Search results for: thermoelastic stress
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1058

Search results for: thermoelastic stress

1058 Application of Residual Correction Method on Hyperbolic Thermoelastic Response of Hollow Spherical Medium in Rapid Transient Heat Conduction

Authors: Po-Jen Su, Huann-Ming Chou

Abstract:

In this article, we used the residual correction method to deal with transient thermoelastic problems with a hollow spherical region when the continuum medium possesses spherically isotropic thermoelastic properties. Based on linear thermoelastic theory, the equations of hyperbolic heat conduction and thermoelastic motion were combined to establish the thermoelastic dynamic model with consideration of the deformation acceleration effect and non-Fourier effect under the condition of transient thermal shock. The approximate solutions of temperature and displacement distributions are obtained using the residual correction method based on the maximum principle in combination with the finite difference method, making it easier and faster to obtain upper and lower approximations of exact solutions. The proposed method is found to be an effective numerical method with satisfactory accuracy. Moreover, the result shows that the effect of transient thermal shock induced by deformation acceleration is enhanced by non-Fourier heat conduction with increased peak stress. The influence on the stress increases with the thermal relaxation time.

Keywords: Maximum principle, non-Fourier heat conduction, residual correction method, thermo-elastic response.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1718
1057 A Problem in Microstretch Thermoelastic Diffusive Medium

Authors: Devinder Singh, Arbind Kumar, Rajneesh Kumar

Abstract:

The general solution of the equations for a homogeneous isotropic microstretch thermo elastic medium with mass diffusion for two dimensional problems is obtained due to normal and tangential forces. The Integral transform technique is used to obtain the components of displacements, microrotation, stress and mass concentration, temperature change and mass concentration. A particular case of interest is deduced from the present investigation.

Keywords: Normal and tangential force, Microstretch, thermoelastic, The Integral transform technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2247
1056 Adomian’s Decomposition Method to Functionally Graded Thermoelastic Materials with Power Law

Authors: Hamdy M. Youssef, Eman A. Al-Lehaibi

Abstract:

This paper presents an iteration method for the numerical solutions of a one-dimensional problem of generalized thermoelasticity with one relaxation time under given initial and boundary conditions. The thermoelastic material with variable properties as a power functional graded has been considered. Adomian’s decomposition techniques have been applied to the governing equations. The numerical results have been calculated by using the iterations method with a certain algorithm. The numerical results have been represented in figures, and the figures affirm that Adomian’s decomposition method is a successful method for modeling thermoelastic problems. Moreover, the empirical parameter of the functional graded, and the lattice design parameter have significant effects on the temperature increment, the strain, the stress, the displacement.

Keywords: Adomian, Decomposition Method, Generalized Thermoelasticity, algorithm, empirical parameter, lattice design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 489
1055 Thermoelastic Waves in Anisotropic Platesusing Normal Mode Expansion Method with Thermal Relaxation Time

Authors: K.L. Verma

Abstract:

Analysis for the generalized thermoelastic Lamb waves, which propagates in anisotropic thin plates in generalized thermoelasticity, is presented employing normal mode expansion method. The displacement and temperature fields are expressed by a summation of the symmetric and antisymmetric thermoelastic modes in the surface thermal stresses and thermal gradient free orthotropic plate, therefore the theory is particularly appropriate for waveform analyses of Lamb waves in thin anisotropic plates. The transient waveforms excited by the thermoelastic expansion are analyzed for an orthotropic thin plate. The obtained results show that the theory provides a quantitative analysis to characterize anisotropic thermoelastic stiffness properties of plates by wave detection. Finally numerical calculations have been presented for a NaF crystal, and the dispersion curves for the lowest modes of the symmetric and antisymmetric vibrations are represented graphically at different values of thermal relaxation time. However, the methods can be used for other materials as well

Keywords: Anisotropic, dispersion, frequency, normal, thermoelasticity, wave modes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1796
1054 Thermoelastic Damping of Inextensional Hemispherical Shell

Authors: S. Y. Choi, Y. H. Na, J. H. Kim

Abstract:

In this work, thermoelastic damping effect on the hemi- spherical shells is investigated. The material is selected silicon, and heat conduction equation for thermal flow is solved to obtain the temperature profile in which bending approximation with inextensional assumption of the model. Using the temperature profile, eigen-value analysis is performed to get the natural frequencies of hemispherical shells. Effects of mode numbers, radii and radial thicknesses of the model on the natural frequencies are analyzed in detail. Furthermore, the quality factor (Q-factor) is defined, and discussed for the ring and hemispherical shell.

