
Abstract—Analysis for the generalized thermoelastic Lamb 
waves, which propagates in anisotropic thin plates in generalized 
thermoelasticity, is presented employing normal mode expansion 
method. The displacement and temperature fields are expressed by a 
summation of the symmetric and antisymmetric thermoelastic modes 
in the surface thermal stresses and thermal gradient free orthotropic 
plate, therefore the theory is particularly appropriate for waveform 
analyses of Lamb waves in thin anisotropic plates. The transient 
waveforms excited by the thermoelastic expansion are analyzed for 
an orthotropic thin plate. The obtained results show that the theory 
provides a quantitative analysis to characterize anisotropic 
thermoelastic stiffness properties of plates by wave detection. Finally 
numerical calculations have been presented for a NaF crystal, and the 
dispersion curves for the lowest modes of the symmetric and 
antisymmetric vibrations are represented graphically at different 
values of thermal relaxation time. However, the methods can be used 
for other materials as well. 

Keywords—Anisotropic, dispersion, frequency, normal, 
thermoelasticity,  wave modes. 

I. INTRODUCTION
AVE propagation in an infinite elastic plate is one of 
the classical problems of continuum mechanics 

Achenbach [1]. Detecting damage in composite materials, 
several techniques have been developed; however Lamb wave 
methods have recently emerged as a consistent way to situate 
defects in such materials. Every technique implemented in the 
literature offers their own unique advantages in detecting 
certain types of defects. Lamb waves are a form of elastic 
perturbation that can propagate in a solid plate with free 
boundaries; there are two groups of waves, symmetric and 
anti-symmetric. An extensive theoretical and experimental set 
of data has been available in the literature on the properties of 
plate vibrations, particularly for elastic plates with traction-
free faces. The temperature changes due to the elastic 
deformation cannot be ignored; therefore it is required to 
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determine the thermal and mechanical fields in the body 
concurrently. 

The theory to include the effect of temperature change, 
known as the theory of thermoelasticity, has also been well 
established. According to the theory, the temperature field is 
coupled with the elastic strain field. In thermoelasticity, 
classical heat transfer, Fourier’s conduction equation is 
extensively used in many engineering applications. The 
classical theory of thermoelasticity Nowacki, [2, 3] rests upon 
the hypothesis of the Fourier law of heat conduction, in which 
the temperature distribution is governed by a parabolic-type 
partial differential equation. Consequently, the theory predicts 
that a thermal signal is felt instantaneously everywhere in a 
body. This implies that an infinite speed of propagation of the 
thermal signal, which is impractical from the physical point of 
view, particularly for short-time. Thus, the use of Fourier’s 
equation may result in discrepancies under some special 
conditions, such as low-temperature heat transfer, high-
frequency or ultrahigh heat flux heat transfer, and so on. 
Fourier’s equation should be modified to a non-Fourier 
equation in the above cases. In recent years, the non-Fourier 
equation has gradually become an important research topic for 
its potential importance in many engineering fields. In 
comparison to the conventional theory of coupled 
thermoelasticity based on a parabolic heat equation which 
predicts an infinite speed for the propagation of heat, theories 
involve a hyperbolic heat equation and are referred to as 
generalized thermoelasticity theories. Generalized 
thermoelasticity admits finite speed for the propagation of 
thermoelastic disturbances has received much attention in 
recent years. Lord and Shulman [4] (referred to as the LS 
theory), Green and Lindsay [5] (referred to as the GL theory) 
extended the coupled theory of thermoelasticity by 
introducing the thermal relaxation time(s) in the constitutive 
equations. These theories eliminates the paradox of infinite 
velocity of heat propagation, are the generalized theories of 
thermoelasticity. Banerjee and Pao [6] extended this theory to 
anisotropic heat conducting elastic materials. Dhaliwal and 
Sherief [7] treated the problem in more systematic manner. 
The literature dedicated to the hyperbolic thermoelastic 
models is quite large and extensive survey on the subject can 
be found in the review articles by Chandrasekharaiah [8, 9] 
and Chadwick [10].  They derived governing field equations 
of generalized thermoelastic media and proved that these 
equations have a unique solution. Verma [11, 12] studied 
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thermo-mechanical coupling and dispersion of thermoelastic 
vibrations of plate with thermal relaxations. Verma, and 
Hasebe [13, 14, 15] investigated wave propagation problems 
in plates of general anisotropic media in generalized 
thermoelasticity. The propagation of thermoelastic waves in a 
plate under plane stress by using generalized theories of 
thermoelasticity has been studied by Massalas [16]. Authors 
Nayfeh and  Nasser [17], , Massalas and Kalpakidis [18] have 
considered the propagation of generalized thermoelastic 
waves in plates of isotropic media. They have used the 
generalized theory of Lord and Schulman to study the 
characteristics of wave motion in a thin plate under plane 
stress state with mixed boundary conditions.

