the increase of impact cutting speed would decrease the shear consumption energy and shear strength. In two scenarios, the results showed that with increase the cutting speed, shear force would decrease.
Keywords: Buxus, privet, impact cutting, shear energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 830243 Dimensional Accuracy of CNTs/PMMA Parts and Holes Produced by Laser Cutting
Authors: A. Karimzad Ghavidel, M. Zadshakouyan
Abstract:
Laser cutting is a very common production method for cutting 2D polymeric parts. Developing of polymer composites with nano-fibers makes important their other properties like laser workability. The aim of this research is investigation of the influence different laser cutting conditions on the dimensional accuracy of parts and holes from poly methyl methacrylate (PMMA)/carbon nanotubes (CNTs) material. Experiments were carried out by considering of CNTs (in four level 0,0.5, 1 and 1.5% wt.%), laser power (60, 80, and 100 watt) and cutting speed 20, 30, and 40 mm/s as input variable factors. The results reveal that CNTs adding improves the laser workability of PMMA and the increasing of power has a significant effect on the part and hole size. The findings also show cutting speed is effective parameter on the size accuracy. Eventually, the statistical analysis of results was done, and calculated mathematical equations by the regression are presented for determining relation between input and output factor.
Keywords: Dimensional accuracy-PMMA-CNTs-laser cutting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1190242 Effects of Milling Process Parameters on Cutting Forces and Surface Roughness When Finishing Ti6al4v Produced by Electron Beam Melting
Authors: Abdulmajeed Dabwan, Saqib Anwar, Ali Al-Samhan
Abstract:
Electron Beam Melting (EBM) is a metal powder bed-based Additive Manufacturing (AM) technology, which uses computer-controlled electron beams to create fully dense three-dimensional near-net-shaped parts from metal powder. It gives the ability to produce any complex parts directly from a computer-aided design (CAD) model without tools and dies, and with a variety of materials. However, the quality of the surface finish in EBM process has limitations to meeting the performance requirements of additively manufactured components. The aim of this study is to investigate the cutting forces induced during milling Ti6Al4V produced by EBM as well as the surface quality of the milled surfaces. The effects of cutting speed and radial depth of cut on the cutting forces, surface roughness, and surface morphology were investigated. The results indicated that the cutting speed was found to be proportional to the resultant cutting force at any cutting conditions while the surface roughness improved significantly with the increase in cutting speed and radial depth of cut.
Keywords: Electron beam melting, additive manufacturing, Ti6Al4V, surface morphology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 719241 Experimental Analysis and Optimization of Process Parameters in Plasma Arc Cutting Machine of EN-45A Material Using Taguchi and ANOVA Method
Authors: Sahil Sharma, Mukesh Gupta, Raj Kumar, N. S Bindra
Abstract:
This paper presents an experimental investigation on the optimization and the effect of the cutting parameters on Material Removal Rate (MRR) in Plasma Arc Cutting (PAC) of EN-45A Material using Taguchi L 16 orthogonal array method. Four process variables viz. cutting speed, current, stand-off-distance and plasma gas pressure have been considered for this experimental work. Analysis of variance (ANOVA) has been performed to get the percentage contribution of each process parameter for the response variable i.e. MRR. Based on ANOVA, it has been observed that the cutting speed, current and the plasma gas pressure are the major influencing factors that affect the response variable. Confirmation test based on optimal setting shows the better agreement with the predicted values.Keywords: Analysis of variance, Material removal rate, plasma arc cutting, Taguchi method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1255