Keywords: Thermoelastic damping, hemispherical shell, quality factor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1975
1053 On Uniqueness and Continuous Dependence in the Theory of Micropolar Thermoelastic Mixtures

Authors: Catalin Gales, Ionel Dumitrel Ghiba

Abstract:

This paper studies questions of continuous data dependence and uniqueness for solutions of initial boundary value problems in linear micropolar thermoelastic mixtures. Logarithmic convexity arguments are used to establish results with no definiteness assumptions upon the internal energy.

Keywords: Cellular materials, continuous dependence, micro polar mixtures, uniqueness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1781
1052 Stress Analysis of Laminated Cylinders Subject to the Thermomechanical Loads

Authors: Ş. Aksoy, A. Kurşun, E. Çetin, M. R. Haboğlu

Abstract:

In this study, thermo elastic stress analysis is  performed on a cylinder made of laminated isotropic materials under  thermomechanical loads. Laminated cylinders have many  applications such as aerospace, automotive and nuclear plant in the  industry. These cylinders generally performed under  thermomechanical loads. Stress and displacement distribution of the  laminated cylinders are determined using by analytical method both  thermal and mechanical loads. Based on the results, materials  combination plays an important role on the stresses distribution along  the radius. Variation of the stresses and displacements along the  radius are presented as graphs. Calculations program are prepared  using MATLAB® by authors.

 

Keywords: Isotropic materials, laminated cylinders, thermoelastic stress, thermomechanical load.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3692
1051 Influences of Thermal Relaxation Times on Generalized Thermoelastic Longitudinal Waves in Circular Cylinder

Authors: Fatimah A. Alshaikh

Abstract:

This paper is concerned with propagation of thermoelastic longitudinal vibrations of an infinite circular cylinder, in the context of the linear theory of generalized thermoelasticity with two relaxation time parameters (Green and Lindsay theory). Three displacement potential functions are introduced to uncouple the equations of motion. The frequency equation, by using the traction free boundary conditions, is given in the form of a determinant involving Bessel functions. The roots of the frequency equation give the value of the characteristic circular frequency as function of the wave number. These roots, which correspond to various modes, are numerically computed and presented graphically for different values of the thermal relaxation times. It is found that the influences of the thermal relaxation times on the amplitudes of the elastic and thermal waves are remarkable. Also, it is shown in this study that the propagation of thermoelastic longitudinal vibrations based on the generalized thermoelasticity can differ significantly compared with the results under the classical formulation. A comparison of the results for the case with no thermal effects shows well agreement with some of the corresponding earlier results.

Keywords: Wave propagation, longitudinal vibrations, circular cylinder, generalized thermoelasticity, Thermal relaxation times.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2135
1050 Temperature-Based Detection of Initial Yielding Point in Loading of Tensile Specimens Made of Structural Steel

Authors: Aqsa Jamil, Hiroshi Tamura, Hiroshi Katsuchi, Jiaqi Wang

Abstract:

Yield point represents the upper limit of forces which can be applied on a specimen without causing any permanent deformation. After yielding, the behavior of specimen suddenly changes including the possibility of cracking or buckling. So, the accumulation of damage or type of fracture changes depending on this condition. As it is difficult to accurately detect yield points of the several stress concentration points in structural steel specimens, an effort has been made in this research work to develop a convenient technique using thermography (temperature-based detection) during tensile tests for the precise detection of yield point initiation. To verify the applicability of thermography camera, tests were conducted under different loading conditions and measuring the deformation by installing various strain gauges and monitoring the surface temperature with the help of thermography camera. The yield point of specimens was estimated by the help of temperature dip which occurs due to the thermoelastic effect during the plastic deformation. The scattering of the data has been checked by performing repeatability analysis. The effect of temperature imperfection and light source has been checked by carrying out the tests at daytime as well as midnight and by calculating the signal to noise ratio (SNR) of the noised data from the infrared thermography camera, it can be concluded that the camera is independent of testing time and the presence of a visible light source. Furthermore, a fully coupled thermal-stress analysis has been performed by using Abaqus/Standard exact implementation technique to validate the temperature profiles obtained from the thermography camera and to check the feasibility of numerical simulation for the prediction of results extracted with the help of thermographic technique.