The normal mode expansion method has been proposed by 
Cheng and Zhang [19] for modeling the thermoelastic 
generation process of elastic waveforms in an isotropic plate. 
Cheng and Berthelot [20] have extended this method to Lamb 
wave propagation along two principal directions in an 
orthotropic plate. Cheng and Zhang [21] studied quantitative 
theory for modeling the laser generated transient ultrasonic 
Lamb waves, which propagates along arbitrary directions in 
orthotropic plates, by employing an expansion method of 
generalized Lamb wave modes. 

In this paper, waves propagating along an arbitrary 
direction in a heat conducting orthotropic thermoelastic plate 
are presented by utilizing the normal mode expansion method 
in generalized theory of thermoelasticity with one thermal 
relaxation time. The displacement and temperature fields are 
expressed into the symmetric and antisymmetric wave modes 
for surface thermal stress and thermal gradient free heat 
conducting orthotropic plate. Technique used is suitable for 
analyses of the transient thermoelastic wave in the thin plates, 
as one need only to determine contributions of the few lower 
antisymmetric and symmetric modes. Theoretical results 
obtained are solved numerically for NaF plate and the 
dispersion curves for the few lower modes are presented. The 
three motions namely, longitudinal, transverse and thermal of 
the medium are found dispersive and coupled with each other 
due to the thermal and anisotropic effects. Due to the thermal 
and anisotropic effects phase velocity of the waves is get 
modified and is also influenced by the thermal relaxation time. 
Relevant results of previous investigations are deduced as 
special cases. Relevant results of previous investigations are 
deduced as special cases. Finally numerical solution of the 
frequency equations for a NaF crystal is carried out, and the 
dispersion curves for the lowest six modes of the symmetric 
and antisymmetric vibrations are represented graphically at 
different values of thermal relaxation time. 

II. THEORETICAL BACKGROUND

We consider an infinite thermoelastic plate of finite 
thickness 2h of heat conducting orthotropic material. The 
coordinate axes x1, x2, and x3 of the model are chosen as to be 
analogous with the principal axes x, y, and z of the material, 
with z being normal to the plate. The bottom and upper 
surfaces of the thermoelastic plate are z h , respectively, 
with 0z  being the mid-plane of the plate. The 

displacement field vector 1 2 3( , , )u u uu satisfies equation 
of motion and heat conduction 

23

2
1

( )ij i
i

j j

u
f

x t
u

1,2,3i         (2.1)      

, 0ij ij eK T C T T 0 , 0 ,ij i j i jT u u         (2.2) 

where

ij ijkl kl ijC e T , i j i j k l k lC         (2.3)

the summation convention is implied;  is the density, t is 

the time, ui is the displacement in the xi direction, Kij  are 

the thermal conductivities, Ce  and 0   are respectively the 
specific heat at constant strain, and thermal relaxation time, 

ij  and eij  are the stress and strain tensor respectively; ij

are thermal moduli; ij  is the thermal expansion tensor; T is

temperature; and the fourth order tensor of the elasticity Cijkl

satisfies the (Green) symmetry conditions:  

ijklc  = klijc  = ijlkc  = jiklc , and 

jiij , jiij , ij jiK K                                    (2.4) 

Te boundary conditions at surfaces 3x h
3

1
( ) 0ij j

j
nu ,   ( i = 1, 2, and 3 )                         (2.5) 

0T
z

        (2.6) 

where 1 2 3( , , )f f ff  are the bulk force densities, is the 

volume density, 1 2 3( , , ) (0,0, 1)n n n  are the normal 
vectors at the lower and upper surfaces, respectively, and 

( )  ( , 1, 2 and 3)ij i ju is the stress tensor. ij  , kl  are 

the thermal moduli and linear thermal expansion tensors; ijK
is the thermal conductivity tensor and  , eC   and 0  are 
respectively the density, specific heat at constant strain and 
thermal relaxation time of the layer.  For orthotropic media the 
stresses and heat conduction equation for an orthotropic 
material in the symmetric coordinate system can be expressed 
by 