Keywords: Signal to noise ratio, thermoelastic effect, thermography, yield point.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 295
1049 Optimal Control of Piezo-Thermo-Elastic Beams

Authors: Marwan Abukhaled, Ibrahim Sadek

Abstract:

This paper presents the vibrations suppression of a thermoelastic beam subject to sudden heat input by a distributed piezoelectric actuators. An optimization problem is formulated as the minimization of a quadratic functional in terms of displacement and velocity at a given time and with the least control effort. The solution method is based on a combination of modal expansion and variational approaches. The modal expansion approach is used to convert the optimal control of distributed parameter system into the optimal control of lumped parameter system. By utilizing the variational approach, an explicit optimal control law is derived and the determination of the corresponding displacement and velocity is reduced to solving a set of ordinary differential equations.

Keywords: Optimal control, Thermoelastic beam, variational approach, modal expansion approach

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1360
1048 The Interaction between Hydrogen and Surface Stress in Stainless Steel

Authors: O. Takakuwa, Y. Mano, H. Soyama

Abstract:

This paper reveals the interaction between hydrogen and surface stress in austenitic stainless steel by X-ray diffraction stress measurement and thermal desorption analysis before and after being charged with hydrogen. The surface residual stress was varied by surface finishing using several disc polishing agents. The obtained results show that the residual stress near surface had a significant effect on hydrogen absorption behavior, that is, tensile residual stress promoted the hydrogen absorption and compressive one did opposite. Also, hydrogen induced equi-biaxial stress and this stress has a linear correlation with hydrogen content.

Keywords: Hydrogen embrittlement, Residual stress, Surface finishing, Stainless steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3002
1047 Mathematical Modeling and Analysis of Forced Vibrations in Micro-Scale Microstretch Thermoelastic Simply Supported Beam

Authors: Geeta Partap, Nitika Chugh

Abstract:

The present paper deals with the flexural vibrations of homogeneous, isotropic, generalized micropolar microstretch thermoelastic thin Euler-Bernoulli beam resonators, due to Exponential time varying load. Both the axial ends of the beam are assumed to be at simply supported conditions. The governing equations have been solved analytically by using Laplace transforms technique twice with respect to time and space variables respectively. The inversion of Laplace transform in time domain has been performed by using the calculus of residues to obtain deflection.The analytical results have been numerically analyzed with the help of MATLAB software for magnesium like material. The graphical representations and interpretations have been discussed for Deflection of beam under Simply Supported boundary condition and for distinct considered values of time and space as well. The obtained results are easy to implement for engineering analysis and designs of resonators (sensors), modulators, actuators.

Keywords: Microstretch, deflection, exponential load, Laplace transforms, Residue theorem, simply supported.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 892
1046 The Syllabic Scrutiny of Word Stress in Najdi Saudi Arabic

Authors: Mohammad AL Amro

Abstract:

This study will provide a brief description of the stress in Najdi Arabic dialect as well as Modern Standard Arabic. Beyond the analysis of stress patterns, this paper will also attempt to deal with two important phenomena that affect stress, namely epenthesis/insertion, vowel shortening, and consonant (the glottal stop) deletion.

Keywords: Epenthesis, Najd, stress, vowel shortening.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1945
1045 The Temperature Range in the Simulation of Residual Stress and Hot Tearing During Investment Casting

Authors: Saeid Norouzi, Ali Shams, Hassan Farhangi, Alireza Darvish

Abstract:

Hot tear cracking and residual stress are two different consequences of thermal stress both of which can be considered as casting problem. The purpose of the present study is simulation of the effect of casting shape characteristic on hot tearing and residual stress. This study shows that the temperature range for simulation of hot tearing and residual stress are different. In this study, in order to study the development of thermal stress and to predict the hot tearing and residual stress of shaped casting, MAGMASOFT simulation program was used. The strategy of this research was the prediction of hot tear location using pinpointing hot spot and thermal stress concentration zones. The results shows that existing of stress concentration zone increases the hot tearing probability and consequently reduces the amount of remaining residual stress in casting parts.

Keywords: Hot tearing, residual stress, simulation, investment casting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2674
1044 Thermomechanical Studies in Glass/Epoxy Composite Specimen during Tensile Loading

Authors: K. M. Mohamed Muneer, Raghu V. Prakash, Krishnan Balasubramaniam

Abstract:

This paper presents the results of thermo-mechanical characterization of Glass/Epoxy composite specimens using Infrared Thermography technique. The specimens used for the study were fabricated in-house with three different lay-up sequences and tested on a servo hydraulic machine under uni-axial loading. Infrared Camera was used for on-line monitoring surface temperature changes of composite specimens during tensile deformation. Experimental results showed that thermomechanical characteristics of each type of specimens were distinct. Temperature was found to be decreasing linearly with increasing tensile stress in the elastic region due to thermo-elastic effect. Yield point could be observed by monitoring the change in temperature profile during tensile testing and this value could be correlated with the results obtained from stress-strain response. The extent of prior plastic deformation in the post-yield region influenced the slopes of temperature response during tensile loading. Partial unloading and reloading of specimens post-yield results in change in slope in elastic and plastic regions of composite specimens.

Keywords: Glass/Epoxy composites, Thermomechanical behavior, Infrared Thermography, Thermoelastic slope, Thermoplastic slope.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2022
1043 Effect of Surface Stress on the Deformation around a Nanosized Elliptical Hole: a Finite Element Study

Authors: Weifeng Wang, Xianwei Zeng, Jianping Ding

Abstract:

When the characteristic length of an elastic solid is down to the nanometer level, its deformation behavior becomes size dependent. Surface energy /surface stress have recently been applied to explain such dependency. In this paper, the effect of strain-independent surface stress on the deformation of an isotropic elastic solid containing a nanosized elliptical hole is studied by the finite element method. Two loading cases are considered, in the first case, hoop stress along the rim of the elliptical hole induced by pure surface stress is studied, in the second case, hoop stress around the elliptical opening under combined remote tension and surface stress is investigated. It has been shown that positive surface stress induces compressive hoop stress along the hole, and negative surface stress has opposite effect, maximum hoop stress occurs near the major semi-axes of the ellipse. Under combined loading of remote tension and surface stress, stress concentration around the hole can be either intensified or weakened depending on the sign of the surface stress.

Keywords: Surface stress, finite element method, stress concentration, nanosized elliptical hole

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2022
1042 Interspecific Variation in Heat Stress Tolerance and Oxidative Damage among 15 C3 Species

Authors: Wagdi S. Soliman, Shu-ichi Sugiyama

Abstract:

The C3 plants are frequently suffering from exposure to high temperature stress which limits the growth and yield of these plants. This study seeks to clarify the physiological mechanisms of heat tolerance in relation to oxidative stress in C3 species. Fifteen C3 species were exposed to prolonged moderately high temperature stress 36/30°C for 40 days in a growth chamber. Chlorophyll fluorescence (Fv/Fm) showed great difference among species at 40 days of the stress. The species showed decreases in Fv/Fm and increases in malondialdehyde (MDA) content under stress condition as well as negative correlation between Fv/Fm and MDA (r = -0.61*) at 40 days of the stress. Hydrogen peroxide (H2O2) content before and after stress in addition to its response under stress showed great differences among species. The results suggest that the difference in heat tolerance among C3 species is closely associated with the ability to suppress oxidative damage but not with the content of reactive oxygen species (ROS) which is regulated by complex network.