11 12 1311 11 1

12 22 2322 22 2

13 23 3333 33 3

4423 23

5513 13

5512 12

0 0 0
0 0 0
0 0 0

0 0 0 0 0 2 0
0 0 0 0 0 2 0
0 0 0 0 0 2 0

c c c e
c c c e
c c c e

T
c e

c e
c e

    (2.7) 
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2

1 ,11 2 ,22 3 ,33 0 2eK T K T K T C T
t t

2

0 0 1 1,1 2 2,2 3 3,32T u u u
t t

  (2.8)             

where

1 11 1 12 2 13 3

2 12 1 22 2 23 3

3 13 1 32 2 33 3

,
,
.

c c c
c c c
c c c

          (2.9) 

By the two-dimensional Fourier transform for variables x1 and 
x2

1 2 3

1 2 3 1 1 2 2 1 2

( , )( , , )

1 ( , )( , , )exp[ ( )
2

i

i

u T x x x

u T x x x i k x k x dk dk
 ,      (2.10)

Equations (2.1), (2.2) and (2.5), (2.6) are reduced to forms of 
the matrix operators 

2

2 ( ) f
t
u a u        (2.11a) 

2

1 ,11 2 ,22 3 ,33 0 2

2

0 0 1 1,1 2 2,2 3 3,32

e
T TK T K T K T C
t t

T u u u
t t

      (2.11b) 

( )b u 0 ,     (2.12) 

0T
z

 at z h                                                      (2.13)

where 1 2 3( , , )tu u uu is the displacement column vector, 

1 2 3( , , )tf f ff  are the body force column vectors, 
respectively, the superscript t represents the transpose, and the 
elements andij ija b of the 3 3  matrix operators 

( ) and   = ( )ij ija ba b  are follows: 
2

2 2
11 11 1 66 2 55 2( )a c k c k c

z
,

12 12 66 1 2( )a c c k k

13 31 13 55 1( )a a i c c k
z

14 1 1a i k ,
2

2 2
22 66 1 22 2 44 2( )a c k c k c

z
,

23 32 23 44 2( )a a i c c k
z

,

24 2 2a i k ,

2
2 2

33 55 1 44 2 33 2( )a c k c k c
z

,

34 3a
z

2

41 0 0 11 12

2

42 0 0 22 22

2

43 0 0 332

2 2
2 2

44 1 1 2 2 3 02 2

( )

( )

( )

( ) ( )e

a T k
t t

a T k
t t

a T
t zt

a K k K k K C
tz t

(2.14)

11 55 12 21 13 55 1 14

22 44 23 44 2 24

31 13 1 32 23 2 33 33 34 33

,   0,  ,  0 

,  ,  0

,  ,  ,  

b c b b b ic k b
z

b c b ic k b
z

b ic k b i k b c b T
z

41 42 43 440,   bb b b
z

                               (2.15)

where 4 4 4,  and ,  ,   1, 2,3,4j i ja a b i j are
corresponding to (2.11b) and (2.13). 

.

III. MODES EXPANSION

To solve (2.11)-(2.13), the method of expansion in normal 
modes is employed by considering eigen function series 
{ , , 1, 2,3,....}m m m by the eigen value problem of the 
operator a under the boundary operator b

2[ ] ,   m m m h z ha       (3.1)  

, 0

0 0 , 0 ,( )[ ]
ij ij e m m m

ij m m m i j i j

K T C i T
T i u u

      (3.2)  

[ ] 0mb , 0T
z

, z h                         (3.3)       

where m is the eigen frequency corresponding to the eigen 
mode 1 2 3 4[ , , , ]t

m m m m m . Because the operator a
is a self-adjoint operator under the boundary operator b, the 
eigen-function series { }m  forms an orthogonal set with the 
weighting function  Eringen, and Suhubi [22], 

*
h

t
n m mn

h

dz         (3.4) 

World Academy of Science, Engineering and Technology
International Journal of Materials and Metallurgical Engineering

 Vol:2, No:1, 2008 

21International Scholarly and Scientific Research & Innovation 2(1) 2008 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 M
at

er
ia

ls
 a

nd
 M

et
al

lu
rg

ic
al

 E
ng

in
ee

ri
ng

 V
ol

:2
, N

o:
1,

 2
00

8 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/3
22

6.
pd

f



On the other hand, it has been proven that { }m is also a 
complete function series Eringen, and Suhubi [22], so that the 
displacement column vector u  can be expanded by the 
generalized Fourier series 

1 2 3

1 2 1 2 3

( ,  )( , , , )
( , , , ) ( , , , ),m m m m

m

T k k x t
k k t k k x

u
              (3.5)

where ( )m t are the generalized Fourier coefficients 

* *

0

1 sin ( )[ ]
t

t t
m m m mz h vm

t dv ds f      (3.6)

where v represent the body of the plate and the superscript 
“*” represents complex conjugation. 

IV. THERMOELASTIC WAVE MODES 

The shear horizontal mode polarized parallel to the plate 
surface is not coupled to the dilatational and flexural modes, 
which simplifies greatly the Lamb wave motion. In 
orthotropic thermoelastic materials coefficients are c11, c13, c33,
c23, c55, and, 1 3,K K and 1 3, , the Lamb waves propagate 
in the principal directions (in the principal axis) of coordinate 
system. The Lamb wave propagation in antisymmetric 
directions is more complex than that along the principal 
directions, because there will no longer be a family of shear 
horizontal modes independent of the dilatational, flexural and 
thermal modes in the antisymmetric directions. All partial 
waves are coupled, and the thermoelastic free-plate modes can 
only be classified as symmetric and antisymmetric modes with 
respect to the median plane. The interest in a transversely 
isotropic thermoelastic plate has been motivated. In fact, (3.1)-
(3.2) mean that the eigen-functions of the operator a, are the 
generalized thermoelastic Lamb wave modes and the relations 
between m and (k1, k2) are dispersion equations of the Lamb 
wave modes. The eigen-functions can be classified as 
antisymmetric and symmetric modes with respect to the 
median plane ( 0z ) Cheng and Zhang [6], 

, , ,
sin( )         1,  2a

jm jl l l l
l p q r s

i H e z j             (4.1)       

3 3
, , ,

cos( )a
m l l l

l p q r s
H e z              (4.2)  

4
, , ,

sin( ) a
m l l l

l p q r s
i e z         (4.3) 

and for antisymmetric modes  

3
, , ,

cos( ),    1,  2s
jm jl l l l

l p q r s
i H e x j                   (4.4) 

3 3
, , ,

sin( )s
m l l l

l p q r s
H e z                (4.5)  

4
, , ,

cos( )s
m l l l

l p q r s
i e z         (4.6a) 

for symmetric modes. The generalized Rayleigh–Lamb 

equations for determining the relations between eigen-
frequency m and the wave numbers (k1 and k2) can be 
obtained by combining (4.1)-(4.6) with (3.3) 

1 2det[ ( , , )] 0,ij mt k k         (4.6b)  

with the elements of 4 4  matrix ( )ijtt  (l = p, q, r and s) 
2

1
3 13 1 1 23 2 2 33 3 3

,   1, 2 and 3

[ + ] tan( ) ,  
ij l jl j

l l l l l l

t H k j

t c k H c k H c H h
(4.7)

Here the " 1" and  " -1" in the element 3lt correspond to 
antisymmetric and symmetric modes, respectively. The 
parameters in (4.1)-(4.6) are discussed as follows:  
The partial wave numbers l  (l = p, q, r and s) are the roots 
of the determinant equation 
det[ ( )] 0ijg        (4.8) 

Equation (4.8) is deduced by substituting the partial 
waves 0 exp( ),jm jmv v i z  (j = 1, 2, 3 and 4) into (3.1) and 

(3.3). The elements of 4 4  matrix ( ) [ ( )]ijg g  are 
2 2

11 11 55( ) ( )mg a c ,

12 21 12( ) ( )g g a ,

13 31 13( ) ( )g g a , 14 14( )g a
2 2

22 22 44( ) ( )mg a c ,

23 23 23( ) ( )g g a , 24 24( )g a
2 2

33 33 33( ) ( )mg a c , 34 34( )g a

41 41( )g a , 42 42( )g a , 43 43( )g a       (4.9)
2 2

44 44 33( ) ( )m eg C a K
The coefficients 1lH , 2lH  and 3lH are the partial wave 

amplitudes, defined by 

= ,        1, 2,3j
jl

D
H j

D
                                              (4.10)

where
2 2 2 2

11 22 33 33 12 12 13 23 13 22 23 112D g g g g a a a a a g a g

33 22 14 33 12 24

1 2 2
13 23 24 14 23 13 34 22 12 23 34

g g a g g a
D

a a a a a ia a g ia a a

33 11 24 12 14 33

2 2 2
13 14 23 24 13 23 34 11 12 13 34

g g a a a g
D

a a a a a ia a g ia a a

12 13 24 12 14 23 13 14 22
3 2

23 24 11 34 11 22 12 34

a a a a a a a a g
D

a a g ia g g ia a
2

11 22 33 33 12

2 2 2
12 13 23 13 22 23 112

D g g g g a

a a a a g a g
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The amplitudes el and fl (l = 1 and 2) depend on er and fr by 
following equations 

, , ,
cos( ) cos( ),   1,  2,3jl l l r jr r

l p q r s
t h e e t h j   (4.11)       

, , ,
s ( ) sin( ),  1,  2,3jl l l r jr r

l p q r s
t in h f f t h j        (4.12)

The er or fr is determined by the normalized condition 
*, ,( ) 1

h
ta s a s

m m
h

dz                   (4.13) 

Finally, one can obtain a normalized eigen function series 
for symmetric and antisymmetric modes.