Keywords: C3 species, Fv/Fm, heat stress, oxidative stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1717
1041 Theoretical Considerations of the Influence of Mechanical Uniaxial Stress on Pixel Readout Circuits

Authors: Georgios C. Dogiamis, Bedrich J. Hosticka, Anton Grabmaier

Abstract:

In this work the effects of uniaxial mechanical stress on a pixel readout circuit are theoretically analyzed. It is the effects of mechanical stress on the in-pixel transistors do not arise at the output, when a correlated double sampling circuit is used. However, mechanical stress effects on the photodiode will directly appear at the readout chain output. Therefore, compensation techniques are needed to overcome this situation. Moreover simulation technique of mechanical stress is proposed and diverse layout as well as design recommendations are put forward, in order to minimize stress related effects on the output of a circuit. he shown, that wever, Moreover, a out

Keywords: mechanical uniaxial stress, pixel readout circuit

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1499
1040 Threshold Stress of the Soil Subgrade Evaluation for Highway Formations

Authors: Elsa Eka Putri, N.S.V Kameswara Rao, M. A. Mannan

Abstract:

The objective of this study is to evaluate the threshold stress of the clay with sand subgrade soil. Threshold stress can be defined as the stress level above which cyclic loading leads to excessive deformation and eventual failure. The thickness determination of highways formations using the threshold stress approach is a more realistic assessment of the soil behaviour because it is subjected to repeated loadings from moving vehicles. Threshold stress can be evaluated by plastic strain criterion, which is based on the accumulated plastic strain behaviour during cyclic loadings [1]. Several conditions of the all-round pressure the subgrade soil namely, zero confinement, low all-round pressure and high all-round pressure are investigated. The threshold stresses of various soil conditions are determined. Threshold stress of the soil are 60%, 31% and 38.6% for unconfined partially saturated sample, low effective stress saturated sample, high effective stress saturated sample respectively.

Keywords: threshold stress, cyclic loading, pore water pressure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2555
1039 Effect of Nano-Silver on Growth of Saffron in Flooding Stress

Authors: N. Rezvani, A. Sorooshzadeh, N. Farhadi

Abstract:

Saffron (Crocus sativus) is cultivated as spices, medicinal and aromatic plant species. At autumn season, heavy rainfall can cause flooding stress and inhibits growth of saffron. Thus this research was conducted to study the effect of silver ion (as an ethylene inhibitor) on growth of saffron under flooding conditions. The corms of saffron were soaked with one concentration of nano silver (0, 40, 80 or 120 ppm) and then planting under flooding stress or non flooding stress conditions. Results showed that number of roots, root length, root fresh and dry weight, leaves fresh and dry weight were reduced by 10 day flooding stress. Soaking saffron corms with 40 or 80 ppm concentration of nano silver rewarded the effect of flooding stress on the root number, by increasing it. Furthermore, 40 ppm of nano silver increased root length in stress. Nano silver 80 ppm in flooding stress, increased leaves dry weight.

Keywords: Flooding stress, Nano-silver, Saffron.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2865
1038 Dissimilar Materials Joint and Effect of Angle Junction on Stress Distribution at Interface

Authors: Ali Baladi, Alireza Fallahi Arezoodar

Abstract:

in dissimilar material joints, failure often occurs along the interface between two materials due to stress singularity. Stress distribution and its concentration depend on materials and geometry of the junction. Inhomogenity of stress distribution at the interface of junction of two materials with different elastic modules and stress concentration in this zone are the main factors resulting in rupture of the junction. Effect of joining angle in the interface of aluminum-polycarbonate will be discussed in this paper. Computer simulation and finite element analysis by ABAQUS showed that convex interfacial joint leads to stress reduction at junction corners in compare with straight joint. This finding is confirmed by photoelastic experimental results.