V. SPECIAL CASES 

A. Higher symmetry materials
Results for higher symmetry materials such as transversely 

isotropic, cubic, and isotropic can be obtained as special cases
with the following restrictions for transverse isotropy 
symmetry:  

33 22 13 12

55 66 22 23 44

22 33 22 33

,  c ,
 c ,  c 2 ,
 ,

c c c
c c c

k k
for cubic symmetry,  

11 22 33 12 13 23

44 55 66 11 22 33

11 22 33

, ,   
, ,

c c c c c c
c c c
k k k

 .

for isotropic symmetry,  
11 22 33

12 13 23

44 55 66

11 22 33

11 22 33

2 ,  
,
,
,

 k

c c c
c c c
c c c

k k k

B. Thermo-mechanical coupling constant is zero  
This case corresponds to the situation when the strain and 

temperature fields are not coupled with each other. In this case 
the thermo-mechanical coupling constant 0ij  are 

identically zero, and elastic waves decouple from thermal 
wave which is influenced by the thermal relaxation. 

C. Coupled thermoelasticity 

When 0 0,  i. e. no thermal relaxation time,  this is the 
case of coupled thermoelasticity, proceeding on the same 
lines, we arrived at equations of the form that is in agreement 
with the corresponding result for coupled thermoelasticity. 

VI. NUMERICAL AND DISCUSSION 

The fundamental way to describe the propagation of Lamb 
waves in a material is with their dispersion curves, which 
plots the phase velocity versus the wave. In the principal 
directions of the transversely isotropic material, there exist 
four types of free plate modes; namely, the pure shear 
horizontal, dilatational, flexural modes, and thermal. The 
shear horizontal mode polarized parallel to the plate surface is 
not coupled to the dilatational and flexural modes, which 
simplifies greatly the Lamb wave motion. For a transversely 
isotropic plate, the (x1 -x3) plane is isotropic so that there are 
only five independent stiffness constants. Computation for the 
symmetric and antisymmetric modes have been carried out for 
a single crystal NaF, for which, the basic physical data is 
given in Banerjee and Pao [2]. 

 Dispersion curves for seven lowest modes for symmetric 
and antisymmetric vibrations are shown in Figures (1) to (6) 
for different values of thermal relaxation 
times 7

0 1.8.10 secs , 6
0 1.8.10 secs  and 5

0 1.8.10 secs
respectively by employing the normal mode expansion of 
generalized thermoelastic Lamb wave modes, dispersion 
curves in the forms of variations of phase velocity 
(dimensionless) with wave number (dimensionless) are 
constructed at different values of thermal relaxation times for 
crystal of NaF.  Each of figure display coupled three wave 
speeds corresponding to quasi-longitudinal, quasi-transverse 
and quasi-thermal at zero wave number limits, for the higher 
value wave numbers higher modes appear in both cases 
(symmetric and antisymmetric thermoelastic modes) with 
increases. One of the thermoelastic mode seems to be 
associated with quick change in the slope of the mode. Lower 
modes are found to highly influence by the thermal relaxation 
times at low values of wave number both in symmetric and 
antisymmetric thermoelastic modes, while in higher modes, 
change is observed at high values of wave number. The 
corresponding results for the symmetric and antisymmetric 
vibrations  in coupled thermoelasticity are shown in Figure (7) 
and Figure (8) . 

VII. CONCLUSION

Transient thermoelastic Lamb wave analysis in generalized 
thermoelasticity with one thermal relaxation time propagating 
along arbitrary directions in heat conducting orthotropic plates 
is presented by using normal mode expansion method. The 
displacement field and temperature are expressed by a 
summation of the symmetric and antisymmetric modes in the 
stress and thermal gradient free surface of plate. The method 
used is appropriate for waveform analyses of thermoelastic 
Lamb wave in thin plates because one needs only to compute 
the lower modes. Numerical analyses indicate that the method 
will provide a useful technique to characterize anisotropic 
properties of orthotropic thin plates in thermal environment. 
However, it is available to consider not only the higher 
frequency components of the lowest Lamb wave modes, but 
also the higher-order Lamb wave modes for thicker plates in 
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the numerical analysis.  
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