Keywords: Elastic Modules, Stress Concentration, JoiningAngle, Photoelastic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2135
1037 Estimation of Stress Intensity Factors from Near Crack Tip Field

Authors: Zhuang He, Andrei Kotousov

Abstract:

All current experimental methods for determination of stress intensity factors are based on the assumption that the state of stress near the crack tip is plane stress. Therefore, these methods rely on strain and displacement measurements made outside the near crack tip region affected by the three-dimensional effects or by process zone. In this paper, we develop and validate an experimental procedure for the evaluation of stress intensity factors from the measurements of the out-of-plane displacements in the surface area controlled by 3D effects. The evaluation of stress intensity factors is possible when the process zone is sufficiently small, and the displacement field generated by the 3D effects is fully encapsulated by K-dominance region.

Keywords: Digital image correlation, stress intensity factors, three-dimensional effects, transverse displacement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3173
1036 Response of Chickpea (Cicer arietinum L.) Genotypes to Drought Stress at Different Growth Stages

Authors: Ali. Marjani, M. Farsi, M. Rahimizadeh

Abstract:

Chickpea (Cicer arietinum L.) is one of the important grain legume crops in the world. However, drought stress is a serious threat to chickpea production, and development of drought-resistant varieties is a necessity. Field experiments were conducted to evaluate the response of 8 chickpea genotypes (MCC* 696, 537, 80, 283, 392, 361, 252, 397) and drought stress (S1: non-stress, S2: stress at vegetative growth stage, S3: stress at early bloom, S4: stress at early pod visible) at different growth stages. Experiment was arranged in split plot design with four replications. Difference among the drought stress time was found to be significant for investigated traits except biological yield. Differences were observed for genotypes in flowering time, pod information time, physiological maturation time and yield. Plant height reduced due to drought stress in vegetative growth stage. Stem dry weight reduced due to drought stress in pod visibly. Flowering time, maturation time, pod number, number of seed per plant and yield cause of drought stress in flowering was also reduced. The correlation between yield and number of seed per plant and biological yield was positive. The MCC283 and MCC696 were the high-tolerance genotypes. These results demonstrated that drought stress delayed phonological growth in chickpea and that flowering stage is sensitive.

Keywords: Chickpea, drought stress, growth stage, tolerance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 942
1035 Laser Surface Hardening Considering Coupled Thermoelasticity using an Eulerian Formulations

Authors: Me. Sistaninia, G.H.Farrahi, Ma. Sistaninia

Abstract:

Thermoelastic temperature, displacement, and stress in heat transfer during laser surface hardening are solved in Eulerian formulation. In Eulerian formulations the heat flux is fixed in space and the workpiece is moved through a control volume. In the case of uniform velocity and uniform heat flux distribution, the Eulerian formulations leads to a steady-state problem, while the Lagrangian formulations remains transient. In Eulerian formulations the reduction to a steady-state problem increases the computational efficiency. In this study also an analytical solution is developed for an uncoupled transient heat conduction equation in which a plane slab is heated by a laser beam. The thermal result of the numerical model is compared with the result of this analytical model. Comparing the results shows numerical solution for uncoupled equations are in good agreement with the analytical solution.

Keywords: Coupled thermoelasticity, Finite element, Laser surface hardening, Eulerian formulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1523
1034 Analytical Solution of Stress Distribution ona Hollow Cylindrical Fiber of a Composite with Cylindrical Volume Element under Axial Loading

Authors: M. H. Kargarnovin, K. Momeni

Abstract:

The study of the stress distribution on a hollow cylindrical fiber placed in a composite material is considered in this work and an analytical solution for this stress distribution has been constructed. Finally some parameters such as fiber-s thickness and fiber-s length are considered and their effects on the distribution of stress have been investigated. For finding the governing relations, continuity equations for the axisymmetric problem in cylindrical coordinate (r,o,z) are considered. Then by assuming some conditions and solving the governing equations and applying the boundary conditions, an equation relates the stress applied to the representative volume element with the stress distribution on the fiber has been found.

Keywords: Axial Loading, Composite, Hollow CylindricalFiber, Stress Distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1567
1033 Free Vibration and Buckling of Rectangular Plates under Nonuniform In-Plane Edge Shear Loads

Authors: T. H. Young, Y. J. Tsai

Abstract:

A method for determining the stress distribution of a rectangular plate subjected to two pairs of arbitrarily distributed in-plane edge shear loads is proposed, and the free vibration and buckling of such a rectangular plate are investigated in this work.  The method utilizes two stress functions to synthesize the stress-resultant field of the plate with each of the stress functions satisfying the biharmonic compatibility equation. The sum of stress-resultant fields due to these two stress functions satisfies the boundary conditions at the edges of the plate, from which these two stress functions are determined. Then, the free vibration and buckling of the rectangular plate are investigated by the Galerkin method. Numerical results obtained by this work are compared with those appeared in the literature, and good agreements are observed.

Keywords: Stress analysis, free vibration, plate buckling, nonuniform in-plane edge shear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 689
1032 Intensity of Singular Stress Field at the Corner of Adhesive Layer in Bonded Plate

Authors: Nao-Aki Noda, Yu Zhang, Ken-Tarou Takaishi, Hiroyuki Shibahara

Abstract:

In this paper the strength of adhesive joint under tension and bending is discussed on the basis of intensity of singular stress by the application of FEM. A useful method is presented with focusing on the stress at the edge of interface between the adhesive and adherent obtained by FEM. After analyzing the adhesive joint strength with all material combinations, it is found that to improve the interface strength, thin adhesive layers are desirable because the intensity of singular stress decreases with decreasing the thickness.

Keywords: Adhesive, Adherent, Intensity of singular stress, Bonded strip

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1465
1031 Pulsating Flow of an Incompressible Couple Stress Fluid Between Permeable Beds

Authors: T. K. V. Iyengar, Punnamchandar Bitla

Abstract:

The paper deals with the pulsating flow of an incompressible couple stress fluid between permeable beds. The couple stress fluid is injected into the channel from the lower permeable bed with a certain velocity and is sucked into the upper permeable bed with the same velocity. The flow between the permeable beds is assumed to be governed by couple stress fluid flow equations of V. K. Stokes and that in the permeable regions by Darcy-s law. The equations are solved analytically and the expressions for velocity and volume flux are obtained. The effects of the material parameters are studied numerically and the results are presented through graphs.

Keywords: Pulsating flow, couple stress fluid, permeable beds, mass flux, shear stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2081
1030 Relational Impact of Job Stress on Gender Based Managerial Effectiveness in Ghanaian Organizations

Authors: Jocelyn Sackey, Priscilla Boahemaa, Mohammed A. Sanda

Abstract:

This study explored the relationship between occupational stress and the perceived effectiveness of men and women managers in Ghanaian organizations. The exploration is underlined by attempt to understand the degree to which male and female managers in Ghanaian organizations experience occupational stress at the workplace. The purpose is to examine the sources and extents of occupational stress experienced by male and female managers in Ghana. Data was collected using questionnaires and analyzed using both descriptive statistics and correlation analysis. The results showed that female managers in Ghana are more likely to report of more stress experiences in the workplace than their male counterparts. The female managers are more likely to perceive role conflict and alienation as job stressors while the male managers perceived blocked career as a major source of workplace stress. It is concluded that despite the female managers experiencing enormous level of occupational stress, there was no significant differences between their managerial effectiveness and that of the male.

Keywords: Gender, job stress, managerial effectiveness, organizational environment

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1772
1029 Determination of Stress Concentration Factors of a Steam Turbine Rotor by FEA

Authors: R. Nagendra Babu, K. V. Ramana, K. Mallikarjuna Rao

Abstract:

Stress Concentration Factors are significant in machine design as it gives rise to localized stress when any change in the design of surface or abrupt change in the cross section occurs. Almost all machine components and structural members contain some form of geometrical or microstructural discontinuities. These discontinuities are very dangerous and lead to failure. So, it is very much essential to analyze the stress concentration factors for critical applications like Turbine Rotors. In this paper Finite Element Analysis (FEA) with extremely fine mesh in the vicinity of the blades of Steam Turbine Rotor is applied to determine stress concentration factors. A model of Steam Turbine Rotor is shown in Fig. 1.

Keywords: Stress Concentration Factors, Finite Element Analysis, and ANSYS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3209